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Abstract. We introduce the notion of cracked polytope, and –making use of joint work with
Coates and Kasprzyk—construct the associated toric variety X as a subvariety of a smooth
toric variety Y under certain conditions. Restricting to the case in which this subvariety is a
complete intersection, we present a sufficient condition for a smoothing of X to exist inside
Y . We exhibit a relative anti-canonical divisor for this smoothing of X , and show that the
general member is simple normal crossings.

1. Introduction

We introduce a class of polytopes which we call cracked. Given a complete fan
� (a shape) these are polytopes whose intersection with the maximal cones of �

forms a set of unimodular polytopes. We propose that this class of polytopes is
particularly well adapted to the study of toric degenerations of Fano varieties.

Our basis for this claim stems from our use of the method Laurent inversion—
developed jointly with Coates and Kasprzyk [10]—to embed the toric variety X
associated with a given cracked polytope into an ambient toric variety Y , such that
X degenerates to a union of toric strata of Y . Indeed the definition of cracked is a
natural necessary condition for the ambient variety Y to be smooth, and we give
precise sufficient conditions in Theorem 1.1.

We aim to apply these ideas to systematically construct Fano varieties. Indeed,
every Fano threefold with a very ample anti-canonical divisor can be constructed
from a cracked polytope via an explicit deformation of an embedding obtained
via Laurent inversion. This is the subject of work in progress [23], drawing on the
constructions of Coates–Corti–Galkin–Kasprzyk [7], and the work on toric degen-
erations of Ilten–Christophersen [4,5] and Galkin [13]. One important practical
point is that one only requires a small list of shapes to achieve this. Given that the
class of cracked polytopes with a given shape is small, one can classify those of a
given shape, use the techniques explained below to construct an embedded defor-
mation of the corresponding toric variety and thereby systematically recover every
Fano threefold (with −K very ample) without advance knowledge of the classifi-
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cation. It may be that every Fano fourfold with–K very ample can be constructed
using a similarly restricted list of shapes.

In Sect. 3 we give a self-contained account of the procedure Laurent inversion
which takes as input a decoration of P called a scaffolding, see Definition 3.1, and
returns an embedding of XP into a toric variety Y . The content of Sect. 3 first
appeared in the joint work [10]. Our first main result is proved in Sect. 4, which
provides a characterisation of when Y is smooth in a neighbourhood of the image
of XP . Note that given a fan � we let �̄ denote the quotient of � by its minimal
cone.

Theorem 1.1. Fix a polytope P ⊂ MR, and a rational fan � in MR such that the
toric variety Z := TV(�̄) is smooth and projective. Given a scaffolding S of P
with shape Z, we have that the target of the corresponding embedding is smooth
in a neighbourhood of the image of XP if and only if P is cracked along � and S
is full—see Definitions 2.1 and 4.1.

If Z is a product of projective spaces it follows from Proposition 5.1 that XP is a
complete intersection in YS . If the line bundles defining this complete intersection
are basepoint free, XP will smooth inside YS by Bertini’s theorem. We provide
a weaker, though related, criterion for the smoothability of XP inside YS , which
we call positivity of S: a condition on the codimension one slabs of the union of
toric varieties to which XP degenerates. This criterion has practical and theoretical
advantages over the naive one. For example – in the context of the Gross–Siebert
program [15,16]—it is related to the notion of positivity of the log structure on
the central fibre of a toric degeneration, as defined in [15]. We expect a precise
understanding of this connection to lead to a proof of Conjecture 5.11. We also
explain in future work that this condition is closely related to the condition required
to smooth a cracked polytope as an integral affine manifold. In practice it also
reduces the problem of computing basepoint loci on YS to the problem of computing
their restriction to (dim XP−1) dimensional toric strata of YS .

Theorem 1.2. Fix a fan� such that Z := TV(�̄) is a product of projective spaces,
and fix a polytope P such that P◦ is cracked along �. Given a full scaffolding S
of P with shape Z, the toric variety XP is the intersection of r Cartier divisors
corresponding to line bundles L1, . . . , Lr ∈ Pic YS. If S is positive we have that:

(i) The vanishing locus of a general section of
⊕

i∈[r ] Li is a smooth variety.
(ii) There is a divisor DS on YS such that the restriction of DS to the vanishing locus

of a general section of
⊕

i∈[r ] Li is simple normal crossings and anti-canonical.

While we do not attempt to classify cracked polytopes in this article, we study
the special case in which (after removing torus factors) Z ∼= P

1 in detail in [9]. In
particular, among other results, we will give a classification when dim P ∈ {3, 4}.

The current work is related to the broad project of Coates, Corti, Galkin, Goly-
shev, Kasprzyk, and others to construct and classify Fano varieties via mirror sym-
metry [1,2,6,7]. In particular, given a scaffolding S defining a complete inter-
section, there is a Laurent polynomial fS , defined in [10]. If XP is cut out by
a collection of nef line bundles, the Quantum Lefschetz Hyperplane Theorem of



Cracked polytopes and Fano toric 167

Fig. 1. Cracking a polygon

Coates–Givental [8] implies that fS is mirror to the smoothing of XP in the sense
defined in [6].Moreover positivity of S implies that fS admits a certain collection of
mutations—that is, fS remains a regular function on a torus under certain birational
transformations—see [2,6,14].

