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Crackling noise in fractional percolation
Malte Schröder1,2, S.H. Ebrahimnazhad Rahbari3 & Jan Nagler1,2

Crackling noise is a common feature in many systems that are pushed slowly, the most

familiar instance of which is the sound made by a sheet of paper when crumpled. In

percolation and regular aggregation, clusters of any size merge until a giant component

dominates the entire system. Here we establish ‘fractional percolation’, in which the

coalescence of clusters that substantially differ in size is systematically suppressed. We

identify and study percolation models that exhibit multiple jumps in the order parameter

where the position and magnitude of the jumps are randomly distributed—characteristic of

crackling noise. This enables us to express crackling noise as a result of the simple concept of

fractional percolation. In particular, the framework allows us to link percolation with

phenomena exhibiting non-self-averaging and power law fluctuations such as Barkhausen

noise in ferromagnets.
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M
any systems crackle when pushed slowly. Examples
include the crumpling of paper1, earthquakes2, solar
flares3, the dynamics of superconductors4 and the

magnetization of slowly magnetized magnets. For a piece of wood
in fire one can even hear crackling noise without special
equipment. Across all systems that display crackling noise, the
order parameter of the system exhibits randomly distributed
jumps, and discrete, spontaneous events span a broad range of
sizes5. Magnification of the hysteresis curve of a magnetic
material in a changing external field, for instance, reveals that
the magnetization curve is not smooth but exhibits small
discontinuities. This series of correlated jumps is called the
Barkhausen effect, which is a standard example for crackling
noise in physics6–8. Despite its importance, crackling noise is far
from being understood.

In random network percolation a fixed number of nodes are
chosen randomly, and two of them are connected according to
certain rules9–12. This procedure is repeated over and over again
until every node is connected to every other. Once the number of
added links exceeds a certain critical value, extensively large
connected components (clusters) emerge that dominate the
system.

The reverse process is called fragmentation, see Fig. 1.
Fragmentation processes, where homogeneous parts break up
into smaller ones, are ubiquitous and have been studied intensely.
The applications range from disintegration of atomic nuclei, and
the fragmentation of glass rods, to fracture in large-scale
systems13–19. An important observation is that the size of the
fragments are of the same order of magnitude as the parent pieces.
Thus, the case where one fragment is microscopic while the size of
the other fragment is substantially larger is rare.

Here we model this by systematically suppressing asymmetric
break ups. This suppression suggests a fractional increase of
clusters, that is time-reversed fragmentation. We demonstrate
that crackling noise in percolation unexpectedly emerges from
this simple fractional growth rule. To further demonstrate the
universality of our approach, computer simulations for the
proposed percolation mechanism in geometrical confinement are
carried out.

The particular model we use to exemplify the fractional growth
mechanism can be replaced by any other model where first a fixed
number of nodes are chosen at random, and then two nodes are
connected, according to any rule that forbids the largest chosen
component to merge with components smaller than a fixed
fraction of its size. As we will reveal by a single event analysis, the
network model features three basic properties: (i) a fractional
growth mechanism, (ii) a threshold mechanism and (iii) a
mechanism that amplifies critical fluctuations. We show that
these underlying mechanisms account for the main features of
crackling noise. Perhaps most importantly, the framework allows
us to derive macroscopic features from the underlying micro-

dynamical mechanisms, which exposes connections between the
seemingly unrelated concepts of percolation, fragmentation and
crackling noise.

