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This two-part article describes iterative methods for the 
computation of selected eigenvalues and eigenvectors of a 
large matrix. Part I in the previous issue reviewed the de- 
\*elopment of iterative methods, starting with the power it- 
eration and culminating in the Jacobi-Davidson method. It 
showed hens preconditioning can be included in the method 
for more efficient computation. Part II describes an imple- 
mentation for the Jacobi-Davidson methods. Application of 
the method is illustrated by a numerical example, and Part 
II concludes n*ith guidelines on where to obtain relevant 
free software from Netlib on the Internet. 

I n iterative methods for large-scale eigenvalue problems 
one attempts to create a low-dimensional subspace and to 

find the best approximation for the eigenvalue or eigenvec- 
tor in that subspace. This leads to a considerably smaller 
eigenvalue problem that can be solved by standard direct 
methods. The Jacobi-Davidson (JD) method differs from 
the Krylov subspace methods, including the Lanczos and 
Arnoldi methods and the Power iteration method, in the 
way the subspace is expanded. 

For an approximate eigenvalue 0, and corresponding 
approximate eigenvector uk, for the generalized eigenprob- 
lem 

Ax= XBx, (1) 
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we define the residual rk as rk=(A- &B)uk . 
When B=I, then for the Lanczos and Arnoldi methods 

the subspace is expanded with r, . These methods cannot be 
applied in a straightforward manner for B#I, but the JD 
method can. In this method the subspace is expanded with 
an approximation for the solution z from the augmented 
correction equation: 

[.-i;, J[ :I=[ -21. (2) 

As we have seen in Part I, adequate choices for the 
vectors 6 and fi are b=u, and ii=Buk. We will now show 
how this leads to implementable algorithms. 

Practical Jacobi-Davidson algorithms 
In Box 1 we present a framework for practical JD al- 

gorithms. It applies to the situation in which A and B are 
general complex NX N matrices, with no further restric- 
tions. For computing several eigenvalues at a time we con- 
sider a block variant, as has been frequently presented for 
Davidson type methods.‘-3 Suppose we want to compute 1 
eigenpairs simultaneously. Then at each iteration we solve 1 
correction equations approximately and subsequently add 1 
correction vectors to the subspace. This implies that in it- 
eration k the subspace has dimension kl. Correspondingly, 
the matrix V, is an N X kl matrix. We now discuss some 
implementation aspects of the individual steps in the algo- 
rithm shown in Box 1. 

Step A. Provided one has no initial information with 
respect to the desired eigenvectors, any choice can be made 
for the 1 starting vectors. 

Step B. Apart from the matrix Vk it is also very conve- 
nient to store the N X kl matrices Wi =AV, and Wf =BVk . 
Of course, in every iteration it will only be necessary to 
compute the last 1 columns of these matrices. Storage of 
these matrices simplifies the computation of the projected 
matrices Ht and Hf! considerably. In every iteration only 
the last 1 columns and rows of the projected matrices are 
computed, since other matrix elements are available from 
previous iterations. In case A or B is Hermitian, only the 
last 1 columns or rows have to be calculated. 

Step C. The small kl X kl projected generalized eigen- 
problem involves dense matrices Hi and Hf and can best 
be solved with the well-known QZ (or QR when B=I) 
algorithm.4 The selection of the 1 desired eigenvalues con- 
cerns, for instance, those with the largest or smallest abso- 
lute values or those nearest to some complex value (T. In the 
latter case, CT is called the “shift.” 

Step D. In some cases it might be cheaper to compute 
the vectors Pk.i(qk,i) as the matrix-vector multiplication 
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~~,~=Au~,~(qk,~=Bu~,~) instead of the matrix-vector product 
Pk,i=W~Sk,i(qk,i=WkBSk,i). 

Step E. Check whether the residual norms of the de- 
sired eigenpairs are smaller than a tolerance value. If some 
eigenpairs have converged, it will only be necessary to 
compute a correction vector in step F for the remaining 
unconverged ones. 

Step F. We suggest solving the augmented correction Eq. 
(2) approximately using a few iteration steps of a suitable 
linear system solver, possibly including a preconditioner 
according to Eq. (11) in Part I. Note that we set 6 in Eq. (2) 
equal to u~,~ in the algorithm. In some cases it might be 
convenient to retain symmetry in the coefficient matrix; 
then the choice ii=qk,i should be made. 

Step G. To obtain a numerically stable orthonormal basis 
we suggest the use of the modified Gram-Schmidt 
orthogonalization procedure, which can be found in almost 
every linear algebra text book.4-6 In case the B matrix is 
Hermitian positive definite, the construction of a 
B-orthonormal basis is possible. This implies that Hf =I, 
and thus the small projected eigenproblem is ‘a standard 
eigenproblem. For more details on this particular case see 
Ref. 7. 

