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Cramér–Rao and Moment-Entropy Inequalities for
Renyi Entropy and Generalized Fisher Information

Erwin Lutwak, Deane Yang, and Gaoyong Zhang

Abstract—The moment-entropy inequality shows that a contin-
uous random variable with given second moment and maximal
Shannon entropy must be Gaussian. Stam’s inequality shows
that a continuous random variable with given Fisher informa-
tion and minimal Shannon entropy must also be Gaussian. The
Cramér–Rao inequality is a direct consequence of these two
inequalities.

In this paper, the inequalities above are extended to Renyi en-
tropy, th moment, and generalized Fisher information. General-
ized Gaussian random densities are introduced and shown to be
the extremal densities for the new inequalities. An extension of the
Cramér–Rao inequality is derived as a consequence of these mo-
ment and Fisher information inequalities.

Index Terms—Entropy, Fisher information, information mea-
sure, information theory, moment, Renyi entropy.

I. INTRODUCTION

THE moment-entropy inequality shows that a continuous
random variable with given second moment and maximal

Shannon entropy must be Gaussian (see, for example, [1, The-
orem 9.6.5]). This follows from the nonnegativity of the relative
entropy of two continuous random variables. In this paper, we
introduce the notion of relative Renyi entropy for two random
variables and show that it is always nonnegative. We identify the
probability distributions that have maximal Renyi entropy with
given th moment and call them generalized Gaussians.

In his proof of the Shannon entropy power inequality, Stam
[2] shows that a continuous random variable with given Fisher
information and minimal Shannon entropy must be Gaussian.
We introduce below a generalized form of Fisher information
associated with Renyi entropy and that is, in some sense, dual
to the th moment. A generalization of Stam’s inequality is es-
tablished. The probability distributions that have maximal Renyi
entropy with given generalized Fisher information are the gen-
eralized Gaussians.

The Cramér–Rao inequality (see, for example, [1, Theorem
12.11.1]) states that the second moment of a continuous random
variable is bounded from below by the reciprocal of its Fisher in-
formation. We use the moment and Fisher information inequal-
ities to establish a generalization of the Cramér–Rao inequality,
where a lower bound is obtained for the th moment of a con-
tinuous random variable in terms of its generalized Fisher in-
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formation. Again, the generalized Gaussians are the extremal
distributions.

Analogues for convex and star bodies of the moment en-
tropy, Fisher information ntropy, and Cramér–Rao inequalities
had been established earlier by the authors [3]–[7]

II. DEFINITIONS

Throughout this paper, unless otherwise indicated, all inte-
grals are with respect to Lebesgue measure over the real line .
All densities are probability densities on .

A. Entropy

The Shannon entropy of a density is defined to be

(1)

provided that the integral above exists. For , the -Renyi
entropy power of a density is defined to be

if
if

(2)

provided that the integral above exists. Observe that

The -Renyi entropy of a density is defined to be

The entropy is continuous in and, by the Hölder in-
equality, decreasing in . It is strictly decreasing, unless is a
uniform density.

B. Relative Entropy

Given two densities , their relative Shannon
entropy or Kullback–Leibler distance [11]–[13] (also, see [1,
p. 231]) is defined by

(3)

provided that the integral above exists. Given and two
densities and , we define the relative –Renyi entropy power
of and as follows. If , then

(4)
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and, if , then

provided in both cases that the right-hand side exists. Define the
-Renyi relative entropy of and by

Observe that is continuous in .

Lemma 1: If and are densities such that , , and
are finite, then

Equality holds if and only if .
Proof: The case is well known (see, for example,

[1, p. 234]). The remaining cases are a direct consequence of the
Hölder inequality. If , then we have

and if , then we have

The equality conditions follow from the equality conditions of
the Hölder inequality.

C. The th Moment

For define th moment of a density to be

(5)

provided that the integral above exists. For define
the th deviation by

if

if
if

(6)

provided in each case that the right side is finite. The deviation
is continuous in and, by the Hölder inequality, strictly

increasing in .