We also remark on a connection with polyhedral combinatorics. Cracked poly-
topes are reflexive polytopes made up of a number of hollow polytopes, that is,
of polytopes without interior points. These are themselves objects of interest and
recent study, see for example [3,21]. It would be interesting to investigate whether
these works provide tools to allow us to classify cracked polytopes.

Conventions. Throughout this article N ∼= Z
n will refer to an n-dimensional

lattice, and M := hom(N , Z) will refer to the dual lattice. Given a ring R we
write NR := N ⊗Z R and MR := M ⊗Z R. For brevity we let [k] denote the
set {1, . . . , k} for each k ∈ Z≥1. We work over an algebraically closed field k of
characteristic zero.

2. Cracked polytopes

In this section we introduce the notion of cracked polytope, which will form our
main object of study, and, in the Fano setting, characterize its dual polytope. We
will assume basic ideas and results from toric geometry—see [11,12]—throughout.

Definition 2.1. Fix a convex polyhedron P ⊂ MR containing the origin in its
interior, and a unimodular fan �. We say P is cracked along � if every tangent
cone of P ∩ C is unimodular for every maximal cone C of �.

Example 2.2. Figure 1 shows an example of a polygon P cracked along the fanofP2.
The toric variety defined by the normal fan of P isP

2/μ3. This surface is isomorphic
to the singular cubic surface {x1x2x3 = x30} ⊂ P

3, where xi , i ∈ {0, . . . , 3} are
homogeneous co-ordinates onP

3. Clearly, if we replace this binomial with a general
cubic, the resulting variety is smooth. Here we see P breaking into polytopes Pi ,
i ∈ [3], which we will later identify with the toric divisors {xi = 0} for i ∈ [3].

Example 2.3. We present two three-dimensional examples of cracked polytopes in
Fig. 2. The left-hand example uses the simplest non-trivial fan, consisting of two
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Fig. 2. Examples of cracked polytopes

maximal cones meeting along a hyperplane. The normal fan of the toric variety
shown is isomorphic to the blow-up in a smooth point of a quadric in P

4 which
contains a line of singularities. This variety admits an embedded smoothing in P

4

blown up at a (reduced) point.
The polytope P shown in the right-hand example is cracked along the fan of

P
1 × P

1 × P
1. The normal fan of P in this case defines a toric variety isomorphic

to

V (x1y1 − x0y0, x2y2 − x0y0, x3y3 − x0y0) ⊂ P
3 × P

3

where xi and yi are homogeneous co-ordinates on the respective P
3 factors. XP

contains 12 ordinary double point singularities. These are smoothed by perturbing
the equations defining XP in P

3 × P
3, which then define the vanishing locus of a

general section of
⊕

i∈[3] OP3×P3(2, 2).

Note that we do not assume the origin is theminimal cone of� in Definition 2.1.
We let M̄ denote the quotient of M by the minimal cone of �.

Remark 2.4. Although we provide a general definition, this article is concerned
solely with the case that �̄ defines a projective toric variety, and P is a polytope
containing the origin in its interior.

We study cracked polyhedra which are the image of the moment map of an anti-
canonically polarised toric Fano variety. Recall that an integral polytope P ⊂ NR is
called Fano if it contains the origin in its interior, and every vertex of P is primitive.

In general the polar polytope P◦ ⊂ MR of a Fano polytope P is not integral,
which is true in the special case that P is reflexive. Given a Fano polytope P its
spanning fan is the fan whose cones are given by the cones over faces of P , and
we denote the toric variety determined by the spanning fan of P by XP . We also
recall that there is an inclusion reversing map between the faces of P and P◦. Let
F� denote the face dual to the face F of P or P◦.
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Proposition 2.5. Let P be a Fano polytope cracked along a unimodular and com-
plete fan �, then P is reflexive. Hence there are only finitely many polytopes of a
fixed dimension cracked along some complete fan.

Proof. We show that, for every vertex v ∈ verts (P◦), the vertices of the facet v�

of P lie in a hyperplane of {v ∈ NR : 〈u, v〉 = 1} for some u ∈ M . Let C be the
minimal cone of � containing v in its relative interior, and let k := dimC . Let Cv

denote the tangent cone of P◦ at v, and let {b1, . . . , bk} be the minimal generating
set of the unimodular cone Cv ∩ 〈C〉.

Every facet F of P◦ containing v is contained in an affine hyperplane spanned
by n−1 of the vectors {b1, . . . , bn}, the basis of the tangent cone toCv ∩〈B〉 at v for
some maximal cone B of �. Moreover this collection cannot contain {b1, . . . , bk},
as the affine subspace spanned by these k vectors contains the origin. Thus if
F� = {w}, w = b�

j for some j ∈ [k] and 〈∑i∈[k] bi , w〉 = 1. Since
∑

i∈[k] bi is
defined independently of F and B, v� ⊂ 〈∑i∈[k] bi ,−〉 = 1. ��

Let P ⊂ NR be a reflexive polytope such that P◦ is cracked along a fan� inMR;
assume moreover that � defines a projective toric variety Z . We now characterize
the facets of P .

Definition 2.6. Recall theCayley sum P1�· · ·�Pr of polytopes Pi ⊂ NR for i ∈ [r ]
is the convex hull of the union of the polytopes Pi + ei in NR ⊕ R

r for i ∈ [r ].
Given a fan � in MR defining a projective toric variety Z , and C a cone of �,

let ZC denote the subvariety of the toric boundary corresponding to C under the
orbit-cone correspondence.

