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Abstract

The weight function method is described to analyze the crack growth behavior in functionally graded materials and in particular materials
with a rising crack growth resistance curve. Further, failure of graded thermal barrier coatings (TBCs) under cyclic surface heating by laser
irradiation is modeled on the basis of fracture mechanics. The damage of both graded and non-graded TBCs is found to develop in several
distinct stages: vertical cracking→ delamination→ blistering → spalling. This sequence can be understood as an effect of progressive
shrinkage due to sintering and high-temperature creep during thermal cycling, which increases the energy-release rate for vertical cracks
which subsequently turn into delamination cracks. The results of finite element modeling, taking into account the TBC damage mechanisms,
are compatible with experimental data. An increase of interface fracture toughness due to grading and a decrease due to ageing have been
measured in a four-point bending test modified by a stiffening layer. Correlation with the damage observed in cyclic heating is discussed. It
is explained in which way grading is able to reduce the damage.
© 2003 Published by Elsevier B.V.
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1. Introduction

Replacing the sharp transition of the material properties
in a bimaterial joint by a continuous transition, i.e. introduc-
tion of a graded interlayer, may improve the strength of the
joint. Various arguments have been mentioned in literature,
according to which a graded material should be beneficial.
These arguments are (see e.g.[1]) that: (i) thermal stresses
can be reduced; (ii) thermal stresses at critical locations can
be reduced; (iii) stress jumps at the interface can be avoided;
(iv) the driving force for crack extension, the stress intensity
factor, can be reduced; and (v) the strength of the interfacial

� This is an overview of parts of the key results obtained within the
priority program “Functionally Graded Materials” funded by the German
Research Foundation (DFG) in the years 1995–2000.
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bond, which may be characterized by the interfacial fracture
toughness, can be increased.

Not all these arguments are convincing. The reduction of
thermal stresses depends strongly on the thickness of the
interlayer and the mechanical boundary conditions. A thin
interlayer between two different materials or a thin coating
contributes only negligibly to the equilibrium conditions of
force and moment and therefore leads to a small change in
the stress distribution only. On the other hand, a continuous
linear gradation in a plate leads to zero thermal stress, if
free bending of the plate is possible. If, however, the plate
is constrained against bending, a linear gradation leads to
a change in the thermal stresses, but not to a general re-
duction in the stresses. This is shown inFig. 1, where the
dimensionless stressσ/E1α1�T is plotted versus the coor-
dinatey in the direction of the gradation.E1 andα1 are the
Young’s modulus and the thermal expansion coefficient for
y = 0, E2 andα2 are the corresponding values fory = H ,
and�T is the change of the temperature from the stress free
state.

0921-5093/$ – see front matter © 2003 Published by Elsevier B.V.
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Fig. 1. Stress distribution in a plate constraint against bending after a change in temperature (linear gradation and bimaterial).

The jump of the stress in a bimaterial is not necessarily
dangerous, because failure is caused by stresses and not by
changes in the stresses. If there are flaws, such as voids or
inclusions or an irregular boundary at the interface, the jump
in the stress may lead to locally high stresses[2].

In a 6-year program of the German Science Foundation,
different aspects of functionally graded materials were inves-
tigated. One aspect was the mechanical properties of these
materials. Results were published in different papers[3–6].

This paper concentrates on cracks in functionally graded
materials. There exist many publications on cracks in func-
tionally graded materials under mechanical and thermal
loading [7–35]. Section 2of this paper deals with the ap-
plication of the weight function method to calculate stress
intensity factors, with the analysis of the rising crack
growth resistance and with residual stresses. InSection 3,
the effect of grading on delamination crack propagation
in TBCs under heating by means of laser irradiation is
analyzed.

2. Weight function analysis

2.1. Weight functions for the calculation of stress
intensity factors

The stresses at the tip of cracks in a graded material are
described in the same way as in homogeneous materials with
a square root singularity. For cracks parallel to the gradation
direction an external mode I loading leads to a mode I stress
intensity factor, whereas for a crack perpendicular to the
direction of the gradation an external mode I loading leads
to mixed modeKI /KII loading. The stress intensity factor
depends on the applied stress but also on the distribution of
the elastic constants, especially the Young’s modulus.

A crack of length “a” parallel to the gradation direction
(y-direction) is considered. The stress intensity factors can
be calculated applying the weight function method:

KI =
∫ a

0
σ(y)hI(y, a)dy (1a)
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KII =
∫ a

0
τ(y)hII (y, a)dy (1b)

whereσ(y) andτ(y) are the normal and shear stress distri-
butions in the uncracked component along the crack plane.
ThehI andhII are the mode I and mode II weight functions.
For a graded material these weight functions depend on the
distribution of the elastic constantsE(y) andν(y).

