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Membrane vesicles (MVs) are nanoparticles composed of lipid membranes that are

produced by both Gram-negative and Gram-positive bacteria. MVs have been assigned

diverse biological functions, and they show great potential for applications in various

fields. However, the mechanisms underlying their functions and biogenesis are not

completely understood. Accumulating evidence shows that MVs are heterogenous, and

different types of MVs with different compositions are released from the same species.

To understand the origin and function of these MVs, determining the biochemical

properties of MVs is important. In this review, we will discuss recent progress in

understanding the biochemical composition and properties of MVs.
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INTRODUCTION

Membrane vesicles (MVs), which are produced by most bacteria, have diverse biological functions.
These functions are not only interesting from a biological perspective but also for their great
potential for broad applications in immunology and biotechnology.

Membrane vesicles consist of various types of lipids derived from cellular membranes along
with numerous other biomolecules, such as membrane, periplasmic, and cytoplasmic proteins;
DNA; RNA; and low molecular mass organic compounds that confer various biological functions
(Brown et al., 2015; Schwechheimer and Kuehn, 2015; Dauros-Singorenko et al., 2018; Toyofuku
et al., 2019). Recent studies have shown that there are different pathways of MV biogenesis, which
produce different types of MVs (Toyofuku et al., 2019). Thus, the mechanism of MV formation
determines its biochemical composition. Knowledge of the composition of MVs is important for
understanding both the mechanisms of biogenesis and their biological functions. A number of
studies have examined the biochemical properties of MVs, and in this review, we will summarize
the recent progress in understanding the basic properties of MVs.

COMPOSITION AND BIOGENESIS OF BACTERIAL MVs

In the following sections, we summarize biochemical analyses of bacterial MVs that provided
insights into their biogenesis.

Protein Composition of MVs in Gram-Negative Bacteria
Classical MVs are often referred as outer membrane vesicles (OMVs), which are generated through
blebbing of the outer membrane in Gram-negative bacteria (Schwechheimer and Kuehn, 2015;
Jan, 2017).
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Hoekstra et al. (1976) reported that MVs from Escherichia
coli are derived from the outer membrane. In this study, they
demonstrated that the lipid composition, SDS-PAGE protein
profile, and specific activities of several membrane enzymes in
these MVs are similar to those in the outer membrane (Hoekstra
et al., 1976). This pioneering study showed that some proteins,
including lipoproteins, were less abundant in OMVs than in the
cellular outer membrane, suggesting that OMVs may originate
from specific outer membrane regions (Hoekstra et al., 1976).
Lpp is the most abundant lipoprotein in E. coli, and its lipid
moiety is anchored to the outer membrane (Schwechheimer
et al., 2013). Lpp exists in both “free” and “bound” forms, which
are respectively outer membrane-anchored or covalently cross-
linked to peptidoglycan through a linkage between the outer
membrane and peptidoglycan layer (Schwechheimer et al., 2013).
The cross-link between Lpp and peptidoglycan is formed at the
C-terminal lysine by L,D-transpeptidases in E. coli (Magnet et al.,
2007). Wensink and Witholt (1981) reported that E. coli OMVs
contained only 35% “free” lipoprotein and almost no “bound”
lipoprotein. Several studies have provided supporting results
to these observations, suggesting that membrane-peptidoglycan
cross-linking plays a role in OMV formation in Gram-negative
bacteria (Figure 1). For example, in E. coli, a lack of either
Lpp or the L,D-transpeptidases YcfS, YbiS, and ErfK resulted in
increased MV production compared with that in a wild type
strain (Schwechheimer et al., 2013). In Salmonella typhimurium,
a lack of Lpp or a mutation in the C-terminal lysine of Lpp also
increased MV production (Deatherage et al., 2009). In Neisseria
meningitidis, several proteins anchored to the outer or inner
membrane through peptidoglycan, such as the pilus pore PilQ,
peptidoglycan-binding protein RmpM, and the multidrug efflux
pump channel protein MtrE, were less abundant in OMVs than
in the outer membrane (Lappann et al., 2013).

