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Cracked orthotropic strip with clamped boundaries
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1. Introduction

One of the basic aims of the lineár elástic frácture mechánics (LEF Ì) ßç recent years
is the determination of stress intensity factors ßç complicated situations regarding geo-
metÞc features andjor mechanical behavior [1]. This reflects the general claim for fracture
mechanics solutions to represent eçgßçeeÞçg reality instead of idealized situations. Of
course, mathematical complexities set some bounds up to this policy and then one has
to resort to numerical methods. However, there are still many problems ßç the realm of
LEF Ì which admit an analytical treatment. One of these is the problem solved here.

This concerns a long stÞñ made by orthotropic mateÞaÉ containing a long crack. The
case of clámped strip bïuçdaÞes will be discussed here. The alternative way of loading,
ß. e. the sheár free stÞñ bïuçdaÞes, has been considered ßç a recent paper of ours [2]. The
present work follows the analysis therein closely.

Knauss [3] and Rice [4] have solved the respective isotropic problem, whereas
Nilsson [5] and Popelar et al. [6] considered dynamic crack motion ßç an elastic and
viscoelastic stÞÑ. Relative to the present work are the ones ßç [7-11] where, however,
different geïmetÞc features were encountered.

The solution here was accomplished by FïuÞer transforms and the Wiener-Hopf
technique. The procedure will be descÞbed bÞeflÕ.

2. Governing equations

Consider a linear elastic orthotropic body ßç the form depicted ßç Fig. 1. Then, with
respect to the ÑÞçciÑaÉ mateÞaÉ-a÷es, the elastic constitutive expression relating the
in-plane stresses and displacements is [12]

[ó÷ ] ~cll Cl2 Ï ] [å÷ ]óÕ = Cl2 C22 Ï åÕ (1)

Ô×Õ Ï Ï C66 ã×Õ

where the components of the stiffness matÞ÷ are given ßç terms of the eçgßçeeÞçg
mateÞal constants as follows

Cll = ÅéÉ(1 - íé V2), Cl2 = V2 ÅéÉ(1 - íé íÆ), C22 = E2j(1 - íé vz), C66 = G.
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Õ

Ux=O, uy=uO

m orthotropy h
Figure 1Á long orthotropic stÞñ with clamped óÕ = Ï Ï h ÷

bïundaÞes containing a crack opened by
vertical displacements.

Ïux= ,Uy=-uO

Éç the above relations, the subscÞÑts 1 and 2 refer to the ÑÞnciÑal directions of
mateÞaÉ symmetry which coincide here with the × and Õ reference axes. Only four elastic
constants are independent, the fifth given by

í2Åé = íéÅ2.

Following Ref. [2], we introduce theÖ- and ø-dßSÑÉacement potential by the relations

Ï Ï
U×=fu(ö+ø), UÕ=ay(áÖ+bø), u%=O (2)

where
á = cll Ñé - C66 = (Cl2 + C66) Ñé, b = Cll Ñ2 - C66 = (Cl2 + C66) Ñ2 (3)

Cl2 + C66 C22 - C66Pl Cl2 + C66 C22 - C66P2

and Ñé, Ñ2 the roots ofthe characteÞstic equation

CllC66P2 + (C~2 + 2Cl2C66 - CllC22)P+ C22C66 = ï. (4)

It can be shown further that the displacement potentials satisfy the following Laplace
type difTerential equations

02ö 02ö 02 Ø 02 Ø
-;-2 + Ñé -;-2 = ï, ~ + Ñ2 ~ = Ï (5)
õ× uY õ× õ):

and the stresses are given ßç terms of Ö and Ø as

- (1 + (X)C66~ (1 + b)C66~
(61)ó÷ - Ñé ÏÕ2 + Ñ2 ÏÕ2 .