Rice [36] developed a relation to calculate the weight
function from the crack opening displacementu(y, a), the
stress intensity factorKr(a) of a reference stress distribution
σr(y):

hI(y, a) = E

KIr

∂u(y, a)

∂a
· (2)

It can be shown[37] that the same relation holds for a crack
in a graded material, whereE(a) at the tip of the crack
has to be introduced for the Young’s modulus. To obtain
the crack opening displacement, a procedure developed for
homogeneous materials (see[38]) can be applied. This was
shown in[37]. The “direct adjustment method”[39] starts
with the general type of the weight function

h(y, a) =
√

2

πa

[
1√

1 − ρ
+

∞∑
n=1

Dn(1 − ρ)n−1/2

]
(3)

with ρ = y/a. The expansion is truncated after a certain
numberN. Dn can be obtained fromN conditions. One set of
conditions can be obtained by applyingEq. (1)for reference
loadingσr(y) with known stress intensity factorsKr(a). An-
other condition was obtained in[37,40]. It could be shown
that the second derivative of the crack opening displacement
at the crack mouth (x = 0) disappears. As a direct conse-
quence ofEq. (2) it follows

∂2h

∂y2

∣∣
y=0 = 0 (4)

As an example, a component with an external crack is con-
sidered. Two reference loadings are considered: a constant
crack face pressureσ(y) = constant and a pair of concen-
trated forcesP acting at the crack mouth, leading to the stress
intensity factorsKσ andKP . With these three conditions, a
four-term weight function can be obtained

h(y, a) =
√

2

πa

[
1√

1 − ρ
+ D1(1 − ρ)1/2 + D2(1 − ρ)3/2

+D3(1 − ρ)5/2
]

· (5)

The three conditions lead to

Kσ

σ
=

√
2a

π
(2 + 2

3D1 + 2
5D2 + 2

7D3) (6a)

KP

P
=

√
2

πa
(1 + D1 + D2 + D3) (6b)

3 − D1 + 3D2 + 15D3 = 0· (6c)
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Fig. 2. Weight function for a fully graded plate with an external crack: (A)
transition functionEq. (8a); (B) homogeneous material; and (C) transition
function Eq. (8b).

From these three equations, the coefficients follow as

D1 = 35

16

√
2π

a

Kσ

σ
− 15

16

√
2πa

KP

P
− 7 (7a)

D2 = −35

12

√
2π

a

Kσ

σ
+ 15

8

√
2πa

KP

P
+ 25

3
(7b)

D3 = 35

48

√
2π

a

Kσ

σ
− 7

16

√
2πa

KP

P
− 7

3
· (7c)

In Fig. 2, weight functions are given for a homogeneous
material and for two gradation functions: homogeneous ma-
terial, part C is transition function inEq. (8b).

A : E(y) = E0

(
1 − y

2W

)
(8a)

C : E(y) = E0

(
1 + y

W

)
(8b)

where W is the length of the plate iny-direction. It can
be seen that for this linear change in the Young’s modulus
by a factor of two, only a small deviation from the weight
function occurs for a homogeneous material.

The crack opening displacementu(a, y) for given stress
distribution follows fromEq. (2)as

u(y, a) =
∫ a

y

h(y, a′)K(a′)
E(a′)

da′· (9)

IntroducingEq. (1) leads to

u(y, a) =
∫ a

x

h(y, a′)
E(a′)

[∫ a′

0
σ(y)h(y, a′)dy

]
da′· (10)
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Fig. 3. (a) Crack in a plate with a graded interlayer; and (b) graded
functions in the interlayer; M1, M2: homogeneous materials.

2.2. Stress intensity factor in a material with a graded
interlayer under thermal loading [41]

A joint with a graded interlayer between two materials is
considered, which is subjected to a change in temperature
�T from the stress-free state (Fig. 3). The thickness of the
two materials ish1 andh3, the thickness of the interlayerh2.
It is assumed that the Young’s modulusE and the thermal
expansion coefficientα follow the same gradation function,
whereas the Poisson’s ratio is assumed to be constant. The
relation

f(x) = f2 − (f2 − f1)

