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Abstract

Once the characteristic size of materials reaches nanoscale, the mechanical
properties may change drastically and classical mechanisms of materials failure
may cease to hold. In this paper, we focus on joint atomistic-continuum studies
of failure and deformation of nanoscale materials. In the first part of the paper,
we discuss the size dependence of brittle fracture. We illustrate that if the
characteristic dimension of a material is below a critical length scale that can
be on the order of several nanometres, the classical Griffith theory of fracture
no longer holds. An important consequence of this finding is that materials
with nano-substructures may become flaw-tolerant, as the stress concentration
at crack tips disappears and failure always occurs at the theoretical strength of
materials, regardless of defects. Our atomistic simulations complement recent
continuum analysis (Gao et al 2003 Proc. Natl Acad. Sci. USA 100 5597–600)
and reveal a smooth transition between Griffith modes of failure via crack
propagation to uniform bond rupture at theoretical strength below a nanometre
critical length. Our results may have consequences for understanding failure
of many small-scale materials. In the second part of this paper, we focus on the
size dependence of adhesion systems. We demonstrate that optimal adhesion
can be achieved by either length scale reduction, or by optimization of the shape
of the surface of the adhesion element. We find that whereas change in shape
can lead to optimal adhesion strength, those systems are not robust against small
deviations from the optimal shape. In contrast, reducing the dimensions of the
adhesion system results in robust adhesion devices that fail at their theoretical
strength, regardless of the presence of flaws. An important consequence of this
finding is that even under the presence of surface roughness, optimal adhesion
is possible provided the size of contact elements is sufficiently small. Our
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atomistic results corroborate earlier theoretical modelling at the continuum scale
(Gao and Yao 2004 Proc. Natl Acad. Sci. USA 101 7851–6). We discuss the
relevance of our studies with respect to nature’s design of bone nanostructures
and nanoscale adhesion elements in geckos.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

With continued miniaturization of technologies, for example those achieved in N/MEMS
technologies or in lab-on-a-chip devices, it is critical to understand the behaviour of materials
at ultra-small length scales reaching down to several nanometres. In several previous studies,
it has been suggested that once the characteristic size of materials reaches nanoscale, the
mechanical properties may change drastically. For example, changes in materials behaviour
as a function of dimension have been confirmed in numerous experimental, theoretical and
computational studies of materials including nanocrystalline metals [1–7] and thin metal films
[8–12]. Molecular dynamics (MD) modelling has been a fruitful approach that has helped
to understand deformation mechanisms of nanocrystalline, primarily ductile materials [6, 7].
In recent continuum level studies, it has been shown that classical mechanisms of materials
failure such as brittle fracture cease to hold [13–15] once the material reaches dimensions close
to a few nanometres [13,14,16]. However, up to date, few atomistic studies have been carried
out focusing on the fracture mechanics of brittle materials at extremely small scales. In this
paper, we will use a combination of continuum theory and large-scale atomistic simulation to
address the size dependence of brittle fracture and adhesion systems.

Small-scale materials with extremely tiny characteristic structures are often found in
biological materials [17–22]. Nature is a master in building and using nano-devices to perform
different tasks ranging from energy transport to assembling machines with complex control
systems far beyond what human beings have ever been able to create. In particular, nature
has achieved several classes of materials with superior properties, such as, for example, bone-
like materials [13, 23] or adhesion systems [20, 21, 24]—all featuring the smallest structural
details on the order of several to several hundred nanometres. It is a timely task to understand
how nature designs these materials from a very fundamental, atomistic perspective, and to
understand the impact of size reduction on the mechanics of materials.

In studies of microstructures of bone-like materials, it was discovered that biological
bone-like materials consist of a generic microstructure characterized by staggered mineral
platelets embedded in a soft matrix material consisting of collagen (see figure 1, left) [18].
Although the matrix material is as soft as human skin, and the mineral platelets are as brittle
as classroom chalk, the combination of both materials in a nanostructure leads to superior
mechanical properties. Is the nanometre length scale the secret for such superior properties?
In other studies, it was established [16, 17, 19–21, 24] that nature can produce very strong
adhesion systems based on relatively weak van der Waals interactions [24]. Using a contact area
comparable with that of a human hand, geckos can stick strongly to a variety of chemically and
mechanically different surfaces. In these systems, the size of the terminal adhesion elements
is restricted to nanometre length scale [17, 19, 20]. For instance, in geckos, the spatula has a
typical diameter on the order of 200 nm [16,17]. Is restricting the length scale of the adhesion
element to nanometre the key to providing such superior adhesion properties?

