
Crafting Efficient Neural Graph of Large Entropy

Minjing Dong1 , Hanting Chen2,3∗ , Yunhe Wang3 and Chang Xu1

1School of Computer Science, Faculty of Engineering, University of Sydney, Australia
2Key Laboratory of Machine Perception (Ministry of Education), Peking University, China

3Huawei Noah’s Ark Lab

mdon0736@uni.sydney.edu.au, htchen@pku.edu.cn, yunhe.wang@huawei.com, c.xu@sydney.edu.au

Abstract

Network pruning is widely applied to deep CNN
models due to their heavy computation costs and
achieves high performance by keeping important
weights while removing the redundancy. Pruning
redundant weights directly may hurt global infor-
mation flow, which suggests that an efficient sparse
network should take graph properties into account.
Thus, instead of paying more attention to preserv-
ing important weight, we focus on the pruned ar-
chitecture itself. We propose to use graph entropy
as the measurement, which shows useful properties
to craft high-quality neural graphs and enables us to
propose efficient algorithm to construct them as the
initial network architecture. Our algorithm can be
easily implemented and deployed to different pop-
ular CNN models and achieve better trade-offs.

1 Introduction

The success of Convolutional Neural Networks (CNNs)
comes with massive parameters computation and storage. A
wide variety of models with deeper architecture have been
exploited in recent years and have achieved state-of-the-art
performance in many computer vision applications, such as
image classification and object detection. [Simonyan and Zis-
serman, 2014; He et al., 2016; Huang et al., 2016] How-
ever, due to the high computation costs and run-time mem-
ory, those deep networks cannot be directly deployed to some
resource constrained platforms, such as mobile devices and
embedded sensors, which has great application potential.

Thus, reducing the storage and computation usage of deep
CNN models has received increasing attention [Hassibi and
Stork, 1993]. Recently, some compression algorithms have
been further explored to achieve satisfactory performance in
deeper and large-scale CNN model compression [Zhou et al.,
2016; Yang et al., 2016; Luo et al., 2017; You et al., 2017;
He et al., 2017; Yu et al., 2017; Wu et al., 2018; Bansal et al.,
2018]. By pruning the neurons or channels, the network can
be more sparse and efficiency of networks can be improved.
[Han et al., 2015] proposes to prune the neural connections

∗This work was done when Hanting Chen worked as an intern at
Huawei Noah’s Ark Lab

Figure 1: Toy neural graphs construction using random algorithm
and regular algorithm. The left graph is constructed by choosing the
vertices on other side uniformly and independently at random, while
the right one controls the regularity instead of random construction.
It is obvious that random algorithm might block data flow due to its
uncertainty, which regular algorithm can avoid.

with small weights. [Li et al., 2016] proposes to prune the
channels with small weights and then fine-tune the network.
[Yang et al., 2016] proposes a pruning algorithm by mini-
mizing the error in the output features. [Luo et al., 2017]

prunes the channels according to the feature reconstruction
error. [Yu et al., 2017] propagates the feature ranking on the
final response layer to obtain neuron importance scores. [Liu
et al., 2017] proposed to make use of the scaling factors in
Batch normalization [Ioffe and Szegedy, 2015] for pruning
channels. [Zhang et al., 2018] formulates pruning as a con-
strained nonconvex optimization problem.

Typical network pruning techniques focus on keeping im-
portant weights and fine-tune pruned models. However, re-
cent works argue that the pruned architecture itself con-
tributes to the final efficiency [Liu et al., 2018]. Getting lost
in manipulating individual neurons or channels, we could ig-
nore the big picture of the neural network. To illustrate, we
constructed two toy networks of 2 layers with same number
of connections under different algorithms. The random algo-
rithm is constructed by randomly selecting the neural connec-
tions in the neural graph, whereas the regular algorithm ran-
domly selects the neural connections under the constraint of
regularity. For example, poor regularity may block data flows
and hinder neurons or channels from getting involved in the
network, as shown in Figure 1a, which is generated by ran-
dom algorithm. It is therefore necessary to have a thorough

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

2244

investigation on the characteristics displayed by the neural
network as a whole (see Figure 1b), which forces all the ver-
tices on the same side have similar degrees.