(
h2 − y

h2

)n

(11)

is used forE andα with n = 1/2, 1 and 2. The normal-
ized stressσx in the uncracked joint is shown inFig. 4 for
α1/α2 = 0.5,E1/E2 = 2,h3/H = 0.05 andh1/H = 0.125
(h1 + h2 + h3 = H). There is a continuous transition in
the stresses. The stresses in the top layer are higher than in
the ungraded joint. InFig. 5, the normalized stress intensity
factor is plotted versus the crack length. As can be expected
from the stress distribution in the uncracked joint, the stress
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Fig. 4. Normalized stress distribution in the uncracked joint.
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Fig. 5. Normalized stress intensity factor for joints with a graded interlayer.

intensity factor in the joint with a graded interlayer is higher
for small cracks compared with the ungraded joint. If the
cracks are growing into the graded layer the stress intensity
factor decreases, whereas the stress intensity factor in the
ungraded joint increases as the crack approaches the inter-
face. In Fig. 6, the normalized stress intensity factors are
compared for three joints: A, bimaterial withh1/H = 0.05;
B, joint with a graded interlayer of thicknessh3/H = 0.05
andh1/H = 0.05 (grading function withn = 1); C, bima-
terial joint with h1/H = 0.1. For the joints A and C, the
stress intensity factor increases as the crack approaches the
interface. When comparing the joints A and B, it can be seen
that in the top layer the stress intensity factor is lowered
by introducing a graded interlayer. In the graded interlayer
itself, however, the stress intensity factor is higher.

These examples show that a detailed discussion is neces-
sary for an assessment of the benefit of a graded interlayer.
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In a bimaterial withE1/E2 > 1, the stress intensity will ex-
ceed the fracture toughness, if the crack approaches the in-
terface. Then, the crack may arrest at the interface because
of the lowerK in material 2 or the crack may kink and ex-
tend along the interface. In the graded material the stress in-
tensity factor may always be below the fracture toughness,
if a suitable grading function is selected. The gradation also
affects subcritical crack extension. Under thermal fatigue
loading, the crack growth rate da/dN depend on the range
of the stress intensity factor�K, which can be described by
the Paris-relation
da

dN
= C(�K)n (12)

The parametersC and n depend on the material and are,
therefore, a function ofy. By integration ofEq. (12)from
an initial to a critical crack size, the number of cycles to
failure can be obtained. A possible beneficial effect depends
on the distribution ofK and the material parameters along
the crack path.

Based on these considerations, a beneficial effect of a
graded interlayer on the crack growth behavior may be pos-
sible, but has to be evaluated for each specific problem.

2.3. Rising crack growth resistance curve in
gradient materials

In ceramic materials the resistance against crack extension
increases with increasing crack extension. For most materi-
als this effect is caused by crack border interaction behind
the crack tip due to frictional contact of the crack borders
or unbroken islands. This crack border interaction can be
described by compressive stressesσbr(y) acting along the
crack border and leading to a negative stress intensity factor
Kbr(a). The stress intensity factor at the crack tipK0 is the
superposition ofKbr(a) and

Kappl(a) = σ
√
aY

( a

W

)
· (13)

For homogeneous materials, the crack extends at constant
K0 and, therefore,Kappl increases to compensate the increase
of the negativeKbr. The “bridging stress” of a homogeneous
material is a unique function of the crack opening displace-
mentu:

σbr = σbr(u)

The crack growth resistance curve—Kappl = KR as a func-
tion of the crack extension�a is not an unique curve. The
relation depends on the initial crack size and the stress dis-
tribution in the uncracked component.

In a gradient material, the critical stress intensity factor
at the onset of crack extensionK0 and the relation between
σbr and the crack opening displacement depend ony:

K0 = K0(y), σbr = σbr(u, y)

The crack growth resistance curve can be obtained from the
relation measured between the external load or stress applied

and the crack extension by usingEq. (11)with Y(a/W) for the
specific gradient functionE(y). On the other hand, the crack
growth resistance curve can be calculated from the known
relationsK0(y) andσbr(y, u) by applying the relations

utotal = uappl + ubr

σtotal = σappl + σbr

andEq. (10):

utotal(y, a) =
∫ a

y

h(y, a′)
E(a′)

[∫ a′

0
σbr(utotal, y)h(y, a

′)dy

]
da′

+
∫ a

y

h(y, a′)
E(a′)

[∫ a′

0
σappl(y)h(y, a

′)dy

]
da′

(14)

Kappl= σappl
√
aY

( a

W
, y

)
= K0(y) + Kbr(y) = K0(y) + σbr

√
aY

( a

W
, y

)
·

(15)

This equation has to be solved iteratively.
Another problem is the determination of the bridging

stresses as a function of the crack opening displacement. For
a given initial crack length and applied stress, the bridging
stresses can be obtained as a function of the distance behind
the crack tipσbr(y) from measurements of the crack open-
ing displacementumeasured(y, a) = utotal(y, a) at an applied
stressσappl(y). Eqs. (10) and (14)can be written in the form
of

ubr(y, a) = umeasured(y, a)