We hypothesize that in both bulk and surface materials, the design of the relevant structural
links that sustain load transfer (e.g. the spatula in adhesion systems or the mineral platelets in
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bone) is the key to understanding the properties of these materials. Scale reduction seems to
be a common design principle found in biological materials to create structural links leading
to robust designs.

We demonstrate that design at the nanometre scale may play a critical role in understanding
the structure of many biological materials. Our central finding is that once characteristic
materials length scales are reduced to nanoscale, mechanical properties may change
dramatically and new phenomena may occur. For example, atomistic simulations reveal that
stress concentrations at crack tips disappear in materials with sufficiently small dimensions.

This paper is divided into two main parts: In the first part, we discuss fracture in
nanostructures, and in the second part we focus on ultra-small scale adhesion elements. In
the first part of the paper, we consider a long crack embedded in a thin strip of material. We
illustrate that if the width of the strip is much larger than the critical scale for flaw tolerant
design, failure of the material is governed by the Griffith condition, in agreement with current
understanding [25]. In contrast, if the width of the thin strip is below the critical size, the solid
can sustain loads up to its theoretical strength, regardless of the existence of the crack. In
the second part of the paper, large-scale atomistic studies of biological adhesion elements are
used to demonstrate the influence of size reduction and surface morphology on the adhesion
strength. We illustrate that reducing the size of contact elements leads to optimal adhesion and
the stress concentration vanishes at pull-off. We conclude with a discussion of the results and
the outlook of future investigations.

2. Strength of brittle nanoparticles

In this section, we focus on fracture properties of ultra small brittle particles and the impact of
size variation on fracture properties.

The goal of these studies is to understand the limiting cases for the validity of Griffith’s
theory of fracture. In addition to general interest to understand if Griffith’s theory can be
applied to brittle fracture at ultra small scales, this study is motivated by the fact that in bone,
mineral platelets appearing at ultra small nanoscale dimensions seem to play an integral role
in the load transfer process. Thus, their properties may have implications on the strength of
the bone. As illustrated in figure 1 (right), the mineral platelets are critical for the integrity of
the material since they carry most of the tensile load. We thus focus on the fracture strength
of the brittle platelets.

2.1. Theoretical considerations

We consider the strength of a small mineral particle with a crack under mode I tensile loading as
shown schematically in figure 2. We assume that the classical continuum theory of fracture [26]
can be applied to describe this material. From classical fracture mechanics, the critical stress
for crack nucleation in this perfectly brittle material is given by the Griffith condition G = 2γ ,
where γ is the fracture surface energy and G is the energy release rate. For the strip geometry
as shown in figure 2, with strip width ξ , the energy release rate can be expressed as

G = σ 2ξ(1 − ν2)

2E
, (1)

where E is Young’s modulus, ν is the Poisson ratio, and σ is the applied stress. At the critical
point of onset of crack motion, the energy released per unit length of crack growth must equal
the energy necessary to create a unit length of two new surfaces. Using the Griffith condition,
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Figure 1. Bone-like materials consist of a hierarchical microstructure made of nanoscale
constituents. Left: The plot depicts the microstructure of such bone-like biological materials at the
smallest scale. Such materials typically consist of fragile, brittle mineral platelets embedded in
protein matrix materials as soft as human skin. The combination of these two phases in a nano-
composite results in superior material properties. In our studies, we focus on the fracture properties
of mineral platelets since they play a critical role in determining the strength of these materials.
Right: The tension-shear chain model showing the path of load transfer in the mineral–protein
composites. The mineral platelets carry a tensile load and the protein transfers loads between the
platelets via shear. In this paper, we focus on the strength of the mineral platelets. (Figure adapted
from [13].)