In addition to the above proteins, OmpA is thought to be
anchored to peptidoglycan through a non-covalent interaction
with diaminopimelic acid, which cross-links two peptide stems
to the peptidoglycan of Gram-negative bacteria (Smith et al.,
2007; Park et al., 2012). Notably, a lack of OmpA also leads to
increased OMV production in various Gram-negative bacteria
(Sonntag et al., 1978; Song et al., 2008; Deatherage et al., 2009).
These observations provide evidence for the following model of
OMV formation: depletion of certain cell envelope-associated
proteins, such as Lpp and OmpA, at a specific site in the
outer membrane weakens outer membrane-peptidoglycan cross-
linking and promotes blebbing of the outer membrane and
subsequent OMV formation (Figure 1). Lpp and OmpA can
be downregulated by activation of σ

E, suggesting that Gram-
negative bacteria may modulate OMV production in response to
the accumulation of misfolded outer membrane proteins in the
cell envelope (Schwechheimer et al., 2013).

Further studies showed that the accumulation of misfolded
proteins in the periplasm is involved in OMV formation. In
E. coli, the periplasmic sensor protease DegS binds to the exposed
peptides of misfolded outer membrane proteins (OMPs) and
initiates signal transduction through the σ

E pathway upon cell
envelope stress. The dual function protease/chaperone DegP is
regulated by σ

E and prevents the accumulation of misfolded

proteins in the periplasm. A lack of DegP leads to increased OMV
production in a temperature-dependent manner (McBroom
and Kuehn, 2007). In addition, when an OMP sequence-fused
cytochrome was expressed that is misfolded and accumulates
in the periplasm, the chimeric protein was enriched in OMVs
compared to a control periplasm protein (McBroom and Kuehn,
2007). Based on this finding and those of related studies
(McBroom et al., 2006; Schwechheimer and Kuehn, 2013), it
has been proposed that the accumulation of misfolded proteins,
such as OMPs, expands the physical distance between the
outer membrane and peptidoglycan, leading to OMV formation,
which releases these toxic components into the extracellular
space (Figure 1).

Several proteomic analyses of MVs that were regarded as
OMVs showed that inner membrane proteins and cytoplasmic
proteins are also abundant in MVs. These results were often
thought to be contaminating cell fragments or debris, such
as protein aggregates. Still, a large proportion of cytoplasmic
proteins are frequently detected in carefully purified MV
fractions (Berleman et al., 2014; Kulkami et al., 2014;
Oliver et al., 2017). To explain this, Kadurugamuwa and
Beveridge suggested that localized and transient breakage
in the peptidoglycan, catalyzed by autolysin, leads to the
formation of OMVs containing inner and outer membrane
components and cytoplasmic materials in Pseudomonas
aeruginosa (Kadurugamuwa and Beveridge, 1995; Clarke, 2018).
Eighteen years later, another group showed clear images of
double-bilayer OMVs from Shewanella vesiculosa, which were
called outer-inner membrane vesicles (O-IMVs) (Pérez-Cruz
et al., 2013). Although the O-IMVs were estimated to represent
only 0.1% of the total MVs in this bacterium under the condition
used, proteomic analyses identified some cytoplasmic proteins
in the purified MV fraction (Pérez-Cruz et al., 2013). A more
recent study showed that expression of an endolysin encoded by a
prophage triggers MV formation in P. aeruginosa (Turnbull et al.,
2016; Toyofuku et al., 2019). In the proposed mechanism, the cell
wall is degraded by endolysin, which triggers explosive cell lysis,
causing the fragmentated membrane to round up and form MVs
(Figure 1). During this process, nearby intracellular components,
such as DNA, become trapped in the MVs (Turnbull et al., 2016;
Toyofuku et al., 2019). Explosive cell lysis triggered by DNA
damage can lead to MV formation in biofilms and under anoxic
conditions (Toyofuku et al., 2014; Florez et al., 2017; Cooke et al.,
2019). In addition, a similar route of MV formation has been
suggested in Stenotrophomonas maltophilia, as production of
O-IMVs and phages was detected in response to ciprofloxacin
stress (Devos et al., 2017). The involvement of cell lysis in MV
formation would explain why inner membrane and cytoplasmic
components are detected in many proteomic analyses of OMV
fractions (Kulkami et al., 2014; Olaya-Abril et al., 2014; Oliver
et al., 2017; Avila-Calderón et al., 2018; Taheri et al., 2018).