D. The th Fisher Information

Recall that the classical Fisher information [14]–[16] of a
density is given by

provided is absolutely continuous, and the integral exists. If
and , we denote the th Fisher information

of a density by and define it as follows. If ,
let satisfy , and define

(7)

provided that is absolutely continuous, and the norm above
is finite. If , then is defined to be the essen-
tial supremum of on the support of , provided is
absolutely continuous, and the essential supremum is finite. If

, then is defined to be the total variation of
, provided that has bounded variation (see, for example,

[17] for a definition of “bounded variation”).
Note that our definition of generalized Fisher information has

a different normalization than the standard definition. In partic-
ular, the classical Fisher information corresponds to the square
of th Fisher information, as defined above.

The Fisher information is continuous in . For a
given it is, by the Hölder inequality, decreasing in .

E. Generalized Gaussian Densities

Given , let

Let

denote the Gamma function, and let

denote the Beta function.
For each and , we define the corre-

sponding generalized Gaussian density as fol-
lows. If , then is defined by

if
if

(8)

where

if ,

if

if .

If and , then is defined for almost every by

where
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If and , then is defined by

if
if .

For consistency we shall also denote .
For , define by

(9)

Nagy [8] established a family of sharp Gagliardo–Nirenberg
inequalities on and their equality conditions. His results can
be used to prove Theorem 3 and identify the generalized Gaus-
sians as the extremal densities for the inequalities proved in
this paper. Later, Barenblatt [9] showed that the generalized
Gaussians are also the self-similar solutions of the porous
media and fast diffusion equations. Generalized Gaussians are
also the one-dimensional versions of the extremal functions for
sharp Sobolev, log-Sobolev, and Gagliardo–Nirenberg inequal-
ities (see, for example, [10]).

F. Information Measures of Generalized Gaussians

If and , the -Renyi entropy power
of the generalized Gaussian defined by (8) is given by

if

if

If and , then

If and , then

(10)

If and , then the th deviation of
is given by

If and , then

If , then

If and , then the th Fisher
information of the generalized Gaussian is given by

if ,

if .

In particular, observe that if and ,
then

(11)

Observe that if , then

(12)

and if , then

(13)

We will also need the following simple scaling identities:

(14)

and

(15)

III. THE MOMENT INEQUALITY

It is well known that among all probability distributions with
given second moment, the Gaussian is the unique distribution
that maximizes the Shannon entropy. This follows from the
positivity of the relative entropy of a given distribution and
a Gaussian distribution of the same variance. This result is
generalized to th moments in [1, Ch. 11].

We show that a similar inequality for the th moment and
-Renyi entropy follows from the positivity of the -Renyi rela-

tive entropy of a given distribution and the appropriate extremal
distribution with the same th moment.

Theorem 2: Let be a density. If ,
, and , then

(16)

where is given by (8). Equality holds if and only if
for some .

Proof: For convenience, let . Let

(17)

First, consider the case . If , then by (8) and
(9), (5), (17), and (12)

(18)

where equality holds if . For observe that
vanishes outside the interval and therefore by (8), (9),
and (6)

(19)
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It follows that if and , then by Lemma 1, (4),
(18), (19), and (14), as well as (17), we have

(20)

If and , then by Lemma 1, (3), (8), and (9),
as well as (17) and (13), we have

If and , then by Lemma 1, (3), (1), (8), and (9), as
well as (17), (1), and (6)

This gives inequality (16) for .
If and , then from (8) and (6), we have

(21)

Therefore, by (8) as well as (9), (6), (17), and (21)

The inequality for and now follows from (20).
In all cases, Lemma 1 shows that equality holds if and only if

.

A higher dimensional version of Theorem 2 was established
by the authors in [7]. The case of Theorem 2 was also
established independently by Costa, Hero, and Vignat [18].

It is also worth noting that Arikan [19] obtains a moment-
entropy inequality for discrete random variables analogous to
Theorem 2. His inequality, however, is for the limiting case

, where Theorem 2 does not apply.