In this paper, we propose to craft efficient deep neural net-
work through a graph lens. Structural complexity reveals
the way in which vertices and edges are arranged in the
graph, providing a significant influence on the graph function
and performance. Graph entropy offers an attractive route
to such complexity measures. To increase the capacity of
the pruned network under a particular network sparsity, we
maximize graph entropy of the network by optimizing the
arrangements of neurons and connections. We identify im-
portant weights from the pre-trained over-parameterized net-
work, and use them in preference to others in crafting our ef-
ficient neural network. Based on the resulting sparse network
architecture, we train the network parameters from scratch
rather than adapting their original weights. The proposed al-
gorithm can be easily deployed to many popular network ar-
chitectures, such as ResNet [He et al., 2016], VGG networks
[Simonyan and Zisserman, 2014] and DenseNet [Huang et
al., 2016]. Experimental results on ImageNet and CIFAR
datasets [Krizhevsky, 2009; Deng et al., 2009] demonstrate
that deep neural networks can be well compressed by investi-
gating graph entropy while preserving the accuracy.

2 Methodology

Pruning neural networks is to compresses networks by delet-
ing neurons or neuron connections from a trained model,
which has been paid more attention to in recent years. How-
ever, most pruning techniques only involve local operations
and do not take whole network proprieties into consideration,
which may block information flows from layer to layer. In
contrast, we take neural network architecture as a graph, and
construct sparse graphs with a global viewpoint to initialize
the network architecture before the training phase. To en-
courage better information flow in the network, we employ
Von Neumann Entropy as a measurement to assess the qual-
ities of graphs, which leads to a favorable tradeoff between
accuracy and sparsity of the neural network.

2.1 Von Neumann Entropy

Von Neumann Entropy is an extension of the Gibbs entropy
to the quantum field, which can be treated as a quantita-
tive measure of mixedness of density matrices [Braunstein
et al., 2004]. Recently, considering its capability of describ-
ing spectral complexity, centrality, and entanglement of the
graph, Von Neumann Entropy has been further explored to
evaluate graph entropy in various graph pattern recognition
and analysis applications. The definition of Von Neumann
Entropy is given as

S(ρ) = −tr(ρ ln ρ), (1)

where tr denotes the trace of matrix and ρ is the density ma-
trix. ρ could be a Laplacian matrix LG scaled by degree sum
of graph G, i.e. ρ = 1

dG
LG. Given λi as the i-th eigenvalue

of density matrix ρ, Von Neumann Entropy can be re-written

Figure 2: Neural graphs construction using greedy algorithm. Given
the same number of edges, the left graph is the one with minimum
entropy and the right one with maximum entropy. We can see that
a graph with more fully-connected clusters tends to have small en-
tropy and a well-balanced one tends to have large entropy.

in terms of spectrum of ρ as

S(ρ) = −
n∑

i=1

λi lnλi. (2)

The Shannon entropy computes the uncertainty of global
spectral parameters of graph, involving all the eigenvalues,
which makes it a useful and general measurement. Here we
pay more attention to properties of Von Neumann Entropy.

To illustrate, we first constructed two toy graphs with the
minimum and maximum entropy using greedy algorithm to
explore its properties, as shown in Figure 2. We observed that
given a fixed number of edges, if there are more connected
clusters that are disjoint unions of highly fully-connected sub-
graph, the graph will have a smaller entropy. This is consis-
tent with the results in [Passerini and Severini, 2008]. The
entropy of the graph in Figure 2 (a) is 2.554. Almost half
of connections from the first layer to bottom layer have been
blocked and several vertices are deactivated due to the min-
imum entropy construction. On the contrary, a “balanced”
graph that has a higher regularity tends to have a larger en-
tropy. A more rigorous proof will be given later. For exam-
ple, we plot a graph that is constructed with the maximum en-
tropy given 50 edges in Figure 2 (b) whose entropy is 2.875.
All vertices on the same layer have similar degree, which pro-
duces a balanced graph and results in better connections and
data flows. If a graph is more balanced, every neuron would
be more active in contributing to the entire neural network,
which results in a better network performance.