Definition 2.7. Let P ⊂ NR be a Fano polytope and � a fan in MR. We say P
has facets of Cayley type if every facet F of P is affine linearly isomorphic to the
Cayley sum of polyhedra associated to nef divisors of ZC , where C is the minimal
cone of� containing the vertex F� of P◦. Moreover we insist that this isomorphism
identifies Ann〈C〉 ⊂ N with the character lattice of ZC .

Proposition 2.8. Fix a reflexive polytope P such that P◦ is cracked along a fan �.
Assuming that Z := TV(�̄) is a smooth projective toric variety, P has facets of
Cayley type.

Proof. Let Cv denote the tangent cone to P◦ at v. Let �v be the fan induced by Cv

in the quotient space MR/〈v〉. Let C be the minimal cone of � containing v, and
let {b1, . . . , bk} denote the minimal generating set of Cv ∩ 〈C〉, where k := dimC .

We construct a fan �̃v in MR/〈v〉 refining �v . Fix a maximal cone σ � v of
� and let {b1, . . . , bn} be the extension of {b1, . . . , bk} to the minimal generating
set of the tangent cone σv to σ at v. The cone 〈bi : i ∈ [n], i �= j〉 projects to a
full-dimensional unimodular cone in MR/〈v〉 for any j ∈ [k]. We define �̃v to be
the complete fan formed by these maximal cones for all σ � v.

As every maximal cone of �̃v contains k − 1 vectors bi for i ∈ [k], the toric
variety Xv defined by �̃v admits a projection given by the quotient MR/〈v〉 →
MR/〈C〉 to the toric variety ZC . Since, by the proof of Proposition 2.5, the anti-
canonical (Gorenstein) direction for cone(v�) is u := ∑

i∈[k] bi , u is in the kernel
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of the map MR → MR/〈v〉. Thus the fibres of the projection Xv → ZC are
isomorphic to P

k−1.
We write Cv as the region above a convex PL-function θ : MR/〈v〉 → R. First

note that, by reflexivity of P , fixing a vertexw of the facet v� determines a splitting
of N into the sublattice annihilating v ∈ M , and the direction generated by w.
Identifying MR/〈v〉 with Ann(w) we identify MR with MR/〈v〉 ⊕ 〈v〉, and hence
identify ∂Cv with a graph of a function θ on MR/〈v〉. Note that v� is the polyhedron
of sections of the corresponding divisor on the toric variety Xv associated to �̃v .

Let b̄i be the images of bi in MR/〈v〉 for i ∈ [k]. Recall that each maximal
cone of �̃v contains k − 1 of the vectors b̄i , for i ∈ [k]. Therefore the function θ

vanishes on all but a single ray of the k rays in the subspace 〈C〉/〈v〉 ⊂ MR/〈v〉,
and evaluates to 1 on the remaining ray by unimodularity. Relabelling the elements
bi wemay assume that 〈u, bi 〉 = 0 for all i ∈ [k−1]. Since θ(b̄k) = 1, v� (regarded
as a polytope in Ann(v)) is contained in the column

⋂

i∈[k−1]
{u : u ∈ Ann(v), 〈b̄i , u〉 ≥ 0} ∩ {u : u ∈ Ann(v), 〈b̄k, u〉 ≥ −1}.

Thus v� projects to the standard simplex in the vector space dual to 〈C〉/〈v〉 and
hence is a Cayley sum.

Recall that there is a surjection from the set of maximal cones of �̃v to the
vertices of v�. Fix a maximal cone of �̃v and assume, without loss of generality,
that it contains the vectors {b̄1, . . . , b̄k−1}. The vertex of v� dual to this maximal
cone is contained in the subspace annihilating every b̄i for i ∈ [k − 1]. The face
of v� contained in this subspace, is nothing other than the polyhedron of sections
of the divisor on ZC obtained from the convex piecewise linear function induced
by θ on the quotient fan �̃v/〈b̄1, . . . , b̄k−1〉. This is a nef divisor on ZC as θ is a
convex function on the fan �̃v . ��
Remark 2.9. Note that the converse to Proposition 2.8 is not true. For example, any
smooth lattice polytope P ⊂ NR has Cayley facets for the fan subdividing MR

into two half-spaces meeting along the annihilator of any vector u ∈ N such that
v /∈ Ann(u) for all v ∈ verts (P◦). However slicing P◦ by the annihilator of u will
not produce a pair of polytopes with unimodular tangent cones in general.

Fix a Fano polytope P such that P◦ is cracked along a fan �. Since facets of P
are of Cayley type, there is a projection πF : F → �k−1 where k is the dimension
of the minimal cone of � containing the dual vertex to the facet F , and �l is the
standard simplex of dimension l.

Definition 2.10. Given a reflexive polytope P such that P◦ is cracked along a fan
� we say a face E is vertical if, for any facet F containing E , πF (E) is a vertex
of �k−1,

3. Laurent inversion

In this section we recall the method, Laurent inversion, developed in [10]. Through-
out this section we fix a lattice N ∼= Z

n , a splitting of N = N̄ ⊕ NU and a Fano
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polytope P ⊂ NR. Given these data we can define the notion of scaffolding on P ,
see [10, Definition 3.1].

Definition 3.1. Fix a smooth projective toric variety Z with character lattice N̄ . A
scaffolding of P is a set of pairs (D, χ) where D is a nef divisor on Z and χ is an
element of NU , such that

P = conv
(
PD + χ

∣
∣
∣ (D, χ) ∈ S

)
.