Figure 2. The geometry and dimensions of a cracked platelet. This model is used in our continuum
and atomistic studies of fracture at small scales. We consider a thin strip of width ξ , in which the
crack length extends half-way through the length of the slab in the x direction. The system is under
mode I tensile loading as indicated in the plot (mode I loading in the y direction). This system
resembles plane strain conditions.

equation (1) can be solved for the critical applied stress

σ=

√

4γE

ξ(1 − ν2)
(2)

for spontaneous onset of failure. For decreasing the layer width ξ equation (2) predicts an
increasing stress for nucleation of the crack, approaching infinity as ξ goes to zero. This,
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however, cannot be literally accepted, since the stress cannot exceed the theoretical strength of
the material, which is denoted by σth. This immediately yields a critical layer width ξcr below
which fracture cannot be described by the Griffith theory any more. Instead, the strength of
the cracked slab is given by the theoretical strength of the material, regardless of the presence
of a crack. This critical length can be calculated to be

ξcr = 4γE

σ 2
th(1 − ν2)

. (3)

We note that similar expressions for critical length scales can be derived for a variety of
geometries.

Further, the flaw-tolerance concept has recently also been discussed within the framework
of Dugdale’s model [27]. The analysis described in [27] has also shown the existence of
the flaw-tolerance concept. In some sense, cohesive interactions between atoms, which are
universal features of all materials, can be viewed as some sort of ultimate plastic deformation
under extremely large stresses.

These considerations have led to the question whether the continuum theory based on the
Griffith concept is still applicable at ultra-small nanoscales. Here we use atomistic simulation
as a tool to gain further insight.

2.2. Atomistic modelling

Atomistic modelling of the strip crack problem is conducted by classical MD simulations using
a modified IMD code [28] while utilizing a global energy minimization scheme. We use fully
three-dimensional models to study crack nucleation and propagation.

Consider the geometry depicted in figure 2. The initial crack extends over half of the
slab in the x direction. The slab size in the x direction is several times larger than that in
the y direction. We assume an FCC crystal oriented in cubic orientations, with x = [100],
y = [010] and z = [001]. The crystal is periodic in the z-direction with crack faces along the
(010) planes.

We use the concept of virtual atom types to distinguish various atomic interactions and to
allow application of boundary conditions. Atoms in the red region (figure 2) are assigned a
specific virtual atom type and are displaced according to a prescribed displacement field.

We use an energy minimization scheme to relax the crystal after each increment of loading.
An increment of strain of magnitude �εyy = 0.001 is applied every �N = 3 000 integration
steps. Different loading rates are chosen to ensure that the results have reached equilibrium
before the next loading increment is applied. The loading is constant along the x-direction.

Interatomic potentials for a variety of different brittle materials exist, many of which are
derived from first principles (see, e.g. [29–39]). However, it is difficult to identify generic
relationships between potential parameters and macroscopic observables when using such
complicated potentials. Furthermore, in many cases the potential parameters do not have
immediate physical meaning for the bonding between atoms.

Here we use an alternative approach based on simple potentials describing the behaviour
of model materials [40–44]. To investigate universal scaling behaviour between microscopic
and macroscopic variables, this has been shown to be very fruitful and allows fundamental
insight into the fracture mechanisms [32, 40–48].

By using simple model potentials, we deliberately avoid the complexities of sophisticated
potential formulations. We adopt a simple pair potential based on a harmonic interatomic
potential with spring constant k0 in combination with a Lennard-Jones (LJ) potential to describe
smooth bond breaking. The harmonic potential is chosen to model linear elastic material
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Table 1. Elastic properties of the harmonic solid (analytical estimates according to equation (6)),
and surface energy (evaluated numerically for the chosen simulation parameters described in
section 2.2) across the LJ weak interface. The results agree reasonably well with the numerically
calculated values of the elastic properties shown in figure 3.

Spring constant k0 Young’s modulus E Poisson ratio ν Surface energy γ (numerical result)

572 960 0.33 2.33

behaviour as assumed in Griffith’s fracture theory. This allows us to define a clean and well-
understood reference system.

Although simple pair potentials do not allow us to draw conclusions for unique phenomena
pertaining to specific materials, they enable us to understand universal, generic relationships
between potential shape and brittle fracture mechanics and adhesion properties of materials,
and help elucidate the universal scaling laws of fracture mechanics.