An efficient deep neural network is expected to have a bet-
ter inner connection for data flows and high-sparsity for effi-
cient compression, a graph of large entropy exactly tickes all
the boxes. Consider the neural graph G = (V,E), where V
is the set of vertices with size n and E is the set of edges with
size m. We can use greedy algorithm to maximize the en-
tropy of graph. We simply compute graph entropy increment
by adding all the possible edges and select the one which con-
tributes the maximum increment. Algorithm 1 shows the de-
tails of it. After the neural graph construction, a network can
be easily crafted from the graph.

For a linear layer, it can easily built by treating vertices
as neurons and edges as neuron connections. For a convolu-

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

2245

Algorithm 1 Neural graph generation with greedy algorithm

Input: number of total edges m, number of edges to select
m′

Output: graph G with size of m′

Initialize graph G = []
Initialize edges E with size m, which are edges of com-
plete neural graph (fully connected)
repeat
Entropymax = 0
for i = 0 To i = |E| − 1 do
Entropy(G ∪ Ei) = EntropyofG ∪ Ei

if Entropymax < Entropy(G ∪ Ei) then
Emax = Ei

Entropymax = Entropy(G ∪ Ei)
else

Continue
end if

end for
Add edge Emax to G

until |G| is m′

tional layer, it can be built by a similar way where we treat
vertices as channels and edges as filters. The number of con-
nections or size of filters depends on hyper parameter m′,
which is the number of selected edges in Algorithm 1.

However, greedy algorithm often takes lots of time to craft
graphs. To select an edge added to graph, we need to compute
the Entropy increment for all the possible edges with size m
and computation of Von Neumann Entropy takes O(n3), so
each step in greedy algorithm takes O(mn3) and the total
complexity becomes O(m2n3). Thus, we tried making use
of properties of graph entropy to reduce the complexity.

2.2 Regularity of the Graph

In graph theory, a graph is taken as regular, if its vertices have
the same degree or valency. “Regularity” thus describes the
extent of the graph to be regular, and can be computed as

R = −std(d), (3)

where std denotes the standard deviation and d denotes the
degrees of all vertices in the graph.

We found that regularity has a strong connection to Von
Neumann Entropy. By approximating Von Neumann Entropy
using quadratic entropy [Lin and Zhou, 2018], we have

S(ρ) ≈ tr(ρ(In − ρ)), (4)

where In is an identity matrix. Recall ρ = 1

dG
LG and the

degree sum of graph dG = 2m. Eq. 4 can be rewritten as

S(ρ) ≈ tr(
LG

2m
(In −

LG

2m
))

=
1

2m
tr(LG)−

1

4m2
tr(L2

G).

(5)

Based on the properties of Laplacian matrix that LG is sym-
metric and the trace of it is equal to 2m, entropy approxima-
tion can be rewritten in a form of degree, computed as

S(ρ) ≈ 1−
1

2m
−

1

4m2

∑

v∈V

d2v, (6)

Algorithm 2 Random regular neural graph generation

Input, output and Initialization are same with Algorithm 1
Initialize D with the size of n to record the degrees
repeat

For edge [a, b] in E, compute the squared sum of degree
dS = (da + 1)2 + (db + 1)2

Find the edges with minimum dSmin from E, marked
as E′

Randomly select one edge [u, v] from E′

Add edge [u, v] to G
Update Du and Dv in D

until |G| is m′

where dv denotes the degree of vertex v. Given an edge (a, b)
between vertices a and b, the increment in entropy of adding
this edge to graph can be computed as

S(ρ(G ∪ (a, b)))− S(ρ(G)) ≈

1

2m
+

1

4m2

∑

v∈V

d2v −
1

2(m+ 1)

−
1

4(m+ 1)2
(
∑

v 6=a,b

d2v + (da + 1)2 + (db + 1)2).