Results
Network model. Consider a network with a fixed number of
nodes N and L links. Start with N isolated nodes and no links,
L¼ 0. At each step, choose three different nodes v1, v2 and v3
uniformly at random. Let S1, S2 and S3 denote the sizes of the (not
necessarily distinct) clusters they reside in. Assume S1ZS2ZS3,
and 0ofr1 is fixed. Connect those two nodes vi and vj for which
Dij :¼fSi� Sj, 1riojr3 is minimal, see Fig. 2. If necessary,
choose randomly among multiple minima, whose corresponding
nodes are to be linked. Hence, a certain type of size homophily
among clusters is applied, where connections between two clus-
ters are preferred, which are similar in size, after the size of the
larger cluster has been rescaled by a factor f, the ‘target fraction’.
As D12rD13, only D12 and D23 have to be considered. The rule is
also applied if the nodes to be linked reside in the same com-
ponent. As a ‘final rule’, when there are only two clusters
left in the system, connect these. For single realizations of
the process, see Fig. 3. As seen in the study, fragmentation as
S-(gS:¼Si, (1� g)S:¼Sj) with g :¼ 1þ f

1þ 2f is the inverse process, and
the target fraction f determines the magnitude of the dis-
continuities in the order parameter.

Let us order the largest components of the system by S1, S2,y,
with sizes s1¼ S1/NZs2¼ S2/Ny, and write ‘with high prob-
ability’ (whp) to express that the probability of a certain statement
gets arbitrarily close to 1 as N-N. The link density of the
network is the analogue of the occupation probability for lattices
and defined by p¼ L/N, where L denotes the number of links that
have been added to the network. Let pc characterize the critical
link density, the position of the (first) phase transition.

We show next that an arbitrarily fractional increase of
components features discontinuities that survive even in the
thermodynamic limit, and that this implies non-self-averaging15.

Figure 1 | Fragmentation and fractional percolation. (a) In the process of

fragmentation, clusters split up into parts of a certain fraction. (b) The

reverse dynamics, ‘fractional percolation’, is studied here. In contrast to

ordinary aggregation processes, in fractional percolation the coalescence of

clusters that substantially differ in size is systematically suppressed.
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Figure 2 | Sketch of the models. (a) Select three nodes at random and

calculate the sizes of the clusters they reside in S1ZS2ZS3. Connect those

two nodes ni and nj, which reside in clusters that minimize Dij:¼ fSi� Sj
among D12, D13 and D23, where 0ofr1 is fixed. (Actually, it is unnecessary

to consider D13 as D12rD13). Here a link between the clusters of size 15

and 10 is established because the (arbitrarily chosen) fixed target

fraction f¼ 2/3 is here exactly met: D12¼ 2/3� 15� 10¼0oD23

¼ 2/3� 10� 5¼ 5/3oD13¼ 2/3� 15� 5¼ 5. (b) Lattice model. Draw

randomly a focal cluster (red) and merge those two neighbour clusters that

minimize D (see text).
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Self-averaging. A thermodynamic quantity, such as the total
magnetization or the size of the largest component in a net-
worked system s1, is self-averaging if its relative variance becomes
zero in the thermodynamic limit15,

Rv:¼
s21
� �

� s1h i2

s1h i2
! 0; for N ! 1; ð1Þ

where the brackets denote ensemble averaging.
For non-self-averaging systems, however, the thermodynamic

quantity remains broadly distributed for large systems and large
sample sizes. Systems that lack self-averaging therefore lack
the collapse of the ensemble average, and its minimum and
maximum as well. Non-self-averaging has an important role
in the statistical physics of disordered systems, for instance in
spin glasses15,20,21, neural networks, polymers and population
biology22,23.

We characterize non-self-averaging in percolation24,25 by a
non-vanishing relative variance of the order parameter s1 on an
extended interval. For investigating this, it is helpful to study the
underlying microscopic mechanisms in terms of a single event
analysis.

Fractional growth mechanism. First we show that, for f40, the
largest component cannot merge with components smaller than

f
1þ f S1. If less than three distinct clusters are picked, either an
intracluster link is added and the size of largest component is
necessarily unchanged, or the size of the largest component
doubles. Thus, we consider the case of three distinctly chosen
components whose sizes are ordered, S01ZS02ZS03.