To model a perfectly brittle solid, we assume harmonic interactions in the bulk of the strip,

φ(r) = a0 + 1
2k0(r − r0)

2, (4)

where k0 is the spring constant, a0 a reference constant and r0 the nearest neighbour distance
between immediate neighbours. Atoms in the bulk only interact with their nearest neighbours,
and the bonds never break. Crack propagation is constrained along a weak fracture layer in
the centre of the strip. To model bond breaking, we assume that atoms across this weak layer
interact according to the 12–6 LJ potential

φ(r) = 4ε

(

(σ

r

)12
−

(σ

r

)6
)

. (5)

We note that a similar setup has been used in [49]. In the simulations, we assume ε = σ = 1
and r0 = 21/6 = 1.12246 (FCC lattice constant a = 1.587). Interactions across the weak
fracture layer (LJ potential) are cut off at a critical distance rcut = 2.5. We modified the IMD
code [28] so that the neighbouring tables are not updated during the simulation. Bonds only
break between atoms that are located at different sides of the weak layer. This procedure
ensures that the crack can only extend along a predefined direction.

For the analysis of the critical length for flaw tolerance, an exact knowledge of elastic
properties and fracture surface energy is needed. It can be shown that Young’s modulus is

E = 4r2
0

3
· k0, (6)

and the Poisson’s ratio is given by ν = 1/3. The elastic properties and fracture surface energy
are summarized in table 1.

Figure 3 shows the elastic properties associated with a three-dimensional FCC crystal in
the cubical orientation as used in our studies. The results obtained by numerical solution are
in good accordance with the results obtained by using the analytical expressions (see table 1).

The surface energy is given by

γ = 1
2NbρA�φ, (7)

where Nb is the number of bonds per atom across the fracture path. The variable ρA corresponds
to the density of surface atoms, and �φ is the potential energy stored in each bond. For the
(010) fracture surface, ρA = 1/r2

0 = 0.794, and the parameter Nb = 4. The fracture surface
energy for the simulation parameter used is given in table 1.

We emphasize that this setup of bulk material and a weak layer is particularly convenient
for our studies because Young’s modulus, E, can be easily varied independent of the other
variables (γ and σth), allowing the critical length scale ξcr to be tuned in a range easily accessible
to MD simulations.



Cracking and adhesion at small scales 805

Figure 3. Elastic properties associated with the harmonic interatomic potential (see equation (4),
k0 = 572). The results for elastic properties obtained numerically are in good agreement with the
values predicted by the analytical model. The left plots show the results obtained with Poisson
relaxation (and consequently, σzz is zero), whereas the results on the right-hand side depict results
obtained without Poisson relaxation. The plot shows that as expected, the harmonic potential leads
to linear elastic material behaviour.

All simulation results are expressed in reduced units: energies are scaled by the depth of
the LJ potential ε and lengths are scaled by σ . In these reduced units, the critical length scale
is ξcr = 119 for the material parameters chosen in the simulation (this corresponds to a few
tens of nanometres in real materials).

A critical element in our studies is the calculation of stresses from atomistic simulations.
The atomic stress is calculated based on the virial theorem [50–52]. Recent investigations
have shown that the atomistic definitions of stress near a moving crack tip show reasonable
agreement with continuum mechanics predictions [40, 45, 53].

2.3. Simulation results: transition from Griffith governed failure by crack growth to uniform

rupture at theoretical strength

Here we report simulation results on the size dependence of fracture strength of thin layers. In
a series of studies, we calculate the critical fracture stress σ as a function of the material size
(layer width ξcr).

Figure 4 shows the results of large-scale atomistic simulations of fracture strength of a
small perfectly brittle platelet as a function of the inverse of the square root of the size of
the material

√
ξcr/ξ . In the plot, we also include the predictions of Griffith’s theory and the

theoretical strength of the material.
Whereas the strength of the materials is well predicted by Griffith’s theory for large

dimensions (
√

ξcr/ξ < 1), reduction of dimension results in deviation from this prediction and
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Figure 4. Fracture and adhesion strength as a function of the size of the material. The plot shows
the results of bulk fracture as well as surface adhesion. The plot shows results normalized with
respect to the theoretical strength and the critical length scale for flaw tolerance. These results
suggest that the principle of dimension reduction is valid in a variety of systems, including surface
adhesion (for a system as discussed in [16] consisting of an elastic punch on a rigid substrate) as
well as bulk fracture [13].

eventually failure of the material at its theoretical strength σth regardless of the presence of
flaws (for

√
ξcr/ξ > 1). This observation suggests a change in behaviour once the dimensions

of the solid are below a critical length scale: the Griffith theory is no longer valid for extremely
thin layer widths. We have made the calculation for different material parameters and the
predictions by equation (3) are well reproduced in the simulations.