We refer to Z as the shape of the scaffolding, and elements (D, χ) ∈ S as struts.
We also assume that for every vertex of P , there is a unique s = (D, χ) such that
v ∈ PD + χ .

Note that the assumption that vertices meet a unique polytope PD + χ did not
appear in the Definition given in [10]. This is an innocuous technical condition
which we make use of to prove Theorem 1.1.

We let 
 denote the rank of the free abelian group DivTM̄ Z . Following [10] we
show that a scaffolding yields a torus invariant embedding of XP into an ambient
toric variety YS .

Definition 3.2. [10, Definition A.1] Given a scaffolding S of P we define a
toric variety YS , associated to the normal fan �S of the polytope QS ⊂ M̃R :=
(DivTM̄ Z ⊕ MU ) ⊗Z R, itself defined by the following inequalities:

〈
(−D, χ),−〉 ≥ −1 for all (D, χ) ∈ S;〈
(ei , 0),−

〉 ≥ 0 for i ∈ [
],

where ei denotes the standard basis of DivTM̄ Z ∼= Z

.

Let Ei denote the divisor of Z corresponding to the lattice vector ei and define
ρs := (−D, χ) for each s = (D, χ) ∈ S. We define a map of lattices

θ := ρ� ⊕ Id : N̄ ⊕ NU DivTM̄ (Z) ⊕ NU ,

N Ñ

where ρ is the ray map of the fan �̄ determined by Z .

Theorem 3.3. [10, Theorem 5.5] A scaffolding S of a polytope P determines a
toric variety YS and an embedding XP → YS. This map is induced by the map θ

on the corresponding lattices of one-parameter subgroups.

Let verts (S) denote the set of torus fixed points of Z , and, for each u ∈ verts (S),
letCu denote the intersection of themaximal cone of� corresponding to u with P◦.
Observe that, given a nef divisor D on Z , there is a canonical surjection verts (S) →
verts (PD). We denote this map v �→ vD . Each element u ∈ verts (S) defines a
function u : S → N , defined by setting u ((D, χ)) = uD + χ .
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Definition 3.4. Let ι be the inverse map to the restriction to  ⊕ NU of the canon-
ical projection M̃R → MR, where  is the union of (n − dim NU )-dimensional
faces of the standard coordinate cone in DivTM̄ (Z)� which project onto maximal
dimensional cones of �̄.

Let ιu : MR → M̃R be the linear extension of the map ι|Cu : Cu → M̃R for
each u ∈ verts (S).

Lemma 3.5. Given an element s ∈ S and u ∈ verts (S), we have that

ι�uρs = u(s).

Proof. The ray generators of the maximal cone in MR corresponding to u form a
basis {ēi : i ∈ [dim(M̄)]} of M̄ . Moreover the vectors ιu(ēi ) are standard basis
vectors e�

i in DivTM̄ (Z)� ⊆ M̃R. Thus we have that

〈ι�uρs, ēi 〉 = 〈ρs, e�
i 〉.

Writing s = (D, χ), one of the defining inequalities of PD is

〈−, ēi 〉 ≥ −〈ρs, e�
i 〉.

That is, writing the projection of ι�uρs to N̄ in co-ordinates determined by the basis
ē�
i , and recalling that ρs = (−D, χ), we have that these co-ordinates are identical
to those of u(s). Note that since ιu acts as the identity on MU the result follows. ��
Proposition 3.6. [10, Proposition A.9] The polytope ι(Cu) is a face of QS for each
u ∈ verts (S).

Proof. The polytope ι(Cu) is clearly contained in the boundary of the standard
positive cone. Given any s ∈ S and p ∈ Cu , 〈ρs, ι(p)〉 = 〈u(s), p〉 ≥ −1 by
Lemma 3.5. Thus ι(Cu) is contained in a face of QS ; the reverse inclusion follows
similarly. ��
Lemma 3.7. Given a vertex v ∈ verts (P◦), the tangent cone of QS at ι(v) is defined
by the following inequalities:

〈
ρs,−

〉 ≥ −1 s = (D, χ) ∈ S such that (PD + χ) ∩ v� �= ∅;〈
(ei , 0),−

〉 ≥ 0 u /∈ Ei for some u such that v ∈ Cu,

Proof. ByLemma3.5 〈ρs, ι(v)〉 = 〈u(s), v〉 for any u ∈ verts (S) such that v ∈ Cu .
This is equal to −1 if and only if u(s) ∈ v�. The second set inequalities follow as
ι(v) is in the span of those e�

i corresponding to rays of C̄ , where C is the minimal
cone of � containing v and C̄ is the projection of C to M̄ . ��
Proof of Theorem 3.3. Given a vertex v ∈ verts (P◦), let Cv denote the tangent
cone of P◦ at v, and let C̃v denote the tangent cone of QS at ι(v). We prove that
θ�(C̃v) = Cv . ByProposition 3.6wehave thatCv ⊆ θ�(C̃v). Fix a point p ∈ C̃v and
a vertex w ∈ verts (v�). We have that w = ι�uρs for some s ∈ S and u ∈ verts (S).
Now 〈θ(w), p〉 = 〈ρs, p〉+〈θ(w)−ρs, p〉. Note that 〈ρs, p〉 ≥ −1 by Lemma 3.7.
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Fig. 3. Scaffolding a polygon

After projecting Ñ → DivTM̄ Z , the polyhedron of sections of the divisor θ(w)−ρs
is the translate of PD defined by taking the vertex w to the origin. Thus, writing
out θ(w) − ρs in the basis ei , i ∈ [
], the components corresponding to divisors
Ei containing any u such that u(s) = w vanish; while all others have non-negative
coefficient. Thus 〈θ(w) − ρs, p〉 ≥ 0, and 〈w, θ�(p)〉 ≥ −1, as required. Finally,
we need to show that the map θ� defines a surjection of semigroups. This follows
from Proposition 3.6: as Z is smooth each ιu is an integral splitting of θ�. ��

We describe the construction of YS and the embedding XP ↪→ YS in a simple
example.