(7)

From Eq. 7, it is obvious that the increment of entropy de-
pends on da and db. Graph G can obtain more increment in
entropy if vertices a and b have smaller degrees. We reduce
the cost of searching, by simply choosing the vertices pair
with smallest squared sum of degrees in each step, instead of
computing the entropy increment of adding all the possible
edges, which reduces computation complexity to O(m2). Al-
gorithm 2 shows the details of our regular construction. The
complexity can be further reduced by exploring the vertex
degree boundaries. The objective is to minimize the squared
sum of degrees and we can derive a lower bound by making
use of inequality as

(da + 1)2 + (db + 1)2 ≥
(da + db + 2)2

2
(8)

From Eq. 8, we obtain a sub-optimal solution by directly
minimizing the lower bound da + db, which can be used to
further decrease the complexity based on Proposition 1.

Proposition 1. The degrees of all vertices are in range
[⌊ 2m

|V |⌋, ⌈
2m
|V |⌉].

Proof. To prove it by contradiction, we assume the opposite.
(a) If there exists a vertex X has degree of ⌈ 2m

n
⌉+1, all other

vertices have minimum degree of ⌈ 2m
n
⌉ or X cannot be se-

lected. And the sum degree of graph will be 2m + 1, which
conflicts with the definition of graph. (b) If there exists a
vertex X has degree of ⌊ 2m

n
⌋ − 1, X has not been assigned

to an edge added to the graph in the final step, which con-
flicts with the principle that we choose the vertices pair with
smallest degrees. Thus all the degrees of vertices are in range
[2m

n
− 1, 2m

n
].

Based on proposition 1, high regularity is the property our
target graph must have and we simply adopt random algo-
rithm to generate a graph with high regularity by randomly

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

2246

Figure 3: An illustration of our algorithm. Dotted lines denotes the complete neural graph and full ones denotes the edges added to the final
sparse graph. With importance weights, we add edges with maximum importance scores one by one to the graph. Meanwhile, we force the
regularity of graph. For example, the edges with red values are the ones with top importance scores in the layer, however, those added to
graph sometimes are not exactly these edges due to the regularity.

Algorithm 3 Regular neural graph generation with impor-
tance weights

Input, output and Initialization are same with Algorithm 1
Additional Input: importance scores S
Sort S in descending order
Sort E according to S
repeat

Select edge [u, v] from E in order
if degree(u) < Umaxd

and degree(v) < Vmaxd
then

Add edge [u, v] to G
else

Continue
end if

until |G| is m′

adding edges to graph while restricting degree upper bound-
ary of all the vertices, which reduces computation complexity
to O(m). In terms of models which contains massive lay-
ers and neural connections, we can simply divide the entire
network into several subnetworks, which further reduces the
complexity of construction.

2.3 Importance Weight

Although we reduce the construction complexity, the output
graph is not fixed due to the random algorithm which ran-
domly select the edge with minimum squared sum of degrees
because there is no criterion for selection when the graph ex-
ists multiple vertices pairs with minimum sum, which makes
the performance unstable, shown in Algorithm 2. Thus, we
introduce importance weights which can be easily obtained
to tackle this problem by giving the selection criterion.

Importance Estimation By Gradient

The role of importance estimation is illustrated in Figure 3.
Given the network N and input x, the output of network is
N(x; θ), where θ denotes weight parameters of network. The
neuron connections (for FC layer) or filters (for CNN layer)
may have different levels of importance according to the sen-
sitivities of output to the infinitesimal changes on them. The

output difference under perturbation can be estimated by sim-
ply computing the gradients of them as

N(x; θ + ǫ)−N(x; θ) ≈
k∑ ∂(N(x; θ))

∂θi
ǫi, (9)

where ǫ is the perturbation on weight parameters and k is
the number of parameters in the network. From Eq. 9, the
sensitivity depends on the gradients of learned network with
respect to the weight parameters on input x. Thus, we can
obtain estimated importance weights by computing their gra-
dients as

S(θ) =
1

M

M∑ ∂(N(xi; θ))

∂θ
, (10)

where M is the number of examples from dataset. From Eq.
10, importance weights can be computed by M times back-
wards on a pre-trained model and selected dataset, which as-
sists our initial sparse network to pay more attention to these
connections with more important data flows.

Algorithm 3 shows the details of our proposed algorithm.
With importance weights, we can construct the entire neu-
ral graph with high regularity by adding edges one by one
according to their importance levels instead of random selec-
tion algorithm, shown in Figure 3. Thus importance weights
guarantee that edges which tend to have important data flow
will be added to the graph, which makes the generated net-
work adaptive to the specific dataset so that our network has
more stable performance and gains better trade-offs.