Proof by contradiction: Assume D1,2 is minimal such that S01
and S02 merge when (A) S02o

f
1þ f S

0
1. In fact, D1,3 is never minimal

(except if it is equal to another D) as D1,3ZD1,2, and if D2,3 was
minimal then the largest chosen cluster would not
merge with any other. By multiplying A with f and adding � S03
we obtain f S02 � S03o

f
1þ f f S

0
1 � S03. As D1,2 is minimal, we

have fS01 � S02of S02 � S03, and hence we obtain f S02 � S03o
f

1þ f ðð1þ f ÞS02 � S03Þ� S03 ¼ f S02 �ð1þ f
1þ f ÞS03, which is impossi-

ble for f40.
Thus, S01 either stays constant, increases ‘fractionally’ by at least

a factor of f
1þ f or is overtaken (by a merger of S02 and S03).

However, overtaking becomes unlikely as the size of the largest
component increases.

Impossibility of O(N) overtaking. By O(N) overtaking, we mean
the merger of two components, each smaller than the largest
component, which together are larger than the largest component
and of size O(N). Our line of arguments holds for any rule based
on picking at most three nodes randomly. Assume that
S1¼O(N), considering the following cases.

Case (i): Both smaller components are O(N). This is (whp)
impossible because the upper limit for the number of macro-
scopic components is 2. Actually for any n-node rule (where first
n nodes are chosen randomly followed by any other rule), there
cannot exist more than n� 1 macroscopic clusters over any
extended period of time26.

Case (ii): At least one of the smaller components is o(N). In this
case, overtaking is (whp) impossible as either S1ZS20 þ S30 or S1-
S1þ o(N).

Threshold mechanism. Taken together, for the infinite system,
this implies that as soon as the size of the second largest com-
ponent exceeds f

1þ f s1, the second largest component merges with
the largest one, s1-s1þ s2. As a third macroscopic component is
(whp) impossible, this also implies the reset of the second largest
component, s2-0.

Power law fluctuations by amplification of critical fluctuations.
Summarizing the above considerations, after the first-phase
transition, for p4pc and N-N, the size of the largest com-
ponent either stays constant or jumps discontinuously. As the
first transition is point-continuous24,27,28, the process necessarily
exhibits infinitely many discontinuous transitions arbitrarily close
to the first transition point, p¼ pc.

Let dn denote the height of the nth step down the staircase. The
fractional growth mechanism suggests the proportionality dnBgn,
where g¼ð1þ f

1þ f Þ
� 1. This yields the jump size distribution

DðsÞ �
Z

dðs� dnÞdn¼
Z

dðs� ggnÞdn � s� 1; ð2Þ

for f40, where d( � ) denotes the Delta function and g is a
constant. This is supported by numerics (see Fig. 4).

The stochasticity is a consequence of the exponential
amplification of the critical fluctuations of s1 at the first-phase
transition point, pc. Fluctuations, measured by the relative
variance, in the size of the largest component s1 at pc are known
to be non-zero, Rv(s1(pc))40 (refs 9,27).

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

f= 0.25

f= 0.1

f= 0.01

f=0.0001

0.6 0.8 1 1.2
0

0.1

0.2

0.3

0.4

f= 0.01

Time

M
ag

ne
tiz

at
io

n
La

rg
es

t c
lu

st
er

 s
iz

e

Link density

Figure 3 | Discontinuous jumps. (a) Scheme of crackling noise in network

percolation. Single realizations of fractional percolation processes for the

network size N¼ 218. The evolution of the largest component S1/N is

displayed. The control parameter f determines the magnitude of the

discontinuities. In the thermodynamic limit N-N, the process shows

infinitely many discontinuous jumps. (b) Same for the magnetization of the

Barkhausen model on a square lattice, N¼400�400, single realization for

f¼0.01.
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From dnEegn, we see that uncertainties e are exponentially
suppressed as n increases. In contrast, fluctuations in s1 at pc are
exponentially amplified, for increasing p. As a result, both the size
of the jumps, and the transition points are stochastic—even for
the infinite system.

Thus, the process is non-self-averaging, characterized by a
non-vanishing relative variance

Rv ¼
s21
� �

� s1h i2

s1h i2
4 0; for p � pc; N ! 1: ð3Þ

This is numerically supported, see Fig. 4, and stands in contrast
to the weakly discontinuous case (see Supplementary Methods
and Supplementary Figs S1–S3).