Example 3.8. Consider the polygon P shown in Fig. 3. Fixing the shape variety P
2,

Fig. 3 shows a scaffolding of P with two struts. The dual polytope is shown on the
right-hand side of Fig. 3, where it is easily seen that this polygon is cracked along
the fan of P

2. Note that in this example N = N and NU = {0}.
The polytope QS ⊂ R

3 is defined by the inequalities 〈ei ,−〉 ≥ 0 for all
i ∈ [3], together with the two additional inequalities. These are obtained from the
two divisors on P

2 whose polyhedra of sections are shown in Fig. 3. Identifying
the standard basis ei of Z

3 ∼= DivTM̄ (P2) with specific divisors of P
2 we add the

inequalities 〈−e1 − e2,−〉 ≥ −1 and 〈−e3,−〉 ≥ −1 to those defining QS . We
display the map ι in Fig. 4. Note that TV(�S) ∼= P

2 × P
1 and the image of XP is a

hypersurface defined by a section of L := OP2(2) � OP1(1). It is well known, for
example by projecting to the P

2 factor, that general members of the linear system
defined by L are smooth del Pezzo surfaces of degree 5.

4. Full scaffoldings

In this section we introduce the notion of full scaffolding, and complete the proof
of Theorem 1.1. If we fix a Fano polytope P , there are a vast number of possible
scaffoldings, for many different shape varieties Z . We will control this class in two
ways: first we constrain the class of polytopes to those which are cracked along the
fan determined by Z ; second we insist that our scaffoldings are full, which often
uniquely determines a scaffolding on P with a given shape.

Definition 4.1. Given a Fano polytope P ⊂ NR cracked along a fan � in MR we
say a scaffolding S of P with shape Z := TV(�̄) is full if every vertical face of P
is contained in a polytope PD + χ for a (unique) element (D, χ) ∈ S.
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Fig. 4. Example of the piecewise linear map ι

Fig. 5. Cracked polytope with no full scaffolding

Unfortunately full scaffoldings of a cracked polytope need not exist, and if they
do exist, they need not be unique.

Example 4.2. Figure 5 shows a polygon P , which we attempt to scaffold using
the shape Z = P

2. We show the dual polygon on the right hand side of Fig. 5,
from which we can easily see that P is cracked along the fan � determined by Z .
However the three vertical faces (the three edges of P whose normal directions are
rays of �) of P cannot be covered by a single strut of a scaffolding, as shown.

Remark 4.3. Note that in the case that the shape variety of Z is one-dimensional
(that is, Z is isomorphic to P

1) full scaffoldings for polytopes cracked along the
fan defined by Z always exist. Indeed, vertical faces of P are precisely edges in the
direction annihilating the minimal cone of �. Scaffold P by covering each such
(vertical) edge with a single polytope PD + χ , and add any struts to cover each
remaining vertex of P .

Proof of Theorem 1.1. We first show that if P is cracked along�, and admits a full
scaffolding with shape Z = TV(�̄), then the tangent cone C̃v to QS at ι(v) is a
unimodular cone for any v ∈ verts (P◦).

Let C be the minimal cone of � containing v. We let k := dimC , and nu :=
dim NU .We count the inequalities defining C̃v given in Lemma 3.7. The description
of v� as a Cayley sum implies that there are k inequalities of the form 〈ρs,−〉 ≥ −1.
Let C̄ be the image of C in �̄ and note that, since Z is smooth, there are (k − nu)
rays of C̄ . Any ray generator of �̄ which is not a ray of C defines an inequality
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〈(ei , 0),−〉 ≥ 0 appearing in Lemma 3.7. Thus the total number of inequalities
defining C̃v is (
−k+nu)+k = dim Ñ , hence C̃v is simplicial. Let d := 
−k+nu .

Fixing a basis of NU we record the ray generators of C̃�
v in the columns of the

matrix

M =
(
Id A
0 B.

)

We need to check that det(B) = ±1. The last k columns of M are the vectors
ρs such that u(s) ∈ v� for some u ∈ verts (S). The last k rows of M correspond to
vectors e�

i ∈ M̃ dual to the divisors of Z determined by the k rays of C̄ . Let bi for
i ∈ [k] denote the ray generators of C . Fixing a u ∈ verts (S) such that v ∈ Cu ;

〈ρs, e�
i 〉 = 〈ρs, ιu(bi )〉

= 〈u(s), bi 〉,
by Lemma 3.5. Varying s we see that these values are nothing other than the co-
ordinates of the standard simplex �k−1, the image of v� → R

k defined by its
description as a Cayley sum.