Lipid Composition of MVs From
Gram-Negative Bacteria
Lipidomics has recently attracted much interest as it provides
fundamental information about the biochemical properties and
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FIGURE 1 | Mechanisms of MV biogenesis. Several mechanisms underlying MV formation in bacteria have been proposed. In Gram-negative bacteria, outer

membrane vesicles and outer-inner membrane vesicles are produced through outer membrane blebbing or explosive cell lysis. Outer membrane blebbing is induced

by structural changes in the cell envelope, such as a decrease in outer membrane-peptidoglycan cross-linking proteins, intercalation of molecules [such as

Pseudomonas Quinolone Signal (PQS)] in the membrane, or the accumulation of misfolded proteins at specific regions of the cell envelope. Explosive cell lysis is

triggered by phage-derived endolysin, which degrades the cell wall. In Gram-positive bacteria, cytoplasmic membrane vesicles are produced through bubbling cell

death, in which phage-derived endolysin degrades the cell wall and the cytoplasmic membrane protrudes through the resulting holes in the peptidoglycan. In mycolic

acid-containing bacteria, the mechanism of MV formation remains unknown, although there is evidence that these bacteria produce MVs containing inner membrane

lipids or cell envelope associated-proteins such as S-layer component proteins.

the structural bases of MVs (Lynch and Alegado, 2017). Lipid
analyses are performed using various chromatography and mass
spectrometry techniques, focusing on the structures of polar
head groups, chain length, and saturation of fatty acid moieties.
Typically, phosphoglycerolipids (PLs) are the most abundant
lipids in MVs, and numerous other lipids, including glycerolipids
and lipopolysaccharides (LPS), have also been detected in MVs
by lipidomic analyses. As described above, Hoekstra et al. (1976)
performed lipid analyses of E. coli OMVs and found that their
lipid composition and phospholipid/protein ratio were similar to
those of the outer membrane. However, the ratio of unsaturated
fatty acids to cyclopropane fatty acids was significantly higher
in OMVs (1.56) than in the outer membrane (0.19). Since
unsaturated fatty acids are substituted by cyclopropane fatty acids
when cells enter stationary phase, the authors suggested that
these OMVs were released from cells during exponential phase
(Hoekstra et al., 1976).

The structures of the fatty acid moieties are often suggested
to be important factors in the biogenesis of MVs because these
fatty acids affect the rigidity and fluidity of the lipid membrane.

Several studies have analyzed the saturation of fatty acids in
MVs and the outer membrane and discussed its significance in
MV biogenesis. For example, the ratio of saturated fatty acids
to unsaturated and/or branched fatty acids in OMVs was higher
than that in the outer membrane of P. aeruginosa (Tashiro
et al., 2011) and Prochlorococcus MED4 (Biller et al., 2014),
while opposite results were obtained in Pseudomonas syringae
(Kulkami et al., 2014). In some cases, fatty acid saturation was not
significantly different between OMVs and the outer membrane
(Fulsunder et al., 2014; Resch et al., 2016). More direct evidence
was shown in Shewanella livingstonensis, where depletion of a
branched fatty acid, eicosapentaenoic acid (EPA), increased MV
production (Yokoyama et al., 2017). EPA was also involved in
the folding of the outer membrane proteins in this bacterium
(Dai et al., 2012), and may influence MV formation through the
accumulation of misfolded proteins.