Our final algorithm, regular algorithm with importance
weights (RAIW) has taken both graph entropy and impor-
tance weights into consideration, which improves the effi-
ciency due to graph entropy and guarantees the stability due
to importance weights. The entire process of crafting neural
graphs is shown in Figure 3. The edges with high importance
will be added to our neural graph if it does not destroy the
regularity of graph. For example, the edge with the top im-
portance weights 0.01 cannot be added to our neural graph
because it connects those vertices with higher degrees, thus
the edge with value of 0.005 is added instead, shown in the
final step in Figure 3.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

2247

3 Experiments

To evaluate the efficiency of our algorithms, we apply our
RAIW algorithm to generate neural graphs based on differ-
ent popular CNN architectures, such as VGG, Resnet and
Densenet. For comparison, we repeat the experiments on dif-
ferent datasets, such as CIFAR10, CIFAR100 and Imagenet,
with these architectures under various layer settings and com-
pare them with pruning techniques or the original models to
demonstrate better trade-offs of our algorithm. The stability
and regularity will also be discussed.

3.1 Comparison With Efficient CNN Architectures
And Pruning Algorithms

VGG on CIFAR10

We compare our algorithm against some popular pruning
techniques, [Han et al., 2015; Li et al., 2016; Liu et al., 2017]
[Liu et al., 2017] which achieve good performance among
pruning techniques. To evaluate the performance of RAIW,
we evaluate on CIFAR10 [Krizhevsky, 2009] with VGG-16
architecture. The detailed results are shown in Table 1. Our
algorithm can preserve the accuracy, which has 0.6% drop but
only 1.1M parameters, almost 14X compression rate.

Densenet and Resnet on CIFAR100

To evaluate the robustness of our algorithm, we deploy
RAIW on Densenet and Resnet running on CIFAR100 dataset
[Krizhevsky, 2009]. We sparse these models by crafting con-
volutional layers whose filter size is half of the original one
by controlling the number of selected edges in algorithms.

For Resnet on CIFAR100, we run Resnet with different
number of layers on CIFAR100 dataset. We compare our
algorithm with these base models by comparing the 1-crop
error along with the number of parameters of model, the de-
tails are given in Figure 4 (a). Our algorithm consistently
has a better performance with the similar parameters, com-
paring the two lines in Figure 4 (a). For example, the original
Resnet-56 has 0.86M parameters number with 28.89% error,
however, our RAIW algorithm which has the similar param-
eter number on Resnet-110, has 0.8% error drop.

For Densenet on CIFAR100, we run with Densenet-BC
which contains bottleneck layers and uses Densenet-BC-40-
24, 40-48, 40-60 which have 40 layers and different growth
rates as base models. Again, we show better accuracy-
parameters trade-offs, the details are given in Figure 4 (b).
Similarly, comparing the two lines in Figure 4 (b), the net-
work we crafted using RAIW algorithm can be more effi-
cient. For example, RAIW algorithm has 21.07% error on

Techniques Accuracy Params

Original 94.0% 15.0M
[Li et al., 2016] 93.4% 5.4M

[Liu et al., 2017] 93.8% 2.3M
[Han et al., 2015] 93.3% 1.5M

RAIW 93.4% 1.1M

Table 1: The performance of VGG16 network crafted by RAIW al-
gorithm compared with original VGG16 and pruning techniques on
CIFAR 10 dataset.

Model Accuracy Params

RAIW-Resnet-50 70.4% 13.28M
RAIW-Resnet-101 73.6% 21.08M

Resnet-34 73.3% 21.78M
Resnet-50 75.3% 25.50M

Table 2: The accuracy performance of Resnet crafted by RAIW eval-
uated on Imagenet dataset, compared with original architectures, or-
dered by number of parameters.

Densenet-BC-40-60 with 2.10M parameters while the origi-
nal Densenet-BC-40-48 has 21.37% error with 2.76M param-
eters, which demonstrates the efficiency of our algorithm.