−
∫ a

y

h(y, a′)
E(a′)

∫ a′

0
σappl(y)h(y, a

′)dy da′

=
∫ a

y

h(y, a′)
E(a′)

∫ a′

0
σbr(y)h(y, a

′)dy da′ (16)

From one measurement of the crack opening displacement
for one crack lengtha = a0 + �a and one applied load or
σappl(y), the unknown functionσbr(y) can be obtained. In a
diagram ofσbr versus the crack opening displacement with
the coordinatex as a parameter, this leads to one point for
each curve. The complete relationσbr(y, u) can be obtained
from measurements with different external loads or different
crack extensions�a applied.

As an example results of Neubrand et al.[42] are
shown for an alumina/aluminum gradient material. First,
σbr–u-relation was determined from measurements of the
crack opening displacement of compact tension specimens
of a homogeneous material with 27% Al. InFig. 7, the mea-
sured crack opening displacementumeasured, the calculated
one for the applied loaduappl, and the difference of bothubr
are plotted versus the distance behind the crack tip. Apply-
ing Eq. (16)with a constant Young’s modulus, the bridging
stress as a function of the distance behind the crack tip
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is obtained as shown inFig. 8a and theσbr–u-relation as
shown inFig. 8b.

Fracture mechanics tests were performed using the
compact tension specimens with three different grading
functions shown inFig. 9. The stress intensity factor was
calculated from the load and the corresponding crack length
by applying a relation given in[43]. The results are shown in
Fig. 10. There is a significant effect of the grading function
on the crack growth resistance curve. In addition predictions
of theKR curves were made from theσbr–u-relation. For the
gradient material, it was assumed that the relation between

0 10 20 30 

0 

10 

20 

30 

p=1/3 

p=1 

p=3 

x 

W 

cAl 

(%) 

x      (mm) 

pWxc )1/2(27.003.0 −+=  

Fig. 9. Grading functions of a CT-specimen.

Fig. 10. Measured crack growth resistance curves for three different
gradation functions.

the bridging stress and the crack opening displacement for
different compositions is given by

σbr(u, composition) = cAlp(u),

wherecAl is the relative content of aluminum in the mate-
rial andp(u) taken fromFig. 8b. Based on the experimental
results, the change of the stress intensity factor at the initi-
ation of crack extension was assumed as to be

K0 = 2.3 + 10.7cAl
[
MPa

√
m

]
In Fig. 11, the experimentally determined and the calculated
crack growth resistance curves are compared. In a second
calculation the effect of the residual stresses in the graded
plates as determined by a finite element analysis (seeFig. 12)
was considered. The stress intensity factor of the residual
stresses was calculated according to

Kres =
∫ a

0
σres(y)h(y, a)dy·

Then the crack growth resistance curve is calculated as

Kappl = K0 − Kres− Kbr·
Comparing the different curves inFig. 11shows that there is
a fairly good agreement between the directly obtained curves
(thick lines) and the curves calculated from the bridging
relation.

2.4. Determination of residual stresses in
gradient materials

Gradient materials contain residual stresses due to the pro-
cessing conditions. It is possible to determine these residual
stresses from measurements of the crack opening displace-
ment. The procedure is as follows: notches of different length
are cut in the direction of gradation. The crack opening dis-
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placement is measured at the crack mouth. The crack open-
ing displacement is given by

ures =
∫ a

y

h(y, a′)
E(a′)

[∫ a′

0
h(y, a′)σres(y)dy

]
da′· (17)

To solve this equation, the residual stresses are described a
polynomial expression:

σres =
n∑

i=0

Aiy
i· (18)

InsertingEq. (18)into Eq. (17)leads to:

ures =
n∑

i=0

AiCi (19)

with

Ci(y) =
∫ a

y

h(y, a′)
E(a′)

[∫ a′

0
h(y′, a′)y′idy′

]
da′· (20)

Eq. (19) is a linear system of equations, which has to be
solved forn measured crack opening displacements with n
different notch depths.

As an example, a result obtained by Neubrand et al.[44] is
presented. In the same material as described inSection 2.3,
the crack opening displacement was measured near the sur-
face of the specimen for notches with different depths. The
residual stress distribution calculated from these COD mea-
surements are shown inFig. 12. These results are compared
with finite element calculations considering cooling from
600◦C.