Conversely, assume that C̃v is unimodular for every vertex v ∈ verts (P◦). It
immediately follows from Proposition 3.6 that P◦ is cracked along �. To see that
scaffolding must be full we note that for each strut s = (D, χ) such that u(s) ∈ v�

the intersection (PD + χ) ∩ v� is contained in a single vertical face. If none of the
inequalities appearing in Lemma 3.7 are redundant then it follows from the count
of these inequalities made above that there must be a single strut covering each
vertical face.

Note that the inequalities 〈ei ,−〉 ≥ 0 clearly cannot be redundant; so we check
for redundancy among the inequalities 〈ρs,−〉 ≥ −1. Given a point p ∈ Cu

it follows from Lemma 3.5 that 〈ρs, ι(p)〉 = 〈u(s), p〉 for any u ∈ verts (S).
However, for some u ∈ verts (S), w := u(s) is a vertex of v�. Moreover, we have
assumed that s is the only element of S such thatw ∈ PD +χ . The vertexw defines
a facet ofCu , and since 〈w,−〉 ≥ −1 is not redundant in defining Cu the inequality
〈ρs,−〉 is not redundant in defining ι(Cu), and hence C̃v . ��

5. Smoothing complete intersections

We now restrict our attention to scaffoldings of polytopes cracked along the fan of
a product of projective spaces. As shown in [10], the embeddings obtained through
this construction express XP as a complete intersection inside YS .

Proposition 5.1. Given a cracked polytope P and a full scaffolding S of P with
shape

Z = P
k1 × · · · × P

kr ,

the image of XP ↪→ YS is a complete intersection.
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Proof. The homogeneous co-ordinate ring of YS is generated by variables xi, j for
i ∈ [r ], j ∈ [ki ], and variables ys for s ∈ S. Let ei, j denote the standard basis vector
in DivTM̄ Z corresponding to xi, j . The sublattice θ(N ) ⊂ Ñ is the intersection of
the hyperplanes

Hi :=
{
v ∈ Ñ : 〈 ∑

j∈[ki ]
e�
i, j , v

〉 = 0
}
,

for i ∈ [r ]. Thus XP is cut out by the equations

∏

j∈[ki ]
xi, j =

∏

s∈S
y
−∑

j∈[ki ]〈ρs ,e�
i, j 〉

s .

It is easily seen that these equations generate the toric ideal of the image of XP in
the affine chart defined by C̃v , for any v ∈ verts (P◦). ��

We fix Z for the remainder of this section to be the product of projective spaces
P
k1×· · ·×P

kr .We let �̄ be the fan determined by Z , andfix a splitting N = NU⊕N̄ .
If S is a scaffolding with shape Z , we define

Li := OYS

({ ∏

j∈[ki ]
xi, j = 0

}) ∈ Pic YS .

In particular, we can describe XP by intersecting vanishing loci of (binomial)
sections of the line bundles Li on YS .

Remark 5.2. In fact, following [10], scaffolding with shape Z isomorphic to any
toric tower of projective space bundles will express XP in YS as a complete inter-
section. Our restriction to the product of projective spaces case is a simplifying
one, but we expect results to hold true in the more general context.

Wefirst introduce an important ingredient, the notion of a slab. This terminology
is taken from the work of Gross–Siebert [16], though our context and definition
differ slightly. In particular our definition is closer to that of a naked slab since we
do not yet decorate them with particular slab functions.

Definition 5.3. Given a scaffolding S of a Fano polytope P , we define the collection
slabs to be the collection of polytopes formed by intersecting codimension one
cones of � with P◦.

We index the slabs in P◦ by indexing the torus invariant curves in Z .

Lemma 5.4. The codimension one cones of � are in bijection with functions

f : [r + 1] →
∐

i∈[r ]
[ki ],

such that f (i) ∈ [ki ], and we define is ∈ [r ] to be the index such that f (r + 1) ∈
[kis].
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Given a slab s, we denote the toric variety defined by its normal fan as Xs. Note
that, as P is cracked, Xs is smooth.

Lemma 5.5. Fix a Fano polytope P and a slab s = σ ∩ P◦, where σ is a codi-
mension one cone of �. Let f be the function associated to s by Lemma 5.4. Xs is
isomorphic to the toric stratum of YS defined by the intersection of the vanishing
loci {xi, f (i) = 0}, for i ∈ [r ] and the vanishing locus {xis, f (r+1)}.
Proof. This follows immediately from Lemma 5.4 and the fact that

ι(s) = Ann
({ei, f (i) : i ∈ [r ]} ∪ {eis, f (r+1)}

) ∩ QS .

��
We let μs : Xs → YS denote the inclusion corresponding to the inclusion of

s ↪→ QS . Each slab s corresponds to a curve Cs in Z . The index is appearing in
Lemma 5.4 is the unique i ∈ [r ] such that Cs projects to a curve under the map
Z → P

kis .

Definition 5.6. Fix a scaffolding S of a reflexive polytope P , and a slab s ⊂ P◦.
Given a facet τ of s contained in ∂P◦ we let Dτ denote the divisor of Xs corre-
sponding to the facet τ , and we define

aτ := 
(τ �) if τ is a face of P◦, and dim τ � = 1
0 otherwise,

where 
(e) denotes the lattice length of the edge e. We define the slab divisor

Ds :=
∑

τ

aτ Dτ ,

where the sum is taken over facets τ of s contained in ∂P◦. Moreover we let Ls

denote the line bundle O(Ds) ∈ Pic(Xs) for each slab s.