Now we focus on the stress distribution ahead of the crack slightly before failure occurs.
In macroscopic systems and according to classical understanding, it is expected that the crack
tip always constitutes a location of high stress concentration. Is this also true when the
characteristic dimensions of the materials reach nanoscale?

Calculation of the stress distribution ahead of the crack reveals that the stress becomes
increasingly homogeneous as the length scale of the structure decreases. In fact, we observe
that the distribution becomes completely uniform for structural dimensions well below the
critical length scale. This is in strong contrast to what we would expect based on a completely
classical picture.

Further, we observe that the stress distribution does not change with structural size any
more once the size of the material is below a critical value (this is observed for

√
ξcr/ξ > 2.67

in our simulations). The results are shown in figure 5. This size-independence of the fracture
strength of materials is also in clear contrast to conventional knowledge. The results suggest
that at nanoscale, materials may behave dramatically differently.

We note that behaviour similar to the one observed here for tensile loading is also expected
for shear loading, as the underlying equations (1)–(3) take a similar form.

3. Adhesion strength of fibrillar structures

In this section, we focus on fibrillar adhesion structures as they appear in many biological
systems, such as geckos.



Cracking and adhesion at small scales 807

Figure 5. Stress distribution ahead of the crack in a thin mineral platelet just before failure, for
different material sizes (the x-coordinate is scaled by the characteristic length scale x′/ξcr). The
thinner the slab, the more homogeneous the stress distribution. When the slab width is smaller
than the critical size, the stress distribution becomes homogeneous and does not depend on the size
of the platelet any more (see values

√
ξcr/ξ = 2.67 and larger).

Figure 6. The schematic of the model used for studies of adhesion. The model represents a
cylindrical Gecko spatula with radius R attached to a rigid substrate (left). A circumferential
crack represents flaws for example resulting from surface roughness. The parameter α denotes
the dimension of the crack. The area 0 < r < αR corresponds to an area of perfect adhesion,
whereas αR � r < R represents regions of no adhesion. This model resembles the effect of
surface roughness as depicted schematically on the right-hand side.

3.1. Theoretical considerations of size reduction of adhesion elements

To understand adhesion properties at small scales, we have modelled an elastic flat-ended
cylindrical hair in adhesive contact with a rigid substrate [16]. The radius of the cylinder is
R. To test the ability of the flat cylinder to adhere in the presence of adhesive flaws, imperfect
contact between the spatula and substrate is assumed such that the radius of the actual contact
area is a = α · R, where 0 < α < 1, as shown in figure 6 (left); the outer rim α · R < r < R

represents flaws or regions of poor adhesion. In our present model, which is similar to a
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continuum model in [54], there is no adhesion in the region α · R < r < R, and so the model
resembles a cylinder attached to the substrate with a circumferential crack.

The adhesive strength of such an adhesive joint can be calculated by treating the contact
problem as a circumferentially cracked cylinder, in which case the stress field near the edge of
the contact area has a square-root singularity with stress intensity factor

KI = P

πa2

√
πaF1(α), (8)

where F1(α) varies in a narrow range between 0.4 and 0.5 for 0 < α < 0.8 (α = 1 corresponds
to perfect, defect-free contact). We substitute equation (8) into the Griffith condition

K2
I

2E∗ = �γ, (9)

where the numerical factor of 2 is due to the rigid substrate. The apparent adhesive strength
normalized by the theoretical strength for adhesion, σ̂c = Pc/(πσthR

2), is obtained as

σ̂c = βα2ψ, (10)

where

ψ =
√

�γE∗

Rσ 2
th

(11)

and

β =
√

2/(παF 2
1 (α)) as well as E∗ = E/(1 − ν2), (12)

while E and ν are the Young’s modulus and Poisson ratio, respectively.
The adhesive strength is a linear function of the dimensionless variable  with slope βα2.