In addition to fatty acid moieties, lipid polar head groups
may play a role in MV formation, as these head groups
influence lipid conformation. Phosphatidylethanolamine (PE)
is a typical conical lipid that can cause membrane curvature
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by clustering or sequestration (Agrawal and Ramachandran,
2019). In Haemophilus influenzae, the PE content of OMVs
from PL transporter mutants (hypervesiculation mutants), which
transport PLs from the outer membrane to the inner membrane,
was two-fold higher than that of wild type (Roier et al., 2016).
Differences in PE content betweenMVs and the outer membrane
have also been reported in P. aeruginosa (Tashiro et al., 2011).
Local and asymmetrical PE accumulation or depletion in the
membrane leaflet may cause structural changes in the lipid
membrane that ultimately lead to blebbing of the membrane to
form MVs. Interestingly, another cone-shaped lipid molecule,
deacylated LPS, has been shown to induce MV production when
accumulated in the membrane (Elhenawy et al., 2016).

Composition of MVs From Gram-Positive
Bacteria and Mycolic Acid-Containing
Bacteria
Compared to Gram-negative bacteria, little is known about the
biogenesis and composition of MVs in Gram-positive bacteria
(Brown et al., 2015; Liu et al., 2018). Given that Gram-positive
bacteria lack an outer membrane in their cell envelope, an
important question in MV biogenesis is how the vesicles pass
through the thick peptidoglycan layer.

There are several hypotheses regarding the biogenesis of
MVs in Gram-positive bacteria (reviewed in Brown et al., 2015;
Toyofuku et al., 2019). Notably, cell wall modification is thought
to be a key process in MV formation in these bacteria. For
example, endolysin is involved in MV formation by Bacillus
subtilis (Toyofuku et al., 2017a, 2019). In contrast to the explosive
cell lysis induced by the action of endolysin in P. aeruginosa cells
(Turnbull et al., 2016), the cytoplasmic membrane of B. subtilis
cells protrudes through the holes in the peptidoglycan that are
formed by the endolysin while the cell morphology remain
intact (Toyofuku et al., 2017a, 2019) (Figure 1). Endolysin-
triggered MV formation has also been demonstrated in another
Gram-positive bacterium, Staphylococcus aureus (Andreoni et al.,
2019). Another peptidoglycan-hydrolyzing enzyme, autolysin,
has been suggested to induce MV formation in S. aureus
further indicating that cell wall damage is a key step in MV
formation in Gram-positive bacteria (Wang et al., 2018). In
this study, proteomic analysis showed that autolysins were
present in MVs. Gene deletion experiments further showed that
autolysins, such as Sle1, facilitate MV release by hydrolyzing
peptidoglycan, particularly at sites of active cell division
(Wang et al., 2018).

Several studies have focused on the lipid compositions of MVs
from Gram-positive bacteria. Resch et al. (2016) reported the
accumulation of phosphatidylglycerol (PG) and the depletion of
cardiolipin (CL) in MVs isolated from Streptococcus pyogenes
culture. It can be assumed that the accumulation of cylindrical
lipids, such as PG, and the depletion of conical lipids, such as
CL, lead to MV formation in this bacterium; however, how these
MVs pass through the cell wall is unclear. In addition, MVs
from Propionibacterium acnes possessed a remarkedly reduced
amount of triacylglycerol (TG) compared to the cell membrane
(Jeon et al., 2018), suggesting that the biochemical and physical

properties of these MVs may be largely different from those of
the cell membrane.