Remark 5.7. Note that in Definition 5.6 we assume that P is reflexive. In fact this
definition can be extended to all Fano polytopes, but becomes more complicated
and we omit it here.

Note that sections of Ls are closely analogous to the slab functions appearing
in [16]. We relate the line bundles Ls with the bundles Li defining the image of
XP in YS .

Lemma 5.8. Fix a polytope P cracked along the fan �, and S a full scaffolding of
P with shape Z. Given a slab s, we have that Ls = μ�

sLis .

Proof. Let �s denote the fan determined by Xs. Observe that

ys :=
∏

s∈S
y
−∑

j∈[kis ]〈ρs ,e�
is, j 〉

s ∈ (YS, Lis).
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Moreover recall that there is a bijection between the facets τ of s contained in ∂P◦
and the set

{s ∈ S : 〈ρs,−〉 ≥ −1 defines a facet of s}.
Thus the pullback of {ys = 0} to Xs is the divisor obtained by labelling each such
ρs with the integer

∑
j∈[kis ]〈−ρs, e�

is, j
〉. We now interpret this integer as an edge

length.
Observe that Pic(Z) ∼= Z

r , and that the map ν in the short exact sequence

0 → N
θ→ Ñ

ν→ Pic(Z) → 0,

sends x ∈ Ñ to
∑

i∈[r ] ai ēi , where ēi is the pullback of the hyperplane class of P
ki

to Z along the canonical projection, and

ai :=
∑

j∈[ki ]
〈x, e�

i, j 〉.

Writing x = (D, χ) ∈ DivTM̄ Z⊕NU , the polytope PD ∼= ∏
i∈[r ] ai�ki is a product

of dilated standard simplices. Note that each edge in the i th factor has length ai .
Thus the coefficient attached to each ρs defining a facet τ of s is precisely the edge
length 
(τ �) of PD corresponding to Cs, where s = (D, χ). ��
Definition 5.9. Given a reflexive polytope P , cracked along a fan �, and a scaf-
folding S of P , we say S is positive if the image of (YS, Lis) → (Xs, Ls) is a
basepoint free linear system for all slabs s.

Remark 5.10. It would appear more natural, and closer to the definition appearing
in [16], to insist only that the complete linear system (Xs, Ls) is basepoint free.
Note however that this condition is independent of S, while Definition 5.9 is not.
We conjecture that if the linear system (Xs, Ls) is basepoint free for all s then
a smoothing of XP exists. Our slightly more restrictive definition guarantees the
existence of an embedded smoothing in YS .

Conjecture 5.11. Fix a unimodular rational fan � in MR such that Z ∈ TV(�̄)

is projective, and a polytope P such that P◦ is cracked along �. If (Xs, Ls) is
basepoint free for all slabs s, then XP admits a smoothing.

We study the equations defining XP ⊂ YS in the toric affine chart of YS with
cone dual to C̃v for a given vertex v ∈ verts (P◦). Let S(v) ⊂ S denote those
s ∈ S such that the inequality 〈ρs,−〉 ≥ −1 appears in Lemma 3.7 as a defining
inequality for C̃v . Let B(v) = ∐

i∈[r ] Bi (v) denote the set of vectors ei, j dual to
vectors e�

i, j which are not contained in the minimal cone of � containing v. In this

notation, restricting the equations defining XP ⊂ YS to Speck[(C̃v − v) ∩ M̃], we
obtain the equations:

∏

j∈Bi (v)

xi, j =
∏

s∈S(v)

y
li,s
s for all i ∈ [r ] (1)
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where

li,s := −
∑

j∈[ki ]
〈ρs, e�

i, j 〉.

We now prove the first part of Theorem 1.2, namely that vanishing locus of a
general section of

⊕
i∈[r ] Li is a smooth variety.

Proof of Theorem 1.2. (i) Fix a point x ∈ Im Sing(XP ) ⊂ YS and let p ∈ ∂P◦
denote its moment map image. Let C be the minimal cone of � containing p.
The cone C corresponds to a toric stratum XC of Z , the product of toric strata
Xi of P

ki for i ∈ [r ]. Let v be a vertex of the minimal face of P◦ containing
p, so that x ∈ Speck[(C̃v − v) ∩ M̃]. We replace YS by a resolution, or by the
complement of Sing YS ; by Theorem 1.1 this can be done in the complement of a
Zariski neighbourhood of x ∈ YS .

Let V denote the variety cut out by the Eq. (1) such that Xi is zero dimensional.
Since Bi (v) is a singleton for each such equation, this equation becomes xi, j =
∏

s∈S(v) y
li,s
s for some j ∈ [ki ]. Thus the variety V is smooth as C̃v is unimodular.

If Xi is not zero dimensional x ∈ Im Xs (and p ∈ s) for all the slabs s
corresponding to curves of Z contained in Xi . Consider the first value i such that
|Bi (v)| > 1, then Li is basepoint free on Xs, and hence in a neighbourhood of
x ∈ YS . It follows from a version of Bertini’s theorem over k that since V is
smooth and affine (and hence quasi-projective) the singularities of the vanishing
locus of a general section of Li onV are contained in the base locus of Li . Removing
the base locus of Li on X and inductively applying this version of Bertini’s theorem
we obtain that the vanishing locus of a general section of

⊕
i∈[r ] Li is smooth in a

neighbourhood of x . Since x was chosen arbitrarily from the singularities of XP ,
and applying a standard compactness argument, we see that perturbing the Eq. (1)
smooth XP in YS . ��

We now construct the divisor DS appearing in the statement of Theorem 1.2.