The maximum adhesion strength is achieved when the pull-off force reaches Pc = σthπa2, or
σ̂c = α2, in which case the traction within the contact area uniformly reaches the theoretical
strength σth. This saturation in strength occurs at a critical size of the contact area

Rcr = β2 �γE∗

σ 2
th

(13)

This length scale corresponds to ξcr described in section 2.1 (equation (3)).

3.2. Theoretical considerations of shape optimization of adhesion elements

The results in the previous sections indicate that optimal adhesion and optimal fracture strength
can be achieved by reducing the dimension of the structure.

In this section, we focus on the question: can optimal adhesion be achieved at any size of
the punch? The system of interest is a periodic array of rigid punches attached to an elastic
substrate as schematically shown in figure 7 in a quasi-two-dimensional geometry with periodic
boundary conditions.

The reader is referred to [19] for discussions on the concepts of optimal and singular
shapes in adhesive contact mechanics. For a single punch, it can be shown that the optimal
shape is given by

z = −ψ
2σthR

πE/(1 − ν2)

[

ln
(

1 − r̄2
)

+ r̄ ln

(

1 + r̄

1 − r̄

)]

(14)

for ψ = 1. Here 0 � ψ � 1 is used as a shape parameter to vary the shape from singular
ψ = 0 to optimal ψ = 1. Note that r̄ = r/R denotes a reduced radius (so that 0 � z̄ � 1).
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Figure 7. The geometry of the system considered is a periodic array of punches of radius R. The
rigid–elastic interface leads to singular stress concentrations for flat punches. We vary the shape
of the rigid punch surfaces to avoid these singular stress concentrations.

For a punch array, the optimal shape is given by a series expression

z = −ψ
2σthR

πE/(1 − ν2)

{[

ln
(

1 − r̄2
)

+ r̄ ln

(

1 + r̄

1 − r̄

)]

−
∞

∑

n=1

[

ln

(

(2nλ + r̄)2 − 1

(2nλ)2 − 1

)

+ (2nλ + r̄) ln

(

2nλ + r̄ + 1

2nλ + r̄ − 1

)

− 2nλ ln

(

2nλ + 1

2nλ − 1

)]

−
∞

∑

n=1

[

ln

(

(2nλ − r̄)2 − 1

(2nλ)2 − 1

)

+ (2nλ − r̄) ln

(

2nλ − r̄ + 1

2nλ − r̄ − 1

)

−2nλ ln

(

2nλ + 1

2nλ − 1

)]

}

.

(15)

where λ = L/R denotes the ratio of the total length of each unit cell to the radius (in
the numerical examples we consider a periodic array of spatulas with λ = 1.33). The
theoretical prediction of the optimal shape as a function of the shape parameter ψ is shown in
figure 8.

The critical length scale for a single fibre on a substrate (in analogy to equations (3) and
(13)) is given by

Rcr = 8

π

E∗�γ

σ 2
th

. (16)

3.3. Atomistic modelling

The simulation geometry of the atomistic studies discussed in this section is shown in figure 6
(studies of size reduction only) and figure 7 (studies of shape variation). In the first case, the
punch is elastic and the substrate is rigid (figure 6), and in the second case, the punch is rigid
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Figure 8. The shape function defining the surface shape change as a function of the shape parameter.
For ψ = 1, the optimal shape is reached and stress concentrations are predicted to disappear.

Figure 9. Atom rows in the rigid punch are displaced according to the continuum mechanics
solution of the optimal surface shape (for theoretical solution see figure 8 or equation (15)). This
method allows achieving a smoothly varying surface and enables a continuous transition from a
flat punch (left) to the optimal shape (right).

and the substrate is elastic (figure 7). This is in accordance with the continuum mechanics
models described in sections 3.1 and 3.2.

In both cases, we model the elastic part using a harmonic potential (here with k0 = 57.2,
see equation (4)), and we treat the interface between the two parts using a Lennard-
Jones potential (see equation (5)) to model the vdW interactions. The expressions for the
interatomic potentials, as well as the overall simulation method, including the expressions
for elastic properties and fracture surface energy are identical to the procedure described
in section 2.2 and therefore are not repeated here. We note that this Griffith type
approach to adhesion has been well established by the JKR model in adhesive contact
mechanics [55].