In addition to typical Gram-positive bacteria, there is
evidence that mycolic acid-containing bacteria also produceMVs
(Marsollier et al., 2007; Prados-Rosales et al., 2011; Theresia
et al., 2018; Chiplunkar et al., 2019) (Figure 1). These bacteria
include clinically and industrially important Mycobacterium
and Corynebacterium species and are characterized by unique
cell envelope structures that contain mycolic acid-containing
outer membrane. Prados-Rosales et al. (2011) reported seven
Mycobacterium species that produce MVs. In the study, they
performed proteomic analyses ofMVs fromMycobacterium bovis
Bacillus Calmette-Guérin (BCG), Mycobacterium tuberculosis
H37Rv, and Mycobacterium smegmatis. These analyses revealed
that MVs from BCG and M. tuberculosis H37Rv were
enriched in lipoproteins, including well-known TLR2 ligands,
whereas no lipoproteins were detected in M. smegmatis MVs
(Prados-Rosales et al., 2011). In addition, the total extractable
lipids in BCG MVs predominantly consisted of polar lipids,
such as PE and diacylated phosphatidylinositol dimannoside
(Ac2PIM2), while mycolic acid esters were not detected in
the extracted lipids (Prados-Rosales et al., 2011). Given that
mycolic acid esters are major lipids in the outer membrane
of Mycobacteria, it is possible that these MVs may originate
from the inner membrane (Prados-Rosales et al., 2011)
(Figure 1). Prados-Rosales and colleagues also reported that
the composition of MVs from M. tuberculosis is influenced
by iron availability. Under iron-deficient conditions, acylated
glycerides and PE were enriched in the MVs, whereas acyl
trehalose, an important mycobacterial cell wall component,
was more abundant in MVs produced under iron-sufficient
conditions (Prados-Rosales et al., 2014; Rodriguez and Prados-
Rosales, 2016). Interestingly, Rath et al. (2013) reported that
a cytosolic membrane-associated protein, VirR, controls MV
production and cargo selection in M. tuberculosis (Rodriguez
and Prados-Rosales, 2016). VirR contains a disordered domain,
suggestive of a binding partner, in its N-terminus and was found
to be associated with several proteins, including lipoproteins
(Rath et al., 2013). Notably, the VirR C-terminus has a LytR
family transcriptional regulator domain that plays important
roles in the formation and maintenance of the cell envelope
(Brown et al., 2015).

Corynebacterium, another genus of mycolic acid-containing
bacteria, also produces MVs. Theresia et al. (2018) reported
that EGTA, a calcium chelator, induced MV production by
Corynebacterium glutamicum. CspB, a major protein component
of the para-crystalline surface layer (S-layer) of the bacterium,
was predominantly detected in these MVs. The authors proposed
that depletion of calcium ions altered the integrity of the S-layer
and subsequently triggered the release of CspB-containing MVs
(Theresia et al., 2018) (Figure 1). Other proteins detected in
these MVs included CspA, CmytC, and CmytB, which are cell
envelope-associated proteins (Theresia et al., 2018).

Although the mechanisms underlying MV formation in
Mycobacteria and Corynebacteria are still unclear, identification
of additional regulatory proteins and vesiculation-inducing
factors should provide clues as to how MVs are formed and
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released beyond the complex cell envelope of these mycolic
acid-containing bacteria.

WHAT DETERMINES MV
COMPOSITION?

Many biochemical analyses have revealed that certain proteins
and lipids are selectively accumulated in MVs through their
biogenesis. Although how these molecules are selected is largely
unknown, here we describe recent observations concerning the
mechanisms underlying their selection.