Densenet and Resnet on Imagenet

To further evaluate the efficiency and generality of our algo-
rithm, we also test on Imagenet [Deng et al., 2009] using the
Resnet and Densenet architectures crafted by our algorithm.

For Resnet on Imagenet, we craft Resnet-50 and 101 and
compare them to the original ones with similar parameter
numbers. When the parameters number comes to 21M, our
RAIW algorithm on Resnet-101 can gain a slightly better ac-
curacy than Resnet-34 with less parameters, shown in Table 2
with bold. For Densenet on Imagenet, we craft Densenet-169,
Densenet-201 and compare them to the original ones. For
each Densenet model, RAIW has approximately 3% accu-
racy drop but only 40% parameters of the original one. Thus,
RAIW can obtain better accuracy-parameters trade-offs and
improve the efficiency of popular CNN architectures.

3.2 Stability Of Model

To evaluate the stability of models under constructions of dif-
ferent algorithms, we repeat the experiments on CIFAR10
with VGG16 architecture. For each algorithm, we repeat 5
times and compare their mean accuracy and standard devia-
tion. We compare the regular algorithm 2 with RAIW 3 to
demonstrate the role of importance weights.

The results are shown in Table 3, the random regular al-
gorithm tends to have large variation on the accuracy due to
the random initial construction. Although they force graphs
to be regular to different extents, there still exists high uncer-
tainty because different connection distributions always have
different performance, which results in relatively high stan-
dard deviation, shown in the first row with 0.17. In contrast,
our RAIW algorithm has relatively high mean accuracy and
low standard deviation with 92.85 ± 0.12 (shown in the last
row) because once the importance weights are computed, the
neural graph is fixed, which makes the performance more sta-
ble and the graph can be stored for multiple-times use, which

ALGO R1% R2% R3% R4% R5% Average

Regular 92.69 92.66 92.97 92.70 93.06 92.82±0.17

RAIW 92.97 92.77 93.00 92.82 92.69 92.85±0.12

Table 3: VGG16 model under construction of regular algorithm
and the one with importance weight over 5 runnings on CIFAR10
dataset. The final column “Average” denotes the mean accuracy ±

standard deviation.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

2248

Figure 4: Trade-offs between number of parameters and error shown in (a) and (b). The orange lines denote error-parameters number trade-
offs of our algorithm and the blue ones denote the original architecture. The two-line numbers on each data point in (a) denote the number of
layers in ResNet on the first line and the corresponding error on the second line. Those in (b) denote the number of layers in DenseNet with
its growth rate on the first line and the corresponding error on the second line. We show the performance of our algorithm applied to Resnet
on CIFAR100 in (a), Densenet on CIFAR100 in (b). (c) illustrates entropy variation of 256*256 and 512*512 layers construction with degree
of 16. From the line chart, regular algorithm can guarantee much faster entropy increment compared with random algorithm.

VGG16 Original VGG d-32 VGG d-16 VGG d-8 VGG

Conv1 3x64x3x3 3x64x3x3 3x64x3x3 3x64x3x3
Conv2 64x64x3x3 64x64x3x3 64x64x3x3 64x64x3x3
Conv3 64x128x3x3 64x128x3x3 64x128x3x3 64x128x3x3
Conv4 128x128x3x3 128x64x3x3 128x64x3x3 128x32x3x3
Conv5 128x256x3x3 128x32x3x3 128x16x3x3 128x8x3x3
Conv6 256x256x3x3 256x32x3x3 256x16x3x3 256x8x3x3
Conv7 256x256x3x3 256x32x3x3 256x16x3x3 256x8x3x3
Conv8 256x512x3x3 256x32x3x3 256x16x3x3 256x8x3x3
Conv9 512x512x3x3 512x32x3x3 512x16x3x3 512x8x3x3

Conv10 512x512x3x3 512x32x3x3 512x16x3x3 512x8x3x3
Conv11 512x512x3x3 512x32x3x3 512x16x3x3 512x16x3x3
Conv12 512x512x3x3 512x32x3x3 512x16x3x3 512x16x3x3
Conv13 512x512x3x3 512x32x3x3 512x16x3x3 512x16x3x3

Linear1 512x512 512x128 512x128 512x64
Linear2 512x10 512x10 512x10 512x10

Total 14.98M 1.07M 0.75M 0.55M

Accuracy 93.96% 93.37% 93.06% 91.85%

Table 4: Details of each layer and number of parameters with accu-
racy of VGG16 model under different sparsity.

saves the computation resources. Thus, RAIW algorithm im-
proves the stability of regular algorithm, which makes it eas-
ily deployable.