Definition 5.12. Let DS be the divisor in YS corresponding to function on the rays
of the normal fan to QS which sends each ray generated by ρs for some s ∈ S to 1.

We can now conclude the proof of Theorem 1.2 by describing the restriction of
the divisor DS to a smoothing of XP . The strategy is broadly the same: for each
equation in (1) we can either eliminate it, or make a transversality argument based
on the positivity of S.

Proof of Theorem 1.2. (ii) Let X be a general smoothing of XP obtained by per-
turbing Eq. (1). Recall that

∏
j∈[ki ] xi, j ∈ (YS, Li ) for each i ∈ [r ]. Thus the

restriction of DS to X (or XP ) is anti-canonical by the adjunction formula.
To show that the restriction of DS to X is simple normal crossings (snc) we

must show that each component of DS|X is smooth, and DS|X is locally of the form∏
i∈[a] xi = 0, where xi are local parameters on YS and a ∈ [dim N ]. The argument

used to show that XP smooths inside YS extends immediately to each component
{ys = 0} ∩ XP , ensuring each component of DS|X is smooth.
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Fix a point x ∈ XP such that the image of x in YS lies at the intersection of
divisors {ys = 0} ∩ Im XP for s ∈ S′ ⊆ S, where S′ is some subset of S. Let p be
point in P◦ corresponding to x , and let v ∈ verts (P◦) be a vertex of the minimal
face of P◦ containing p. As above the local affine piece,

Yv := Speck[(C̃v − v) ∩ M̃],

has co-ordinates ys for s ∈ S(v)—noting that S′ ⊆ S(v) ⊆ S—and xi, j where
ei, j ∈ B(v). The restriction of the divisor DS to Yv is given by the equation∏

s∈S(v) ys = 0. This divisor remains snc after intersection with the i th Eq. (1)
if |Bi (v)| = 1 (with co-ordinates on the vanishing locus given by eliminating
xi, j , where Bi (v) = {ei, j }). As above, if |Bi (v)| > 1, the base locus of Li is
disjoint from a neighbourhood of x . Thus, inductively applying the fact that the
sum of an snc divisor and a general member of a free linear system is snc—see [18,
Lemma 9.1.9]—the result follows. ��

6. Examples

We consider examples in dimension 3, using the famous classifications of reflexive
3-polytopes by Kreuzer–Skarke [17], and of three dimensional Fano varieties by
Mori–Mukai [19,20].

Example 6.1. We construct a Fano variety in the family 2–18 in theMori–Mukai list
from a cracked polytope. The complete intersection description we obtain appears
in [7]. Let N := Z

3, NU := 〈e3〉, and N̄ := Z
2 = 〈e1, e2〉. We let Z := P

2, and let
� denote the corresponding fan. The left hand image in Fig. 6 shows the scaffolding
of P using 3 struts: a pair of triangles labelled s1 and s2, and the remaining vertex.
The right hand image shows P◦ cracked into three Cayley polytopes, two of which
(Q2 and Q3) are Cayley sums of a pair of triangles, while Q1 is the Cayley sum of
three line segments. Note that XP is a hypersurface in YS , the vanishing locus of a
section of some L ∈ Pic YS .

We check positivity along the slab s = Q1 ∩ Q3. Observe that Xs
∼= F1,

and let π : F1 → P
2 be the contraction of the (−1)-curve. We have that Ls =

π�OP2(2), which is a basepoint free divisor and, verify that in this example the
map (YS, L) → (Xs, Ls) is surjective.

The toric variety YS admits a morphism to P
2 × P

1, realising a smoothing X of
XP as a double cover of P

2 × P
1 branched in a divisor of bidegree (2, 2); see [7]

for more details.

Example 6.2. We describe an important class of non-examples. Consider the reflex-
ive polytope P with PALP id 15, whose corresponding toric variety XP is shown to
be non-smoothable by Petracci [22]. A neighbourhood of Sing XP is isomorphic to
a bundle of A1 (surface) singularities over P

1. This is represented on P by an edge
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Fig. 6. Construction of a variety in the family 2–18 via a cracked polytope

Fig. 7. Slab divisor for a non-positive scaffolding

of length 2 which has direction vector u := (0, 1, 1). P◦ is cracked along the fan
� consisting of two half spaces meeting along MU = Ann(u) ⊂ MR. As observed
in Remark 4.3 this polytope admits a full scaffolding with shape P

1. However this
scaffolding is not positive.

The unique slab s = Ann(u) ∩ P◦ is shown in Fig. 7, together with the divisor
Ds. The toric variety Xs

∼= F1 with (−1)-curve E , and Ds = 2E ; hence S cannot
be positive. The same analysis applies to the reflexive polytopes with PALP ids in
the set (a subset of the list appearing in [22]),

{16, 58, 59, 61, 65, 66, 192, 193, 197}.
That is, the corresponding (dual) polytopes are cracked along the hyperplane dual
to the direction u of an edge defining a transverse An singularity. However no full
scaffolding of these polytopes is positive, as Ls—where s = Ann(u) ∩ P◦—is a
multiple of a curve with negative self intersection.
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