Expressing dn in terms of a time-dependent target fraction f(n),
and assuming f(n)¼ a/n, 0oar1, from equation (2), we obtain
D(s)Bs�

1þ a
a characterizing power law fluctuations that decay

faster than Bs� 1. Thus, other fluctuation types than Bs� 1 are
accessible via a non-constant f.

Barkhausen percolation model. As clusters in our framework
neither have a magnetization nor are geometrically confined, the
analogy to magnetic effects such as the Barkhausen effect, a
standard example of crackling noise in geometrical confinement,
remains incomplete. To demonstrate the universality of our
claims, next we study a Barkhausen percolation model on a
square lattice. Assume that each cluster has a homogeneous
magnetization; either m(Si)¼ 0 or m(Si)¼ 1. Initially all sites are
single clusters and have m¼ 0, up to a set of sites of o(N) that is
set to m¼ 1, for example, a few single clusters. Now apply
repeatedly the following update rule. (i) Uniformly draw a cluster
at random, (ii) among this focal cluster and its (von Neumann-)
neighbours, merge those two neighbour clusters that minimize
D:¼ fSi� Sj (see Fig. 2b), (iii) magnetization: apply the neutral
rules 0þ 0-0, and 1þ 1-1, together with the magnetization

rule 0þ 1-1, for the merging clusters. In addition, apply the
physical time increment rule t-tþmin(si, sj)1/2 at each merger,
si and sj being the scaled cluster sizes of two merging components.
This rule accounts for cracks preceding a fragmentation. Cracks
have a finite propagation velocity, which implies that duration of
a fragmentation event depends on the size of the fragments15,29.
Here we have arbitrarily chosen the square root of the smaller
cluster as the time increment. However, the main features of the
model are independent of the specific choice.

Fragmentation mimics the repeated reconfiguration of homo-
geneous magnetic domains under a slowly increased opposite
external magnetic field. A magnetic domain is a region within a
ferromagnetic material with uniform magnetization. During the
demagnetization, domains split up into smaller ones of different
magnetization, a process called reconfiguration. This is in most
ferromagnetic materials the dominating factor in the minimiza-
tion of the local magnetostatic energy and accounts for the
sudden jumps of the total magnetization in the hysteresis curve.
However, due to other effects, the process stops when the domain
size approaches a threshold, usually in range of 10� 4 to 10� 6m
(refs 5,8).

Here we demonstrate that the reverse process, fractional
percolation, reproduces the main features of Barkhausen noise.
While only a caricature of the intricate processes in ferro-
magnets6,7, it nonetheless explains multiple randomly distributed
discontinuous jumps in the total magnetization MðtÞ:¼
1
N

P
SimðSiÞ, together with non-SA, and power law fluctuations,

see Fig. 5, Supplementary Methods and Supplementary Figs S4–S7.

Discussion
We have established crackling noise in percolation. In particular,
we have demonstrated analytically that fractional growth rules
imply randomly distributed jumps in the order parameter. These
jumps are discontinuous phase transitions. However, when such
mechanisms are mixed, even weakly, with mechanisms that
merge components purely at random then the transitions vanish,
or become at most weakly discontinuous characterized by very
small power law exponents30–41, see Supplementary Methods and
Supplementary Figs S1–S3.

Fractional percolation describes nucleation where domains
cannot grow in arbitrarily small pace. As an application consider
an unmagnetized ferromagnetic sample of linear dimension of
about l¼ 1 cm at room temperature. It is not unrealistic to
assume that the magnetic domains have roughly the same linear
dimension l0¼ 10� 3 cm, independent of l, but different magne-
tizations that globally compensate each other. An increasing
external magnetic field typically causes magnetic domains to
increase at least by the size of one of its neighbour domains. Thus,
this mechanism alone would result in the total magnetization to
either stay constant or jump in steps of the size of magnetic
domains. As long as l040, this quantized growth is an example of
the fractional growth rule as the largest domain cannot increase
by arbitrarily small amounts. However, as we increase the sample
size, the ratio l0/l decreases such that for the infinite system any
jump size becomes zero relative to the system size. Thus our
framework suggests that Barkhausen noise is at most ‘weakly
discontinuous’. In fact, in many soft magnetic materials
Barkhausen jump sizes are not extensive and thus their relative
size shrinks with increasing system size8. In contrast, in thin
magnetic films and other geometries where long-range
interactions are not of major importance, macroscopic jumps
have been reported42.