As described above, the accumulation of misfolded proteins in
OMVs has been reported in Gram-negative bacteria, suggesting
that, in some cases, OMV cargo selection is a consequence
of the cell envelope stress response (McBroom and Kuehn,
2007; Olofsson et al., 2010; Schwechheimer and Kuehn, 2013).
Additionally, Bonnington and Kuehn (2016) reported that the
LPS composition of OMVs from Salmonella enterica changed
in response to various stresses, such as low pH. The authors
hypothesized that these cells may use OMV formation as a
way to selectively remove environmentally disadvantageous LPS
species from the outer membrane under certain conditions.
Another study showed that the size and lipid composition
of Klebsiella pneumoniae OMVs was altered after polymyxin
treatment, suggesting that the lipid composition of OMVs reflects
the outer membrane remodeling associated with cell envelope
stress induced by polymyxin (Jasim et al., 2018). In contrast,
several studies have suggested a mechanism in which certain
proteins determine the MV composition. In Vibrio cholerae,
proteomic analysis revealed that DegP was present in the MVs
(Altindis et al., 2014). Interestingly, this study demonstrated
the importance of DegP in the incorporation of at least nine
proteins into OMVs (Altindis et al., 2014). The authors suggested
that DegP can control the protein composition of OMVs
by acting as a chaperone for certain proteins. Although the
determinants of protein composition in bacterial MVs are still
largely unknown, it is possible that the Bam complex, which
catalyzes the assembly of outer membrane proteins, may, in part,
determine protein cargo selection (Bonnington and Kuehn, 2014;
Hussain and Bernstein, 2018).

Haurat et al. (2011) reported that anionic LPS (A-LPS) plays
a critical role in OMV protein cargo selection in Porphyromonas
gingivalis. In this study, gingipains and TonB-dependent outer
membrane proteins were excluded from OMVs in the absence of
A-LPS. Yokoyama et al. (2017) reported another example of lipid-
dependent cargo selection, showing that a lack of EPA altered
the protein composition of OMVs. In addition, the VacJ/Yrb
lipid transporter system has been suggested to be involved in
phospholipid accumulation in the outer leaflet of the outer
membrane and the consequent OMV formation in H. influenzae
(Roier et al., 2016).

Although the mechanism underlying MV cargo selection in
Bacteroides fragilis is still unknown, it is noteworthy that most
of the OMV-exclusive proteins were acidic hydrolases, whereas
alkaline proteins were mainly found in the outer membrane
(Elhenawy et al., 2014). The authors also demonstrated that
an acidic hydrolase from another Bacteroides bacterium was

heterologously expressed and selectively packed in B. fragilis
OMVs (Elhenawy et al., 2014). Therefore, at least in some
Bacteroides species, there may be an interesting mechanism in
which the cargo proteins are selectively packed into OMVs based
on their function or biochemical properties, such as pI.

Another interesting observation is a correlation between
OMV size and protein contents (Turner et al., 2018). The authors
found less protein content and diversity in small Helicobacter
pylori OMVs (20–100 nm) than in larger OMVs (90–450 nm).
These OMVmay have originated from different formation routes
leading to different protein contents.

COMPOSITION AND ACTION
MECHANISMS OF OMVs

Membrane vesicles play important roles in bacteria-host
interactions. Bacterial MVs often have immunomodulating
activities in host animals due to the presence of numerous
molecules with microorganism-associated molecular patterns
(MAMPs), including DNA, RNA, lipoproteins, LPS, and
peptidoglycan (Kaparakis-Liaskos and Ferrero, 2015; Tan et al.,
2018; Wang et al., 2019). For this reason, MVs have been
intensively investigated for their potential in the development
as novel vaccine platforms. Diverse hydrolytic enzymes are
contained in the MVs of pathogens, suggesting that they may act
in infection processes, such as the invasion of epithelial barriers
(Olofsson et al., 2010; Lappann et al., 2013; Liu et al., 2018;
Zarzecka et al., 2019). In addition, proteins involved in biofilm
formation have been detected inMVs, suggest their potential role
in biofilm formation and pathogen colonization in host animals
(Altindis et al., 2014; Wagner et al., 2018).