02ö 02 ØóÕ = - (1 + á) C66 -;-2 - (1 + b) C66 ~ (6.2)
õ× õ×

Ã 02ö 02ø]Ô×Õ = C66 é(l + á)~ + (1 + b)~ . (6.3)

3. Analysis

The semi-infinite crack is opened by constant vertical displacements Uo applied to
the stÞñ bïundaÞes, whereas these bïundaÞes are clamped ßç the x-direction. According
to Popelar and Atkinson [6] this type of loading is more convenient for fracture studies
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than the shear-free bïuçdaÞes. Ôï apply the Wiener-Hopf technique the following aux-
iliary problem is considered

ux(x, h) = Ï for - 00 < ÷ < 00 (7.1)

uy (×, h) = Ï for - 00 < ÷ < 00 (7.2)

Ô×Õ(×' Ï) = Ï for - 00 < ÷ < 00 (7.3)

óÕ (×, Ï) = óï. for - 00 < ÷ < Ï (7.4)

uy (×, Ï) = Ï for Ï < × < 00 (7.5)

Then, by a tÞviaÉ superposition we may arÞve again at the ïÞgßçaÉ problem. The
proper value of óï ßç the above boundary conditions and for plane-stress may be deÞved
by Eq. (1) as

Uoóï = - (Cl2 V2 + C22) h' (8)

Obviously, such a superposition does not affect the value of the stress intensity factor
obtained by solving problem (7).

Now we introduce two as yet unknown functions the determination of which com-
pletes the solution of problem (7):

óÕ (×, Ï) = m(x) for Ï < × < 00 (9.1)
Uy(x, Ï) = n(x) for - 00 < × < Ï. (9.2)

Applying the FïuÞer transform Eqs. (5) become [13]

(}2
-ù2Ö*(ù,Õ)+ÑÉèÕ-úÖ*(ù,Õ)=0 (10.1)

(}2- ù2 ø*(ù, Õ) + Ñ2èÕ-ú ø*(ù, Õ) = Ï (10.2)

which have general solutions of the form (ãj = Pi É/2 õ = 1, 2»

ö*(ù, Õ) = Á (ù) e1'Iroy + Â(ù)e-1'éùÕ (11.1)

ø*(ù, Õ) = C(ù)e1'2ùÕ + D(ù)e-1'2ùÕ. (11.2)

The ~ransforms of the functions of interest are defined as
00

m~ (ù) = (2ð)-É/2 f m(x) eirox dx (12.1)
ï
ï

n!(ù)=(2ð)-É/2 f n(x) eirox dx. (12.2)
-00

Then, application of the FïuÞer transform to the boundary conditions ßç conjunc-
tion with the transformed Eqs. (6) results ßç an algebraic system of five equations with
the six unknown functions Á(ù), Â (ù),' C(ù), D(ù), m+ (ù) and n- (ù). Some tedious
algebra eliminates Á (ù), . . ., D (ù) and reduces the system to the following Wiener-Hopf
equation

m~ (ù) = - C(66 b) Ê (ù) n! (ù) - .(2 á ) ~/2 (13)

ãéã2 á - é ð ù
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where the Kernel Ê (ù) = wF(w) [G(w)]-l is given by

F(w) = (1 + á) {2ãé ã2(1 + cx)b -(1 + b)ã2[(bã2 +áãJcïsh(ãéhù- ã2hù)
-(bã2 - áãJcïsh(ãé hw + hhw)]} + (1 + b) {2ãéh(1 + b)cx

- (1 + á)ãé [(bh + áãé) cïsh(ãé hw - ã2 hw) + (bã2 - áãé)

. cïsh(ãéhù + ã2hù)]},

G(w) = (bã2 - áãé) sßnh(ãé hw + ã2hù)

- (bã2 + áãé) sßnh(ãé hw - hhw). (14)