The characteristics of fractional percolation are robust against
an arbitrary (time-dependent) variation of the parameter f40
that determines the magnitude of the discontinuities. The
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Figure 4 | Non-self-averaging crackling noise in the network model. The

relative variance Rn of the largest component in dependence on the link

density p is displayed, f¼ 1. For p4pc the system is non-self-averaging

characterized by Rn-const.40, for N-N. Upper inset: Stochasticity of

transition points characterized by the lack of the collapse of average,

minimum and maximum values of S1, here shown for f¼ 1 and an ensemble

of 500 realizations. A single realization is displayed in black. Lower inset: As

derived in the text, for any f40, N-N, the jump sizes are power law

distributed, D(s)Bs� t (t¼ 1 theory). Fit exponents tf¼ 1¼0.96±0.06
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framework combines mechanisms reminiscent of many physical
and biological systems: the order parameter exhibits a sudden
jump upon exceeding a dynamical threshold5,29,43,44, and large-
scale fluctuations emerge as a consequence of critical fluctuations.
The amplification and propagation of critical fluctuations to
macroscopic scales has been subject of intensive investigations in
quantum critical systems, such as the inflationary expansion of
the early universe45, and disordered systems exhibiting quenched
disorder20,21. However, the current understanding of most
systems where randomness is frozen or amplified is far from
being complete. A recent study on group formation in small
growing populations, for instance, shows that the fraction of one
trait within the population (for example, cooperators) can be
subject to strong fluctuations as a result of the amplification of

stochastic fluctuations generated during the initial phase of the
dynamics46,47.

Power law fluctuations across operating scales, discontinuous
jumps of the order parameter and non-self-averaging may con-
siderably subvert predictability and control of networked
systems11,48. Exact conditions for these phenomena are elusive15.
Our analysis provides sufficient conditions for these features.
Because the framework connects the seemingly unrelated concepts
of percolation, fragmentation and crackling noise, it might help to
qualitatively improve the understanding of systems that display
(stochastic) discontinuous phase transitions.

In short, we expressed the main features of crackling noise as a
consequence of a simple concept: fractional percolation.

Methods
Mixed model. For a general argument, we introduce a stochastic mix of two
processes, ordinary Erdös-Renyı́ (ER) percolation, and the simple model of frac-
tional percolation introduced in the main text. Consider a graph G(n, e), where the
vertex set n has N nodes, and the edge set e has L links. Start with N isolated nodes
and an empty set of edges e¼+. With probability q, connect two randomly
chosen different nodes (that is, ER rule), otherwise, at each step, choose three
different nodes v1, v2 and v3 uniformly from V (for fractional percolation) and
follow the steps given in the main text (choose the minimal D), see Supplementary
Fig. S1.

Global continuity for q40. Consider any rule based on picking a fixed number of
nodes randomly, which is applied, at each step with probability 1� q, such as
fractional percolation, or other types of discontinuous percolation, together with an
ER-type process, which is applied with probability q, such as ER percolation. Here,
by ER-type process, we mean a percolation process, based on randomly choosing a
fixed number of nodes, which does not allow the emergence of more than a single
giant component because it would instantaneously merge with any other macro-
scopic component of size O(N). After the first-phase transition, that is, for p4pc
a giant component necessarily must have emerged. Hence, for fixed q40 and N-
N there is no extended interval (pc, p*4pc) in which macroscopic components
smaller than the largest one can emerge, because the ER-type rule would merge
them infinitely often with the largest one in any extended subinterval. This cannot
be compensated even by high rates of the creation of components of size O(N),
because at any given time there exist at most 1/a components of size aN, or greater
for a40. As a result, for p4pc all components smaller than the largest one are at
any time of o(N), and discontinuous jumps in s1 are therefore impossible. Clearly,
for popc all components S1, S2,y are microscopic, that is of size o(N). As any rule
based on randomly picking a fixed number of nodes is necessarily point-con-
tinuous at the first transition point p¼ pc (refs 24,25), the order parameter s1, the
size of largest cluster, is globally continuous and we can state that, for q 40, the
process is globally continuous.