In MV-dependent immunomodulation, the attachment and
uptake of MVs by host cells has been proposed as an initial
step (Kaparakis-Liaskos and Ferrero, 2015; Tan et al., 2018;
Wang et al., 2019). So far, it is proposed that bacterial MVs
are taken up by mammalian host cells through similar routes
as other extracellular vesicles (EVs) (Figure 2). In mammalian
cells, EVs (originating from mammalian cells) are taken up
by recipient cells through phagocytosis or clathrin, caveolin-
mediated endocytosis (Mulcahy et al., 2014). There is also
evidence showing that lipid rafts are involved in EV uptake
(Mulcahy et al., 2014). In addition, EVs may also fuse with
the plasma membrane or be internalized via macropinocytosis,
during which the EVs are enclosed into the lumen of
macropinosomes or caught in membrane raffles before entry
(Mulcahy et al., 2014).

Schaar et al. (2011) reported thatMoraxella catarrhalis OMVs
enter host cells by binding to lipid rafts associated with caveolin,
after interaction with Toll-like receptor 2 (TLR2). The authors
also identified the adhesins and virulence factors responsible for
triggering the immune response (Schaar et al., 2011). Several
studies have also shown that specific, potent inhibitors of
endocytosis decrease MV entry into host cells (Kesty et al.,
2004; Bomberger et al., 2009; Furuta et al., 2009; Parker et al.,
2010; Schaar et al., 2011; Crowley et al., 2013; O’Donoghue
et al., 2017). MV fusion with the host cell membranes has been
shown (Kesty et al., 2004). It was also suggested that the route
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FIGURE 2 | Routes of MV entry into mammalian and bacterial cells. In

mammalian cells, bacterial MVs are thought to be internalized through several

routes. Cholesterol-rich lipid rafts in the plasma membrane of the mammalian

cell mediates MV entry through caveolin-mediated endocytosis or fusion of

the lipid raft and bacterial MV. Clathrin-mediated endocytosis is also involved

in MV internalization. In bacterial cells, two types of MV entry have been

proposed: MV components, such as DNA, may be internalized into bacterial

cells through type IV pili, or MVs may also fuse with the cellular membrane of

the bacterial cell, depending on the membrane composition.

of cellular entry may vary according to the MV composition
and size. Parker et al. (2010) showed that H. pylori OMVs are
internalized via clathrin-mediated endocytosis in the absence
of VacA toxin, while VacA+ OMVs can be taken up through
several routes. Turner et al. (2018) reported that smallerH. pylori
OMVs (20–100 nm) preferentially entered host cells via caveolin-
mediated endocytosis instead of clathrin-mediated endocytosis,
while larger OMVs (90–450 nm) entered via several pathways
including endocytosis. Based on the result that OMV size appears
to be correlated with their protein composition, the authors
proposed that the difference in the mechanisms of OMV entry
may reflect the variation in OMV size and protein composition.
O’Donoghue et al. (2017) showed that the LPS composition of
an OMV determines major route and kinetics of host cell entry.
OMVs lacking O-antigen are internalized via clathrin-mediated
endocytosis, while in the presence of O-antigen, OMVs are likely
to enter via lipid raft-dependent and receptor-independent routes
(O’Donoghue et al., 2017).

Compared to MV entry into mammalian cells, MV uptake
by bacterial cells is poorly understood. Although the entry
of the membranous components or cargo into bacterial cells
is an important step for MV function (Klieve et al., 2005;
Mashburn and Whiteley, 2005; Domingues and Nielsen, 2017;
Tashiro et al., 2017; Toyofuku et al., 2017b), the underlying
mechanisms are unclear.

Fulsunder et al. (2014) showed that MVs mediate horizontal
gene transfer between E. coli and Acinetobacter baylyi. In
their experiments, a plasmid harboring an antibiotic resistance
gene was transferred from one bacterium to the other via
OMVs. They also demonstrated that OMVs were attached to
or internalized by the recipient cells via transmission electron
microscopy using immunogold-labeled OMVs. Importantly, the
authors showed that the competence proteins of A. baylyi,
such as ComA and ComB, play a role in the uptake of DNA
delivered by OMVs. Therefore, it has been suggested that
OMVs are lysed upon contact with the outer membrane of the

bacterium, followed by type IV pilus-mediated transport of DNA
(Fulsunder et al., 2014).