3.3 Role Of Regularity

Due to regularity, d can be hyper parameters we use to spar-
sify the network, where d denotes the degrees of all the ver-
tices. And accuracy relies heavily on it due to the trade-offs
between sparsity and performance. In this section, we run
VGG16 model on CIFAR10 under different regularity to eval-
uate trade-offs of our algorithms, as shown in Table 4.

We have tried 3 different sparsity, marked as d − 32, d −
16, d − 8, and details of each layer are given in the Table
4. Compared with original VGG16 architecture which gains
93.86% accuracy with 14.98M parameters, our crafted neural
graph d− 32 obtains “14x” compression rate with only 0.6%
accuracy drop. Furthermore, d− 16 with “20x” compression
rate and d − 8 with “27x” compression rate, both have rela-

tively small accuracy drop.
The reason why our constructed architecture allows high

sparsity is that our algorithm increment on graph entropy is
much faster than other ones, as shown in Figure 4 (c). For the
simplicity, we construct two subnetworks and each of them
contains neural connections of two layers, which are 256∗256
and 512 ∗ 512. The blue and green curves denote the entropy
increment along with the increasing of edge number under
our algorithm 2 while the orange and red ones denote random
one. It is obvious that our algorithm keeps obtaining large
entropy increment during the edge construction. The graph
entropy almost reaches its peak when we select d = 8 where
number of edges are 256 ∗ 8 = 2048 for 256*256 layer and
512∗8 = 4096 for 512*512 layer. We found it interesting that
d = 8 is exactly the sparsity we have selected for d − 8 and
that’s the sparsity where we found the accuracy tends to have
a relatively larger drop. Thus, we believe that the accuracy
is highly related to entropy value. As a result, our algorithm
guarantees maximum increment of entropy so that it can gain
large entropy with less edges, which enables our model to
have high sparsity.

4 Conclusion

Notice the strong connection between nerual networks and
graphs, we tried to improve the efficiency by construct neural
graphs which have better vertices and connections arrange-
ment. Thus, we propose to craft efficient neural networks
based on the properties of graph entropy. We reduce the com-
putation complexity of graph generation to make it deploy-
able and make use of importance weights to guarantee stabil-
ity. Our RAIW algorithm achieves better trade-offs compared
to pruning algorithms and efficient CNN architectures.

Acknowledgements

This work was supported in part by the Australian Research
Council under Project DE180101438.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

2249

References

[Bansal et al., 2018] Nitin Bansal, Xiaohan Chen, and
Zhangyang Wang. Can we gain more from orthogonal-
ity regularizations in training deep networks? In Advances
in Neural Information Processing Systems, pages 4261–
4271, 2018.

[Braunstein et al., 2004] Samuel Braunstein, Sibasish
Ghosh, and Simone Severini. The laplacian of a graph
as a density matrix: A basic combinatorial approach to
separability of mixed states. Annals of Combinatorics, 10,
07 2004.

[Deng et al., 2009] J. Deng, W. Dong, R. Socher, L.-J. Li,
K. Li, and L. Fei-Fei. ImageNet: A Large-Scale Hierar-
chical Image Database. In CVPR09, 2009.

[Han et al., 2015] Song Han, Jeff Pool, John Tran, and
William J. Dally. Learning both weights and connec-
tions for efficient neural networks. CoRR, abs/1506.02626,
2015.

[Hassibi and Stork, 1993] Babak Hassibi and David G.
Stork. Second order derivatives for network pruning: Opti-
mal brain surgeon. In S. J. Hanson, J. D. Cowan, and C. L.
Giles, editors, Advances in Neural Information Processing
Systems 5, pages 164–171. Morgan-Kaufmann, 1993.

[He et al., 2016] Kaiming He, Xiangyu Zhang, Shaoqing
Ren, and Jian Sun. Identity mappings in deep residual
networks. CoRR, abs/1603.05027, 2016.