3. Reduced delamination in graded TBCs

3.1. Principle of optimizing gradients

Thermal barrier coatings (TBCs) with superior heat re-
sistance are applied for gas turbine engine blades with to
increase the energetic efficiency by running at higher oper-
ating temperature. The service life of TBCs is limited by
spalling fracture[45]. Application of functionally graded
TBCs with improved resistance against delamination and
spalling is expected to extend service life. The strategy of
graded TBC optimization is outlined inFig. 13. It represents
an extension of the scheme proposed in[46].
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The concept of mixed mode crack propagation in layered
materials[47] is used in combination with the conventional
crack propagation criterion based on the strain energy release
rateG and the interface toughnessGC. With the parameters
of geometry, loading conditions, and material properties be-
ing given, displacements, strains, stresses, and, finally, the
energy release rateG can be calculated for the given con-
figuration. The interface toughnessGC which is a given ma-
terial constant in simplest fracture mechanical problems is
influenced by various factors, such as TBC manufacture and
operating conditions, mode mixity of loading, and the tran-
sition function in this complex case of a layered structure.

The delamination crack is assumed to obey the conven-
tional crack propagation criterion

G ≥ GC, (21)

which means that it propagates if the energy release rate
G exceeds its critical valueGC. TBCs modified by grading
in such a way thatG is always belowGC would withstand
more severe conditions without damage. The potential effect
of grading on both decreasingG and increasingGC, with
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the aim of a reduction of TBC damage is discussed in the
papers[46,48,49].

Two series of experiments have been carried out in con-
nection with our investigations aimed at understanding the
basic mechanisms of TBC fracture and checking the use-
fulness of the present approach. One series involves cyclic
surface heating by means of a laser beam. Another series
involves various thermal loading regimes and a subsequent
four-point bending test modified by a stiffening layer. It
was demonstrated previously that cyclic surface heating by
laser irradiation is a suitable test for the performance of
non-graded and graded TBCs[46,50–52]. Such an experi-
ment is suitable for studying the progress of damage and also
for comparing the performance of non-graded and graded
TBCs. The four-point bending test modified by a stiffening
layer has proved suitable for investigating the influence of
grading and aging on interface fracture toughness. These ex-
periments and related finite element computations serve to
understand and quantify the progress of TBC damage with
a number of cycles and explain in which way grading may
reduce or prevent this damage.

3.2. Graded TBC with increased interface toughness

Interface fracture toughness was measured on samples
prepared by DLR Köln by means of electron-beam physical
vapor deposition (EB-PVD). The non-graded samples were
flat Nimonic plates with about 100�m NiCoCrAlY bond
coat and 250�m partially stabilized ZrO2. The graded sam-
ples contained a 50�m intermediate layer between the bond
coat and ZrO2, with a graded transition from Al2O3 to ZrO2
[53].

Interface toughnessGC was measured in a four-point
bending test[54] modified by a stiffening layer[46,48,55,56]
(Fig. 14). Results of non-graded and graded TBCs are listed
in Table 1for three kinds of samples differing by the degree
of aging: as received (without aging); 100 h aged at 1000◦C;
and 10 h aged at 1100◦C in air. These results clearly demon-
strate two effects: aging at high temperature reducesGC, as
reported also in[57] for plasma sprayed coatings; and the
introduction of a graded Al2O3 oxidation barrier between
zirconia and the bond coat causesGC to increase.

Table 1
Results ofGC measurementa

GC (N/m) Non-graded
EB–PVD–TBC

Graded
EB–PVD–TBC

Without aging >81b >81b

100 h at 1000◦C 63 >81b

10 h at 1100◦C 37 45

a [51].
b In these cases, there was no TBC failure, but a detachment of the

stiffening layer.

Fig. 14. TBC delamination testing equipment.

3.3. Laser-induced TBC damage

Intensive cyclic surface heating by means of laser
irradiation is a suitable test for the analysis of TBC dam-
age evolution[46,50–52,58]. It can be effectively applied
for comparing the performance of non-graded and graded
TBCs [51] for a wide range of temperatures and numbers
of cycles. In these experiments the sample surface is locally
heated by a 1 kW Nd-YAG laser beam, as shown inFig. 15.
The beam is deflected by two synchronized oscillating
mirrors in such a way that a circular area on the sample
surface is heated. The surface temperature is measured by
a high-speed pyrometer combined with another oscillating
mirror. The start of the crack can be detected by an acous-
tic sensor. A typical cycle consists of two phases: active
heating for 1 and 10 s interval (seeFig. 16). The number

Fig. 15. Set-up of the laser heating experiment.
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Fig. 16. Thermal cycling: part of an 11 s cycle, heating phase 1 s, and
cooling phase 10 s.

of cycles per sample varies between several tens to several
thousands. The maximum surface temperature employed is
about 1600◦C.