It has also been proposed that MVs transport their contents
into bacterial cells through membranous fusion (Kadurugamuwa
and Beveridge, 1996; Kim et al., 2016; Tashiro et al., 2017).
For the membranes to fuse, they need to come into contact.
Reducing intermembrane hydration repulsion, decreasing bilayer
surface density or polarity, and increasing the hydrophobicity
of the intermembrane hydrophilic region are known to bring
two membranes in close contact (Ohki, 1982; Cevc et al., 1985;
Rand and Parsegian, 1989; Burgess et al., 1992; Mondal Roy
and Sarker, 2011). Kadurugamuwa suggested that two divalent
cations, Mg2+ and Ca2+, which form salt bridges between MVs
and the outer membrane, initiate membrane fusion and deliver
the autolysin cargo to the cell (Kadurugamuwa and Beveridge,
1996; Wang et al., 2016; Oshima and Sumitomo, 2017). Tashiro
and colleagues showed that Buttiauxella agrestis MVs selectively
interact with Buttiauxella species. Based on Derjaguin-Landau-
Verwey-Overbeek (DLVO) theory and physicochemical analyses,
they suggested that van der Waal’s forces and electric repulsion
energy are involved in the selective interaction of the bacteria
with MVs (Tashiro et al., 2017).

Given that bacterial MVs can fuse with the lipid rafts
in eukaryotic cells, microdomains in bacterial cells may also
function as the contact sites for MVs. Functional microdomains
in the membrane that contain certain lipids, such as PE,
CL, diacylglycerols, cholesterols, or polyisoprenoids, have been
suggested in various bacteria, including both Gram-negative
and Gram-positive species (Matsumoto et al., 2006; LaRocca
et al., 2010, 2013; López and Kolter, 2010; Toledo et al.,
2018) although their compositions and structural bases remain
largely unknown. PE and CL, which are inverted hexagonal
phase-forming lipids, are major components of bacterial
MVs, and the transition from the lamellar bilayer phase to
the inverted hexagonal phase could facilitate the merging
of lipids required for membrane fusion, once MVs come
in contact with the cell (Powell and Marsh, 1985; Lewis
and McElhaney, 1993; Kinnunen, 1996; Mondal Roy and
Sarker, 2011). Some proteins, such as dynamin-like protein
DynA, that mediate lipid mixing (Guo and Bramkamp, 2019),
may also be involved in vesicle fusion, and this requires
further investigations.

CONCLUSION

As we have reviewed here, biochemical approaches are powerful
tools for elucidating the composition, biogenesis, and function
of MVs. Proteomic and lipidomic analyses indicate that the
composition of MVs depends on the growth conditions (Choi
et al., 2014; Kim et al., 2016; Wagner et al., 2018; Taboada
et al., 2019), suggesting that the MVs are heterogenous and
their functions differ depending on the environment. On the
other hand, recent studies have shown different pathways of
MV formation, which lead to different MV compositions. Given
this heterogeneity, we need to develop methods that enable
separation and analysis of different types of MVs in cell culture
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as well as natural settings and body fluids. Currently, most MVs
are isolated and purified by density-gradient ultracentrifugation
or gel-filtration chromatography in which the particles are
separated depending on their density or size in liquid solutions.
Although these procedures can exclude the major contaminants
(such as flagella and protein aggregates) from the purified MV
solution, other techniques separating and sortingMVs depending
on different properties, such surface charges, are required to
investigate more precisely the biochemical properties of each
MVs produced via different routes. To fully understand the true
functions of each MV particles, we also need to understand the
molecular mechanisms of how each types of MVs deliver their
cargos to the target cells. Integrating biochemical information
with imaging techniques and molecular biological approaches,
may help us tackle such challenges.
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