[He et al., 2017] Yihui He, Xiangyu Zhang, and Jian Sun.
Channel pruning for accelerating very deep neural net-
works. CoRR, abs/1707.06168, 2017.

[Huang et al., 2016] Gao Huang, Zhuang Liu, and Kilian Q.
Weinberger. Densely connected convolutional networks.
CoRR, abs/1608.06993, 2016.

[Ioffe and Szegedy, 2015] Sergey Ioffe and Christian
Szegedy. Batch normalization: Accelerating deep net-
work training by reducing internal covariate shift. CoRR,
abs/1502.03167, 2015.

[Krizhevsky, 2009] Alex Krizhevsky. Learning multiple lay-
ers of features from tiny images. 2009.

[Li et al., 2016] Hao Li, Asim Kadav, Igor Durdanovic,
Hanan Samet, and Hans Peter Graf. Pruning filters for
efficient convnets. CoRR, abs/1608.08710, 2016.

[Lin and Zhou, 2018] Hongying Lin and Bo Zhou. On the
von neumann entropy of a graph. Discrete Applied Math-
ematics, 247:448 – 455, 2018.

[Liu et al., 2017] Zhuang Liu, Jianguo Li, Zhiqiang Shen,
Gao Huang, Shoumeng Yan, and Changshui Zhang.
Learning efficient convolutional networks through net-
work slimming. CoRR, abs/1708.06519, 2017.

[Liu et al., 2018] Zhuang Liu, Mingjie Sun, Tinghui Zhou,
Gao Huang, and Trevor Darrell. Rethinking the value of
network pruning. CoRR, abs/1810.05270, 2018.

[Luo et al., 2017] Jian-Hao Luo, Jianxin Wu, and Weiyao
Lin. Thinet: A filter level pruning method for deep neural
network compression. CoRR, abs/1707.06342, 2017.

[Passerini and Severini, 2008] Filippo Passerini and Simone
Severini. The von neumann entropy of networks. Univer-
sity Library of Munich, Germany, MPRA Paper, 12 2008.

[Simonyan and Zisserman, 2014] Karen Simonyan and An-
drew Zisserman. Very deep convolutional networks for
large-scale image recognition. CoRR, abs/1409.1556,
2014.

[Wu et al., 2018] Junru Wu, Yue Wang, Zhenyu Wu,
Zhangyang Wang, Ashok Veeraraghavan, and Yingyan
Lin. Deep k-means: Re-training and parameter sharing
with harder cluster assignments for compressing deep con-
volutions. CoRR, abs/1806.09228, 2018.

[Yang et al., 2016] Tien-Ju Yang, Yu-Hsin Chen, and Vivi-
enne Sze. Designing energy-efficient convolutional
neural networks using energy-aware pruning. CoRR,
abs/1611.05128, 2016.

[You et al., 2017] Shan You, Chang Xu, Chao Xu, and
Dacheng Tao. Learning from multiple teacher networks. In
Proceedings of the 23rd ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, KDD
’17, pages 1285–1294, New York, NY, USA, 2017. ACM.

[Yu et al., 2017] Ruichi Yu, Ang Li, Chun-Fu Chen, Jui-
Hsin Lai, Vlad I. Morariu, Xintong Han, Mingfei Gao,
Ching-Yung Lin, and Larry S. Davis. NISP: pruning net-
works using neuron importance score propagation. CoRR,
abs/1711.05908, 2017.

[Zhang et al., 2018] Tianyun Zhang, Shaokai Ye, Kaiqi
Zhang, Jian Tang, Wujie Wen, Makan Fardad, and Yanzhi
Wang. A systematic DNN weight pruning framework us-
ing alternating direction method of multipliers. CoRR,
abs/1804.03294, 2018.

[Zhou et al., 2016] Hao Zhou, Jose M. Alvarez, and Fatih
Porikli. Less is more: Towards compact cnns. In Bastian
Leibe, Jiri Matas, Nicu Sebe, and Max Welling, editors,
Computer Vision – ECCV 2016, pages 662–677, Cham,
2016. Springer International Publishing.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

2250