TBC damage was investigated by microscopy and metal-
lographic cuts. TBC failure was found to proceed in clearly
distinguishable consecutive stages, as shown inFig. 17.
Note thatN andTmax have was varied. There is no visible
damage after 11 cycles for all TBCs. Short vertical cracks
are observed after 30 cycles withTmax = 1500◦C in the
non-graded TBC (Fig. 17a) and after 300 cycles withTmax =

Fig. 17. Progress of damage in non-graded and graded TBCs[51] N and Tmax denote the number of cycles and maximum surface temperature. For
non-graded EB-PVD TBC (homogeneous ZrO2): (a) N = 30, Tmax = 1500◦C; (b) N = 1400, Tmax = 1500◦C; and (c)N = 900, Tmax = 1600◦C.
For graded EB-PVD TBC (graded transition: Al2O3 → ZrO2): (d) N = 300, Tmax = 1530◦C; (e) N = 1000, Tmax = 1530◦C; and (f) N = 300,
Tmax = 1600◦C.

1530◦C in the graded TBC (seeFig. 17d). Long vertical
cracks and delamination arise after 1400 cycles at 1500◦C
in the non-graded TBC (seeFig. 17b) and after 300 cycles at
1600◦C in the graded TBC (seeFig. 17f). Under the above
loading conditions, local spalling is observed for non-graded
TBC only.

It can be concluded that TBCs respond to thermal cycling
of increasing severity with the following sequence of phe-
nomena:

vertical cracks→ delamination→ blistering→ spalling.

The onset of the stages of damage is delayed by grading.
This experimental evidence can serve as a guidance for the
following analytical and numerical fracture mechanics anal-
ysis aimed at optimizing the effect of grading.

Since, in the present experiments, damage depends on two
parameters,N andTmax only, it can be conveniently repre-
sented by damage maps as inFig. 18. Apparently, a graded
interlayer delays delamination and subsequent further dam-
age. Blistering and spalling have been identified visually.
Delamination was detected by pyrometry. It is reflected by a
sudden rise of the surface temperature. The kink in the upper
curve ofFig. 16 is related to a sudden increase of thermal
flow resistance due to delamination.

The following fracture mechanics modeling intends to re-
produce an essential feature of the damage map, namely, the
slope of the line indicating the critical damage threshold, by
taking into account the variability of bothG and GC with
N. The same subject was studies in[59] for atmospheric



12 H.-A. Bahr et al. / Materials Science and Engineering A362 (2003) 2–16

10 100 1000 10000

1000

1200

1400

1600

 

 no visible damage

 vertical cracks

 delamination cracks

 local blistering

 local spalling

M
a
x
im

u
m

 s
u
rf

a
c
e
 t

e
m

p
e
ra

tu
re

 T
m

ax
 [

o
C

]

Number of cycles N(a) 

10 100 1000 10000

1000

1200

1400

1600

 

 

 no visible damage

 vertical cracks

 delamination cracks

 local blistering

M
a
x
im

u
m

 s
u
rf

a
c
e
 t

e
m

p
e
ra

tu
re

 T
m

ax
 [

o
C

]

Number of cycles N(b) 

Fig. 18. Damage maps of cyclically heated: (a) non-graded; and (b) graded
TBCs [51].

plasma-sprayed ZrO2 coatings, where time-dependent safety
maps served as an appropriate representation. The TBC fail-
ure process was discussed in this sense in[60], where an
increase of interface stress and degrading of bond strength
with time and number of cycles was analyzed in connection
with the expected life time before the onset of spalling.

The higher damage resistance of graded TBC as com-
pared to non-graded TBC (compare curves inFig. 18band
Fig. 18a) is apparently due to the higherGC of graded TBC
after aging under heating (seeTable 1).

3.4. Shrinkage stresses as a driving force

During laser heating (Fig. 16) the TBC-layer is sub-
jected to high compressive thermal stress leading to
high-temperature creep deformation in addition to sintering.
Both mechanisms cause a high tensile stress building up
while cooling down to room temperature after cyclic heating.
A similar mechanism was investigated in[61] for metallic
(Ti, Al)N coatings under laser shock loading. Considerable

Fig. 19. Shrinkage cracks in thermally cycled TBC.

residual crack opening after cyclic heating (Fig. 19) indi-
cates the presence of an average shrinkage strain of about
1%. Sintering of TBCs was discussed in[45,51]. Prolonged
heating of TBC samples detached from the substrate by
chemical dissolution of the NiCoCrAlY bond coat resulted
in shrinkage strains ofεS ≈ 1.4% for 100 h at 1200◦C and
εS ≈ 0.6% for 250 h at 1050◦C (Fig. 20, curvature due
to inhomogeneity of TBC). Progressive shrinkage due to
sintering in thermal cycling increases the energy release
rate for vertical cracks which subsequently turn into delam-
ination cracks. (Note that the temperature needed for TBC
damage inFig. 17 is much higher because of the smaller
total duration of laser heating withN cycles.)

