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Abstract � We are concerned with the problem of track-
ing a single target using multiple sensors. At each stage the
measurement number is uncertain and measurements can
either be target generated or false alarms. The Cramér-
Rao bound gives a lower bound on the performance of any
unbiased estimator of the target state. In this paper we
build on earlier research concerned with calculating Pos-
terior Cramér-Rao bounds for the linear Þltering problem
with measurement origin uncertainty. We derive the Pos-
terior Cramér-Rao bound for the multi-sensor, non-linear
Þltering problem. We show that under certain assumptions
this measurement origin uncertainty again expresses itself
as a constant information reduction factor. Moreover we
discuss how these assumptions can be relaxed, and the com-
plications that occur when they no longer hold. We present
an example concerned with multi-sensor management. We
show that by utilizing the Cramér-Rao bound we are able
to determine the combination of sensors that will enable us
to achieve the most accurate tracking performance. Simu-
lation results, using a probabilistic data association Þlter
conÞrm our predictions.

Keywords: Cramér-Rao lower bound, Fisher Information
Matrix, non-linear Þltering, data association, resource man-
agement.

1 Introduction
The Cramér-Rao bound (CRLB) is deÞned to be the inverse
of the Fisher Information Matrix (e.g. see [13]) and pro-
vides a lower bound on the performance of any unbiased
estimator of an unknown parameter vector. This provides
a powerful tool that, within the context of target tracking,
has been used to assess the performance of unbiased esti-
mators of track parameters (for deterministic target motion:
see [3] and [4]). In the case of dynamic and uncertain target
motion the Posterior Cramér-Rao Lower Bound (PCRLB)
has been used to determine performance bounds for recur-
sive Bayesian estimators of the uncertain target state (for
example, see [10] and [11]).
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Moreover, recently the use of CRLBs has been proposed for
both system design ([6]) and dynamic, online sensor man-
agement ([2] and [8]). The general approach is to minimize
the root mean square estimator error(s), determined from
the Fisher Information Matrix, by controlling the acquisi-
tion process itself. This technique has been used to both
determine optimal observer manoeuvres for bearings-only
tracking [8] and determine optimal schedules and conÞgu-
rations for the deployment of passive sonobuoys in subma-
rine tracking [2].

We are concerned with calculating PCRLBs for the gen-
eral problem of tracking a single target when there is mea-
surement origin uncertainty. The target motion is dynamic
and a potentially non-linear function of the target state.
Each sensor can generate measurements at discrete time
epochs. At each stage the measurement number is uncer-
tain and measurements can either be target generated or
false alarms. A target generated measurement can also be a
non-linear function of the target state (e.g. as in the case of
azimuth and range measurements).

Previously [3] and [4] observed the surprising result
that in calculating CRLBs for parameter estimation the
Fisher Information Matrix with measurement uncertainty
was equal to the Fisher Information Matrix without mea-
surement uncertainty multiplied by a constant information
reduction factor. [7] then provide a general framework giv-
ing sufÞcient conditions for this to be true. In particular, [7]
showed that if target generated measurements have a sym-
metric distribution around the true measurement, and false
alarms have a uniform distribution, then the measurement
uncertainty can be expressed as a constant information re-
duction factor.

Determining PCRLBs represents an even more challeng-
ing problem. The reason is that in this case, in calculat-
ing the Fisher Information Matrix it is necessary to con-
sider both the effect of measurement uncertainty, as well
as uncertainty in the random target state. The excellent pa-
per [12] provides a Riccati-like recursion that allows one
to sequentially determine the PCRLBs for target state es-
timation for the non-linear Þltering problem. This frame-

18



work has been utilized by [11] to calculate the PCRLBs for
bearings-only tracking with no measurement origin uncer-
tainty. However, of greater relevance to the current research
[14] provide a general analysis of the problem of calculat-
ing PCRLBs with measurement uncertainty, but with target
generated measurements that are linear functions of the tar-
get state.
We introduce a general framework for determining

PCRLBs that allows a marriage of non-linear measure-
ments (unlike [14]), and uncertain dynamics (unlike [7]).
We show that using the same assumptions as [7] and [14]
the measurement uncertainty again expresses itself as a con-
stant information reduction factor. This ensures that calcu-
lating the PCRLBs is relatively straightforward and compu-
tationally inexpensive, making a PCRLB analysis suitable
for real-time, online sensor management, the like of which
is considered in [2].

2 The Cramér-Rao Lower Bound
2.1 Background
Let ����� be an unbiased estimator of a parameter vector �,
based on the measurement vector �. Then the CRLB for
the error covariance matrix is deÞned to be the inverse of
the Fisher Information Matrix, � , i.e.

�� � �

�
���� �� ���� ���

�
� ���� (1)

The inequality in equation (1) means that the difference
�� � ��� is a positive semi-deÞnite matrix. If � is an un-
known and random parameter vector, we seek the PCRLB,
and � is given by

��� � �

�
�
�� ��	 ���� ��

������

�
� (2)

where ���� �� is the joint probability density function of
��� ��, and the expectation � ��� is with respect to both �
and �.