Studies on the variations of surface shape require a method for achieving small and smooth
variations of surface shape in atomistic models. Such a change in surface shape is achieved by
displacing the rows of atoms as shown in figure 9. This method allows achieving a smoothly
varying surface in the MD simulations. We note that the alternative approach in cutting the
optimal shape out of an atomic lattice does not work well because of the discreteness of the
lattice and the resulting steps on the order of Burgers vector.
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Figure 10. Stress distribution in the elastic punch slightly before complete detachment (the stress
is calculated in a thin strip along the diameter, within the area of contact Rcut = 2αR). The
simulations reveal that for large radii, a stress concentration develops at the exterior sides of the
cylinder. For small dimensions, this stress distribution starts to vanish. For dimensions smaller
than the critical radius for flaw tolerance (large ratios of

√
Rcr/R), the stress distribution becomes

homogeneous and does not vary with the cylinder diameter any more.

3.4. Simulation results

Here we report the results of a series of computational experiments with the models described
in the previous section.

The first question we address is how the adhesion strength varies with the diameter of the
spatula. Figure 4 shows the results of large-scale atomistic simulations of adhesion strength as
a function of the size of the material R/Rcr (corresponding to the geometry shown in figure 6).
Whereas the strength of the materials interfaces is predicted reasonably well based on Griffith’s
theory for large dimensions, reduction of dimension results in deviation from this prediction
and eventually failure of the material at its theoretical strength σth regardless of the presence of
the flaw. In practical terms, that means even if there is surface roughness present, the roughness
does not lead to stress concentrations and the adhesion device adheres robustly to the substrate.

We now focus on the stress distribution across the adhesion element slightly before
detachment occurs. We vary (i) the dimensions of the adhesion element, (ii) the adhesion
energy and (iii) the elastic properties of the substrate. We consider a rigid punch on an elastic
substrate.

Figure 10 shows the stress distribution at the punch-substrate interface close to detachment
for various choices of the ratio R/Rcr. The simulations reveal that for large radii, a stress
concentration develops at the exterior sides of the cylinder. This result is expected from the
classical understanding of fracture mechanics and corresponds to the regime where Griffith’s
theory holds to describe the onset of detachment. For small dimensions, the stress distribution
starts to become uniform. For dimensions smaller than the critical radius for flaw tolerance, the
stress distribution becomes homogeneous and does not vary with the diameter of the cylinder
any more.
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Figure 11. Stress distribution in the elastic punch slightly before complete detachment (the stress is
calculated in a thin strip along the diameter, within the area of contact Rcut = 2αR). Here we keep
the dimension fixed and vary the adhesion energy (γ0 corresponds to the surface energy shown in
table 1) and the elastic properties (E0 corresponds to Young’s modulus obtained for k0 = 57.23).
We find that the stress distribution becomes homogeneous for large ratios of

√
Rcr/R, in agreement

with the other results (see figures 5 and 11).

Figure 11 shows variations of the stress distribution close to detachment for changes
in adhesion energy and elastic properties of the substrate. These results further support the
notion that

Rcr ∼ E (17)

and

Rcr ∼ γ (18)

as suggested by equations (3), (13) and (16).
We now focus on change in the adhesion strength due to variations in the surface shape.

Our atomistic studies are based on the continuum considerations reported in section 3.2 where
we discussed a surface shape that would always lead to optimal adhesion, at any length scale.
Figure 12 shows the stress distribution along the diameter of the punch for different choices
of the shape parameter describing the punch shape. The results indicate that when the optimal
shape is reached (ψ = 1), the stress distribution is completely flat as in the homogeneous
case (λ = 1) without stress magnification. We observe that for ψ < 1, a stress concentration
develops at the boundaries of the punch, whereas for ψ > 1 the largest stress occurs in the
centre.

Figure 13 shows the maximum adhesion strength as a function of the shape parameter
ψ for different sizes of the punch. These observations allow drawing conclusions about the
robustness: Our results indicate that although optimal adhesion can be achieved at any length
scale by changing the shape of the attachment device (by choosing ψ = 1), robustness with
respect to variations in shape while at the same time keeping a strong adhesion force can only
be achieved at small length scales.