3.5. Model for the analysis of delamination
crack propagation

A simplified two-dimensional (plain strain) model is con-
sidered for the analysis of delamination cracks under ther-
mal shock (Fig. 21a). Its symmetry allows the calculation
to be restricted to a representative element with one crack
only (Fig. 21b). Elastic isotropy is assumed, withE1, ν1,

Fig. 20. Detached TBC: before (left) and after (right) deformation due to
sintering for 100 h at 1200◦C.
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E2, andν2 being the elastic constants for the TBC and the
substrate, respectively. The sintering effect is characterized
by two parameters: average shrinkage strainεS and depthδ
(see alsoFig. 21b).

3.6. FE modeling

Delamination crack propagation was computed by means
of the finite element method (FEM). The finite element
model corresponding to the problem depicted inFig. 20bis
shown inFig. 22. The MARC finite element program pack-
age[62] was used for the calculation involving a 2D mesh
of eight-noded isoparametric finite elements with four inte-
gration points for stiffness matrix computation. The number
of elements varied with relative thicknessh/H and dimen-
sionless crack lengtha/l and reached about 1500. A highly
refined self-similarly focused mesh was used in the vicinity
of the crack tip. The size of the elements around the crack

Fig. 22. Delamination crack propagation caused by sintering (εs = 0.4%, δ/h = 0.8, a/l = 0.75). Displacements 20 times magnified.

tip was abouth/680. The depth of substrateH was taken as
10 h, which was sufficiently large to approximate half space.
The representative element (Fig. 21b) was fixed horizontally
on the right. Deviation ofG due to this simplification did
not exceed 8% compared to the case of periodic boundary
conditions.

The energy release rateG is calculated using the
J-integral via differential stiffness technique[62]. Accu-
racy of the model and methods considered is checked by
comparison with the analytical result for homogeneous ma-
terial within the limits of largel/h and δ/h = 1: GSS =
(1− ν2

1)p
2h/(2E1) = (1+ ν1)/(1− ν1)E1ε

2
Sh/2 (Eq. (22)).

In this model, the effect of sintering is simulated by as-
suming a homogeneous initial strainεS in an upper stratum
of depthδ of the TBC (seeFig. 21b). As another check of
the numerical computations, the equivalent problem of ex-
ternal pressure:p = E1εS/(1− ν1) applied to the boundary
(seeFig. 21c) is calculated as well. The coincidence of the
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results turns out to be better than<0.5%, thus proving the
consistency of the calculations.

Delamination is analyzed on the basis of elastic finite el-
ement solutions for variable crack lengths and loading con-
ditions. The crack configurations fora/l = 0.75 are shown
in Fig. 22.

The deformations seen inFig. 22 (20 times magnified)
show that the upper layer experiences both opening and slid-
ing relative to the substrate, thus indicating “mixed mode”
conditions. Variation ofG with crack propagation is given in
Fig. 23 for various values ofδ/h. The prominent feature of
the G(a) curves inFig. 23 is the maximum, which is about
20–30% of the steady-state valueGSSof an equivalent spec-
imen with infinite widthl, which is defined byEq. (22)as
follows:

GSS = 1 + ν1

1 − ν1

E1ε
2
Sh

2

(
δ

h

)2
[

1 + 3

(
1 − δ

h

)2
]

· (22)

The curves inFig. 23start from values ofG|a/l→0 for de-
lamination cracks, which are defined by the energy release
rate for a vertical crack. (In case of a homogeneous material,
the energy release rate of the infinitesimal delamination kink
is 1/4 of that of the vertical crack). The value ofG|a/l→0
may exceedGSS at δ/h = 1, and it depends strongly on
the relative depthδ/h of the sintering zone. With further de-
lamination crack propagation,G approaches the steady state
value GSS, but does not reach it, due to relatively small
value of l. For a → l the energy release rateG approaches
zero (convergent debonding by[63]). In view of these ten-
dencies, the existence of a maximum in theG(a) curves, as
shown inFig. 23, is obviously necessary. In contrast toδ/h,
the loading parameterεS has no influence onG(a)/GSS.