IV. THE FISHER INFORMATION INEQUALITY

Stam’s inequality [2] shows that among all probability distri-
butions with given Fisher information, the unique distribution
that minimizes Shannon entropy is Gaussian. The following the-
orem extends this fact to -Renyi entropy and th Fisher
information.

Theorem 3: Let , , and
be a density. If , then is assumed to be

absolutely continuous; if , then is assumed to have
bounded variation. If , then

(22)

where is the generalized Gaussian. Equality holds if and only
if there exist and such that ,
for all .

As mentioned earlier, Theorem 3, including its equality
conditions, follows from sharp analytic inequalities estab-
lished by Nagy [8]. Inequality (22) complements the sharp
Gagliardo–Nirenberg inequalities on , with and

, established by Del Pino and Dolbeault
[10] and generalized by Cordero, Nazaret, and Villani [20].
The proof presented here is inspired by the beautiful mass
transportation proof of Cordero et al. Observe, however, that
there is no overlap between their inequalities and ours.

Before giving the proof of this theorem, we need a change of
random variable formula and a lemma on integration by parts.

A. Change of Random Variable

Let be a random variable with density . Let the support
of be contained in an interval . Given an increasing
absolutely continuous function , the random
variable has density , where

for almost every , and , for each .
Therefore, if , then

if

if
(23)

where

(24)

Similarly, if the th moment of is finite, then it is given by

(25)

B. Integration by Parts

Lemma 4: Let and be an
absolutely continuous function such that

(26)

Let be an increasing absolutely continuous
function such that

and the integral
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is absolutely convergent. Then

Proof: It suffices to prove

The same proof works for both limits, so we will show only that
the right limit vanishes.

C. Proof of Theorem 3

Let be a density that is supported on an open interval
for some . Let be such

that is the smallest interval containing the support of .
Define so that for each

Observe that if is a random variable with density , then the
random variable has density .

If and , then by (2) and (23), Hölder’s in-
equality, Lemma 4, Hölder’s inequality again, and (6) and (7),
we have

(27)

where is the Hölder conjugate of .
If and , then by (24), Jensen’s inequality,

Lemma 4, Hölder’s inequality, and (6) and (7), we have

(28)

where is the Hölder conjugate of .
By the equality conditions of the Hölder inequality, equality

holds for (27) and (28), only if there exist for such
that , and satisfies the differential equation

This, in turn, implies that there exist and such
that and , for all . On the
other hand, by (11), equality always holds for (22) if .

If , let be compactly supported on the interval
with , and extend the domain of to the en-

tire real line by setting for all and
for all . Following the same line of rea-

soning as (27), we get

Equality holds if and only if there exist such that
, and is constant on the support of . This

is possible only if , and is a uniform density for the
interval . In other words, , for some .

V. THE CRAMÉR–RAO INEQUALITY

The following theorem generalizes the classical Cramér–Rao
inequality [21], [22] (also, see [1, Theorem 12.11.1]).

Theorem 5: Let , , and
be a density. If , then is assumed to be absolutely
continuous; if , then is assumed to have bounded
variation. If , then

Equality holds if and only if , for some .

The inequality is a direct consequence of (16) and (22).

VI. INEQUALITIES FOR SHANNON AND QUADRATIC ENTROPY

The case and of these theorems give the fol-
lowing.

Corollary 6: If is an absolutely continuous
density with finite Shannon entropy, first moment, and th
Fisher information, then

Equality holds for the first inequality if and only if there exist
and such that

(29)

for all . Equality holds for the second inequality if and
only if there exists such that (29) holds with .
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The cases and give the following inequalities
for quadratic entropy.

Corollary 7: If is an absolutely continuous
density with finite -Renyi entropy, first moment, and th
Fisher information, then

Equality holds for the left inequality if and only if there exist
and such that

(30)

for all . Equality holds for the right inequality if and only
if there exists such that (30) holds with .

Corollary 8: If is an absolutely continuous den-
sity with finite -Renyi entropy, second moment, and th
Fisher information, then

Equality holds for the left inequality if and only if there exist
and such that

(31)

for all . Equality holds for the right inequality if and only
if there exists such that (31) holds with .
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