Robustness thus seems to be closely coupled to nano-dimensioned adhesion systems. We
believe that only reduction in length scale results in (1) robustness and (2) disappearance of
the stress concentration. This may explain why nature does not primarily optimize shape but
instead focuses on reduction of dimension as a design strategy [13, 17, 20].
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Figure 12. Stress distribution along the diameter of the punch for different choices of the shape
parameter describing the punch shape. The results indicate that when the optimal shape is reached
(ψ = 1), the stress distribution is completely flat as in the homogeneous case (λ = 1) without
stress magnification. We observe that for ψ < 1, a stress concentration develops at the boundaries
of the punch, whereas for ψ < 1 the largest stress occurs in the centre.

Figure 13. Adhesion strength for different choices of the shape parameter ψ . The results indicate
that although optimal adhesion can be achieved at any length scale by changing the shape of the
attachment device (by choosing ψ = 1), robustness with respect to variations in shape while at the
same time keeping a strong adhesion force can only be achieved at small length scales.

4. Discussion and conclusions

We have used continuum and atomistic concepts to investigate how the fracture and failure
behaviours of materials change as a function of size. The atomistic simulations reveal a smooth
transition between the Griffith mode of failure via crack propagation to uniform bond rupture at
theoretical strength below a nanometre critical length, as shown in figure 5 for both fracture of
a nanoparticle and surface adhesion of an elastic punch on a rigid substrate (see figures 10 and
11). We find that below a critical length ξcr (or Rcr, for adhesion systems), the stress distribution
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becomes uniform near the crack tip. The atomistic simulations fully support the hypothesis
that materials become insensitive to flaws below a critical nanometre length scale ξcr.

Our results corroborate earlier suggestions made at the continuum level [13, 16] that the
concept of nanoscale flaw tolerance may play a critical role in developing structural links in
biological materials, as many biological materials feature small nanoscale dimensions. This
may suggest common design principles in order to improve some mechanical properties of
materials:

Small nano-substructures lead to robust, flaw-tolerant materials. Nature may have

used this principle to build strong structural materials.

Surprisingly, this principle is found in different geometries and cases, including bulk and
surface materials. Our results extend the notion ‘smaller is stronger’ to ‘nano is optimal’. Our
studies on adhesion systems indicate that optimal adhesion can be achieved at any scale if the
adhesion surface shape is adapted to eliminate locations of stress concentration (see figure 12).
However, this design strategy does not lead to robust adhesion elements as the smallest
deviations from the optimal shape lead to catastrophic failure (see figure 13). We find that
reduction in the diameter of cylindrical adhesion systems leads to optimal adhesion including
robustness; therefore, ‘nano is also robust’. We note that the actual displacements of atoms
necessary to realize the optimal shape are on the order of a few angstroms. Due to the discrete
nature of atoms with typical distances between 1–3 Å, realization of the optimal shape at
such small scales may become difficult. This may be another, alternative reason why shape
optimization is not a preferred strategy to achieve optimal adhesion. We refer the reader to
other articles for a more detailed discussion of linking the flaw-tolerance concept to biological
materials [13, 16, 54].

Atomistic modelling has proved to be a powerful tool in designing virtual experiments
to demonstrate the concept and effect of size reduction and shape changes. Unlike purely
continuum mechanics theories, MD simulations can intrinsically handle stress concentrations
(singularities) well and provide accurate descriptions of bond breaking. Also, it can be
straightforwardly used to study ultra-small scale systems, thus probing the limiting cases
where continuum theories start to break down. Our approach of using simplistic model
potentials rather than utilizing highly complex expressions for the atomic interactions allows
us to carry out fundamental parameter studies enabling immediate comparison with continuum
theories. Even though our results do not allow us to make quantitative predictions about specific
materials, our studies may help to develop a deeper understanding of the mechanics of brittle
fracture at nanoscale. However, recent progress in developing atomistic and molecular models
of biological materials such as collagen [22] provide a fundamental, quantitative viewpoint
of the mechanics of such chemically complex biological materials, with structural details
spanning several length scales.

The increase in computing power allows, at the same time, modelling at length scales on
the order of micrometers. We believe that atomistic-based modelling could play a significant
role in the future in the area of modelling nano-mechanical phenomena and linking them to
continuum mechanical theories as exemplified in this article.
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