In reality, the geometry parameterl is more or less ran-
dom. The experiments show that the average half distance
between vertical cracks is about equal to the TBC thickness
h. The valuel = 1.5 h was assumed in[51]. G depends on
l/h as shown inFig. 24. (Note also the convergence of the
curves fora → l.) The casel = h is considered here in de-
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Fig. 23. Energy release rate vs. crack length forl = h. Analogous results
for l = 1.5 h have been calculated in[51].
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Fig. 24. Influence of crack net density parameter (l/h) on energy release
rate curves alteration with crack propagation. The mutual unloading of
vertical cracks leads to decreasing ofG for lower l/h.

tail. Natural randomness ofl creates favorable conditions for
spalling under certain combinations of loading parameters
during cycling.

The peculiarities of theG behavior as revealed by the
numerical simulations are the basis for the following analysis
of TBC failure.

3.7. Delamination conditions

During cyclic laser beam heating, the shrinkage stress in-
creases, and so does the energy release rateG. The numer-
ical results ofFig. 25 were obtained under the assumption
of a stress-free shrinkage strainεS = 0.4% andδ/h = 0.8
for 100 h at 1000◦C (GSS = 209 N/m), as suggested by the
shrinkage evident inFigs. 19 and 20. (This thermal loading
is the same as inTable 1, second line.) The computations
were performed using the following Young’s moduli:E1 =
85 GPa,E2 = 215 GPa,ν1 = 0.177,ν2 = 0.3 [64].

After 100 h at 1000◦C, G stays belowGC in the case of a
graded TBC (Fig. 25b) andG exceedsGC in the non-graded
TBC so that the delamination crack is driven toa/l ≈ 0.1
in Fig. 25a. At higher temperatureTmax and number of cy-
clesN, the value ofG rises as a result of increasing shrink-
age strainεS and depthδ (seeFig. 26). Furthermore,GC
is assumed to be reduced from 63 to 37 N/m (cf.Table 1,
1100◦C). If G exceeds the interface toughnessGC, unsta-
ble delamination sets in and proceeds to the position indi-
cated by the solid arrow inFig. 26at least. Under continu-
ing cyclic heating,G increases further and the delamination
crack is pushed along in stable propagation as indicated by
the dashed arrow. In this way, a delamination crack length of
a/l ≈ 0.65 is reached for the assumed values ofεS = 0.5%
andδ/h = 0.9. (Note that the mode mixity angleψ∗ for the
delamination crack inFig. 23 was calculated in[51]. The
dependenceGC(ψ∗) was discussed briefly in[51]).

The described model can explain the delamination crack
propagation with increasingεS and δ due to progressive
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sintering. However, it is not quite obvious how spalling is
brought about in the case of vertical cracks which do not
close under heating. The energy release rate decreases with
the approach of two adjacent delamination cracks so that
delamination stops (Fig. 26). As a clue to the possible mech-
anism, spalling is observed during the heating stage of the
cycle only (compare overheating inFig. 16). These obser-
vations suggest that bending of the unilaterally attached flap
due to transient heating may be the cause of final detach-
ment. Based on this idea, a new model of spalling fracture
is developed in[65].

4. Conclusions

The fracture mechanics analysis of cracks in functionally
graded materials leads to the following results.

A graded interlayer does not necessarily lead to a re-
duction of the stress intensity factor. The weight function
method can be applied to analyze the rising crack growth
resistance in graded materials and calculate residual stresses
after cooling from the process temperature.

A fracture mechanics analysis of the performance of
graded and non-graded TBCs was carried out taking into
account the multistage character of the TBC failure process.
TBC damage resistance was tested by means of cyclic sur-
face heating using laser irradiation. In this way, the influence
of aging and grading on the performance of TBCs could
be quantified. The observed sequence of TBC damage in-
volved several stages: vertical cracking→ delamination→
blistering→ spalling.

The fracture mechanics models proposed are aimed at
explaining the essential feature of the damage map in
Fig. 18, which is the downward slope of the critical dam-
age curve. This slope is brought about by both the increase
of shrinkage stress and the decrease of interface fracture
toughness. Accordingly, the principle of graded TBC op-
timization is reduced to keepingG below GC as well as
possible.

An increase of interface fracture toughnessGC due to
grading and a decrease due to aging was measured in a
four-point bending test modified by a stiffening layer. The
results of finite element modeling of the laser-induced TBC
delamination process are compatible with the experimental
data. Correlation with the damage observed in cyclic heating
is discussed. It is explained in which way grading may occur
to reduce the damage.
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