Step H. To limit memory requirements, it is common to 
restart the algorithm. Here the simplest restart strategy is 
suggested by retaining the current eigenvector approxima- 
tions and their corresponding correction vectors in the new 
basis. Since this involves 21 vectors, we have to set the 
iteration counter k equal to 2. Many useful restart strategies 

Box 1: Jacobi-Davidson algorithm for matrix 
pairs (A,B). 

Step A: Choose an initial orthonormal basis matrix 
Vl =[v1 ,..., vr]. Set k=l. 
Step B: Compute the matrices Wf =AV, and 
Wf =BV, ; compute the projected matrices Hi 
=V;W;andHf=V:W;. 
Step C: Solve the small projected generalized eigen- 
problem @s~,J= Bk,iHcs,,i and select the I desired 
eigenpairs [( 0, i ,s~,~) ; i = 1,. . . 11. 
Step D: For i= 1,. . . ,1 compute: the Ritz vectors 
%,izVkSk i ; the vectors Pk,izwGsk,i and 
~k,~= Wf&i ; the residual vectors rk i = pk i - 6, iqk,i . 
Step E: Test for convergence. If satisfied; stop.’ 
Step F: For i = 1 ,. . . ,l compute an approximate solu- 
tion i,,i of the augmented correction equation: 

[ 
Aiz*iB :ri][ k]=[ -z.i]. 

Step G: If dim(V&m-I, then orthonormalize 
(Vk,%b,l,...,Zk,J into Vk+l via modified Gram- 
Schmidt; increase k by 1 and return to step B. 
Step H: Restart: orthonormalize (uk ,,,..., uk,[ ,&t, 
. ...&) into V, via modified Gram-Schmidt; set k=2 
and return to step B. 
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Figure 1. The residual norm in JD iteration k: correction equations solved 
with 20 (O), 30 (0), and 40 (*) GMRES iteration steps. 

have been suggested in the literature. For instance, in the 
Davidson-Liu algorithm’ the eigenvector approximations 
from the previous iteration are also retained. In the algo- 
rithm we denote by m the maximum dimension of the sub- 
space Vk. Usually m is chosen to be a multiple of I, thus 
obtaining the maximum dimension in JD iteration, k=m/l. 

It should be stressed that the JD method for generalized 
eigenvalue problems does not require the inversion of a 
matrix. This may be a big advantage over other methods 
such as the Lanczos and Amoldi methods.” These methods 
transform the generalized eigenproblem Ax=XBx into an 
equivalent standard eigenproblem Ax=Xx by inverting a 
matrix. For instance, the generalized problem Ax=XBx is 
equivalent to the standard problem for the matrix B-‘A. 
The matrix B-’ is not computed in practice, but a factor- 
ization of B into the product of a lower triangular L and 
upper triangular matrix U. A matrix-vector multiplication of 
the type y=B-‘z is then computed by solving By=z, or, 
which is similar, LUy=z. The latter is done by a forward 
and back substitution (see Ref. 4). This procedure for solv- 
ing By=z is the well-known Gaussian elimination method. 
The computation of the L and U factors can be very expen- 
sive. Furthermore, storage of the factors L and U may re- 
quire an amount of memory that greatly exceeds the 
memory necessary to store matrices A and B themselves. 

Numerical experiments 
The Jacobi-Davidson method has recently been ap- 

plied successfully to symmetric standard eigenvalue prob- 
lems arising in quantum chemistrya (N=50,000), quadratic 
eigenvalue problems arising in acoustics” (N> lOOOOOj, and 
non-Hermitian generalized eigenproblems (N< 1000) from 
magneto hydrodynamics (MHDs) spectroscopy.‘” We now 
give some results for a fairly large MHD test problem (N 
=4800). The A matrix is non-Hermitian; the B matrix is 
Hermitian positive definite. Both matrices have a block 



tridiagonal structure. The goal is to compute the eigenvalue 
closest to the shift a=-0.3+0.6i, which is deep in the 
interior of the spectrum. Other eigenvalue solvers usually 
have great difficulty in finding interior eigenvalues if one 
wants to avoid inversion of any of the matrices involved, 
although Ruhe ” has proposed a variant of the Lanczos 
method for interior eigenvalues: the rational Lanczos 
method. 