Barkhausen percolation model. The size of the largest cluster necessarily displays
a stochastic staircase on an extended interval after tc, where tc is the first-phase
transition point, for N-N. Large randomly distributed jumps of the total mag-
netization are a consequence of this.

For the Barkhausen model on a square lattice (introduced in main text),
numerical evidence is presented that the total magnetization exhibits discontinuous
jumps, and displays power law fluctuations together with non-self-averaging.

Single realizations of the Barkhausen model are shown in Supplementary
Fig. S4. In contrast to the self-averaging case shown in Supplementary Fig. S3,
Fig. S5 indicates that the relative variance of M (and S1) is non-zero on a finite
interval and does not shrink to a single peak for N-N.

In addition, Supplementary Fig. S6 provides numerical evidence for large-scale
fluctuations, for all values of the parameter f. In ordinary square lattice percolation,
the critical window (around the phase-transition point tc) is characterized by
fluctuations that decay as D(s)Bs� t, with tE2.0. For the thermodynamical limit,
the exponent is exactly known, t¼ 187/91 (ref. 9). For small values of f, an
exponent close to t¼ 1.7 is observed here.

In contrast, we find larger fluctuations exhibiting a decay closer to a power law
with exponent 3/2, for f¼ 0.25, and f¼ 1. We expect this fluctuation type for finite
systems with a sufficiently high tendency for the suppression of the growth of large
clusters—in stark contrast to ordinary percolation. More precisely, the assumption
that the cluster sizes develop similarly to percolation in 1d, or equivalently, to the
‘global competition model’ studied in Nagler et al.31, leads to the prediction
S1ðTÞ¼ 2n ¼ N

N �T, where T is the (unscaled) time, that is the number of added
links or bonds, and n and T are connected via the identity T ¼ 2n � 1

2n N (ref. 31).
Finite size fluctuations in the critical window are then expected to follow
DðsÞ �

R
dðs� S01ðTÞÞdT , where the prime indicates the derivative. Hence,

DðsÞ �
R
dðs� gð1� tÞ� 2Þdt � s� 3=2, for some constant g40. This result is in
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agreement with the numerical results shown in Supplementary Fig. S6, for not too
small values of f.

In contrast, this behaviour is expected to vanish in the limit N-N. In this
limit, fractional percolation on a lattice is expected to exhibit D(s)Bs� 1, as a
consequence of the stochastic staircase on a finite interval (see main text).

However, the studied system sizes do not allow to observe this behaviour with
statistical significance, as the size of the critical window is too large for the studied
system sizes, implying D(s)Bs� 3/2. Nevertheless, the statistics of large fluctuations
of the magnetization for f¼ 1 is not inconsistent with D(s)Bs� 1. For the lattice
model, the fact that the stochastic staircase is extended after tc is a result of the
physical time increment rule t-tþmin(si, sj)1=2 (introduced in the main text).
This particular rule accounts for the finiteness of the crack propagation velocity.

Importantly, for t4tc any other size-dependent delay also leads to (i)
discontinuous transitions that are (ii) randomly distributed (non-self-averaging)
together with (iii) large-scale fluctuations.

In agreement with the framework, for the studied system sizes, we numerically
find the largest gap in M (and S1) to be effectively independent of the system size,
see Supplementary Fig. S7.

Therefore we have demonstrated strong numerical evidence that the
Barkhausen process involves macroscopic broadly distributed jumps in the total
magnetization, together with non-self-averaging.
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