The Kernel takes the following asymptotic forrns for small and large w's

. ãé ã2 . (á - b)2
11m Ê (ù) = ( 2 b 2)h (15) ù-+Ï áãé - h

. Ê (ù)11m - = (1 + á) (1 + b) (ã2 - ãJ. (16)
ù-+ïï ù

Following now the classical Wiener-Hopf method [14] and the procedure ßç Refs.
[2,5,15] we may find

* óïê+(ù) [ 1 1 ]m+ (ù) = - ß(2ð)É/2ù ~ - Ê:"(Ï) (17)

and further

1. * ( ) óï óï r Ê+ (ù)m~oom+ ù = -ß(2ð)É/2ù+ß(2ð)É/2ùÉ/2,Ê+(0)ùé--mïï-;w (18)

or [13]

lim m(÷)=-~ [ (h-ãJ«÷ã~-bã~)(1+á)(1+b)h ] É/2÷-É/2. (19)
÷-+Ï+ ðÉ/2 ãéh(á-b)2

The above expression is the asymptotic forrn of the cleavage óÕ (×, Ï) - stress near the
crack tip. Since the stress intensity factor is given by

ÊÉ = lim [(2 ð ÷)É/2 . óÕ (×, Ï)] (20)
÷-+Ï+

we may easily find that ßç our case
Ê = [ 2(ã2 - ãé) (áã~ - bã~) (1 + á) (1 + b)] 1/2(Cl2 V2 + C2JUo

(21)é ãé h(á - b)2 h1/2'

4. Results and discussion

Obtaining the isotropic result of Rice [4] as a limiting case of our analysis seems to
be cumbersome. This is due to the fact that both numerator and denominator ßç Eq. (21)
tend to zero for á = b, ãé = ã2, íßÆ. for an isotropic mateÞaÉ. Of course, application of
L 'Hospital rule may lead to an analytic result after some tedious algebra. However, ßç
order to check our final result (21), we chose to work numerically. We consider the stress
intensity factor for a nearly isotropic material with the following mechanical constants:
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Åé/Å2 = 1.3/1.0, íé/í2 = 0.325/0.250 = 1.3, C66 = Å.Æ/2(1 + V2) = 0.4 (all values have
been normalized ßç respect to E2-modulus). Éç order to get the isotropic SIF, the values
Å = Å2 = 1.0 and V = V2 = 0.250 were used.

Éç addition, we compare the results of (21) with those obtained by our formula for
the shear-free type of boundary conditions ßç the same stÞñ [2]. It is noticed that the
latter case is reduced immediately to the isotropic one (see [5] for an analogy ßç elastody-
namics).

The following stress intensity factor values were found ßç the three cases:

K~O = 1.032 Uo h-l/2, K~rthl = 1.145 Uo h-t/2 (clamped bïundaÞes)

and
K~rth2 = 1.105 Uo h-t/2 (shear-free bïundaÞes).

The above results clearly show the validity of Eq. (21).
óç the other hand, it is interesting to explore the efTect of the degree of orthotropy

ïç the stress intensity factor. Éç particular, ßç what follows we consider the efTect of high
orthotropy. This was accomplished by cïnsßdeÞng large difTerences ßç the orthotropic
constants ßç the directions parallel and perpendicular to the crack line. The mateÞal
behavior of plywood was utilized.

Éç the first case the strong direction coincides with the crack axis: Åé = 24.600,
Å2 = 1.000, íé = 0.298, V2 = 0.012 and G = 0.750. Equation (21) then gives K~~> = 1.346
uoh-l/2. Éç the second case the weak direction coincides with the crack axis:El = 1.000,
Å2 = 24.600, íé = 0.012, V2 = 0.298 and G = 0.750. Éç that case Eq. (21) gives
K!f> = 30.549 Uo h -É/2. This great difTerence ßç SIF values for case (á) and (b) is mainly due

to the term C22 ßç the numerator of Eq. (21).
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Abstract

The stress intensity factor at the tip of a semi-infinite crack ßç an orthotropic infinite stÞñ was
determined. Clamped stÞñ bïundaÞes were considered.
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