In the algorithm presented in Box 1 we set I= 1 and the 
maximum subspace dimension m =40. For the starting vec- 
tor vi we chose the vector with all components equal to 1 
divided by the normalization factor. In every JD iteration 
the augmented correction Eq. (2) is solved to some approxi- 
mation with a fixed number of iteration steps of the 
GMRES” algorithm. The correction equations are precon- 
ditioned according to Eq. (11) in Part I, with K an incom- 
plete LU factorization of A-aB, that is, in the LU- 
decomposition process certain matrix elements are set to 
zero (dropped) during the process. For further references on 
this see Ref. 13. For the experiments shown here, we follow 
a procedure suggested by Saad.14 We point out that the 
preconditioner is computed only once and that it gets more 
effective as the eigenvalue approximation 0, comes closer 
to CT. 

The JD iteration process is stopped if the residual norm 
l[rkllZ is smaller then lo-“. The convergence to the desired 
eigenvalue -0.2855868...+0.5470253...i is plotted in Fig. 
1 for three runs of the algorithm: solving the linear systems 
with 20, 30, and 40 GMRES iteration steps, respectively. As 
expected, the better we solve the linear systems, which cor- 
responds to more GMRES steps, the faster convergence is 
reached. For 40 GMRES steps the JD process terminates in 
only 21 iterations, for 30 GMRES steps it terminates in 23 
iterations, and for 20 GMRES steps it terminates in 30 
iterations. 

However, if we look at the corresponding CPU times 
obtained on a Cray C98, the speed of convergence is re- 
versed: for 40 GMRES steps convergence is obtained in 
469 s, for 30 GMRES steps in 372 s, and for 20 GMRES 
steps in only 322 s. In Fig. 1 we see that in the beginning of 
the JD process virtually the same progress is made for the 
eigenpair approximation, whether we solve the systems 
with 20, 30, or 40 GMRES steps. This indicates a stagna- 
tion in the iterative method for solving the systems. Only in 
the final iterations does it seem to pay off to solve the 
systems more accurately, resulting in asymptotically very 
fast convergence for 40 GMRES steps. Therefore we can 
improve these results by building in a “switch” value: we 
start by solving the correction equations with 20 GMRES 
steps, but as soon as the residual norm is smaller than lo-* 
we switch to 40 GMRES steps. The results are shown in 
Fig. 2. Convergence is obtained in only 19 JD iterations, 
requiring only 277 s of CPU time. 

We also tried to reproduce the eigenvalue by using the 
generalized Davidson (CID) method (see Part I), using a 
similar incomplete factorization for the CD correction 
equation. All parameters were set to the same values as for 
the JD method. However, all our attempts with the GD 
method failed for this test problem. 

Software for large-scale eigenvalue problems 
It is relatively easy to code the JD method as given in 

Box 1. The two main ingredients of a JD code are a dense- 
matrix eigenvalue solver (step C) and a sparse-matrix linear 
system solver (step F). Appropriate Fortran routines are 
available from Netlib.” Netlib is accessible via the World 
Wide Web: http://www.netlib.org/. 

For the eigenvalue solver we syfgest software from the 
linear algebra package LAPACK. For eigenproblems it 
contains driver routines that compute the entire spectrum of 
a matrix or matrix pair. Routines are available for Hermit- 
ian, non-Hermitian, standard, and generalized eigenprob- 
lems. The LAPACK user’s guide is available online from 
the Web page http://www.netlib.org/lapack/lug/lapack- 
lug.html. 

Efficient Fortran (and C) codes for the iterative 
solution of linear systems have recently become avail- 
able via the Web page http://www.netlib.org/templates/ 
Templates.html. Routines are included for all popular linear 
system solvers such as the conjugate gradient method; see, 
for example, Ref. 4 for symmetric systems or the GMRES 
method12 for nonsymmetric systems. A description of all the 
methods is given in Ref. 13; the inside cover of this book 
shows a flow chart with suggestions for the selection of a 
suitable iterative method for a given coefficient matrix. The 
book is available online: http://www.netlib.org/templates/ 
templatesps. 

For each of the linear system solvers, the user needs to 
supply an additional subroutine that computes a matrix- 
vector multiplication. Such routines depend on the way the 
user has organized the nonzero matrix elements in the pro- 
gram. The book discusses a variety of sparse-matrix storage 
formats and suggests suitable implementations of the 
matrix-vector product. For many problems it is necessary to 
combine the iterative solver with a suitable preconditioner. 
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Figure 2. The residual norm in JD iteration k: as soon as /rklJZ<lO-‘, 
switch from 20 to 40 GMRES iteration steps. 
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The preconditioning routine is also user supplied. Many 
possibilities for suitable preconditioners are discussed in 
Ref. 13. Readers without access to the World Wide Web can 
obtain all the information from Netlib” by sending elec- 
tronic mail to the address netlib@ornl.gov. The subject line 
“Subject: send index from templates” returns the index of 
the appropriate software library. Individual routines and, for 
instance, the ps-file of Ref. 13 can be obtained by giving 
subject lines of the following type: “Subject: send tem- 
plates.ps from templates.” 
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