2.2 PCRLBs For Target State Estimation
Throughout this paper we will consider the following dy-
namic system.

	��� � 
��	�� 
 �� � (3)

where 	� is the target state at time �, 
���� is a (po-
tentially) non-linear function of 	�, and ���� is a white
noise sequence. Measurements are available at discrete
time epochs, we denote this measurement sequence by

�������� � (4)

and will be detailed fully in the next section. We seek
the PCRLB for unbiased estimators �	������� of the tar-
get state, 	�, given the available sensor measurements,
���� � ����� � � � � ����.

Until recently, calculating PCRLBs for this problem has
proved notoriously difÞcult. However Tichavsky et al. [12]
provide the following Riccati like recursion giving the se-
quence of posterior Fisher information matrices, ��, � � �,
for the unbiased estimation of	�.
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 is a second-order partial derivative operator whose
��� ��th term is given by

�
�
	

�
��

�
��

������
� (12)

Calculation of���
� ,�

��
� and���

� is (generally) straightfor-
ward. Indeed if 
��	�� is linear, i.e. 
��	�� � ��	�

and �� is Gaussian with zero mean and variance �� it can
easily be shown that (see also Ristic et al. [11])
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���
� � ���� � (15)

In this case if we apply the Matrix Inversion lemma to equa-
tion (5), using equations (13), (14) and (15) then
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 ���� 
 ��� (16)

The initial Fisher Information Matrix is given by

�� � �

�
���

��
��	 ��	��

�
� (17)

Section 4 is devoted to the calculation of the matrix �����
for a scenario with multiple sensors, each with independent
(non-linear) measurement processes. Each sensor can have
multiple false alarms, and we are tracking a single target
that is moving with variable dynamics.
In calculating ����� the expectation in equation (11)

is both over the state, 	���, and the measurement, ���

making it difÞcult to calculate. We show that under cer-
tain assumptions this expectation can be decomposed and a
constant information reduction factor gives the effect of the
measurement uncertainty.
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3 Problem SpeciÞcation
3.1 Multiple Independent Sensors
We consider � � � sensors, and let  ������ be the mea-
surement vector at sensor �. We will assume that the sen-
sors have independent measurement processes. Hence in
the presence of false alarms, the total number of measure-
ments can vary between sensors at each time epoch, �. Let
�

���
� be the total number of measurements at sensor � at

time �, i.e.

������ � ��������



���
�

��� � (18)

where ������ is the �th measurement at sensor � at time �.
The measurement process independence gives us
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where ��� � �������� � � � � ������� and �� �

��
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���
� �. Now, the multi-sensor generalization of

Zhang and Willett [14] equation (22) is
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It is clear from equation (19) that
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Hence, using both the independence of the measurement
processes at each sensor, and equation (22), we get
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3.2 Measurement Model
Now, let us consider the measurements at one of the� sen-
sors (i.e. at sensor �). We use the false alarm model spec-
iÞed in Zhang and Willett [14] (see also [7]). The num-
ber of false alarms has a Poisson distribution with mean
�� . Hence at each stage there are �� measurements (for

brevity, the index ��� is omitted), and two possibilities, ei-
ther all �� measurements are false alarms, or there is one
true observation of the target and�� � � false alarms.
Now, it is easy to show that the prior probability, �����

that there are�� � �� �� � � � observations at time � is given
by

����� � ��� ��
��� �
� ��� ���� �
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where � is the probability of detecting the target. The
probability that one measurement is target generated is then
given by
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It can then be shown that the PDF of the measurement
������, given �	����� is given by
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where �� is the PDF of a true detection (typicallyGaussian),
and to remind the reader, ������ is given by equation (18).
�� is the false alarm PDF. We assume (assumption A1) that
false alarms have a uniform distribution across the region,
�, (with hyper-volume, � ) under observation, i.e.

���������� �
�

�
� for ������ 	 �� (28)

Equation (27) then becomes
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������ can encompass measurements of ��� �� different
types (e.g. azimuth and range). Therefore we let

������ �
�
�������� � � � � �

�
�����

��
� (30)

for � � �� � � � ���. We will assume that for each target
generated measurement, ������,

������ � ���	�� �� 
  �� � (31)

The measurement error,  �� , is assumed (assumption A2)
to be a zero mean Gaussian random variable with � � �
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covariance matrix, ! � "�
#�$�
� � � � � � $

�
��. Hence we can

write

���������� �
�
���

%�
�
�������� ��� �	��

�
� (32)

where � �� �	�� is the component of ���	�� �� relating to the
&th measurement type (c.f. equation (31)). % � is the PDF
of the Gaussian distribution with zero mean and standard
deviation $�.

4 Determining ����
4.1 General Expression
���������	����� is given by equations (29) and (32).
Hence
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where, for ( � �� � � � � �
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Now, it can easily be shown that
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for any PDF ����. Hence if we use equations (36) and (33)
we obtain equation (44). If we use the partition theorem for
expectations then�
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�
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(37)

� �

�
�

�
�
�� ��	 ���������	�����

�	�
�	

�
�

					����

��
�

where ����� is the �
� )�th element of � ������ ��. �����
then follows from equation (24).
In general, both the inner expectation of equation (37)

(given by equation (44)), and the outer expectation (with
respect to 	�) are difÞcult to calculate. However in the
next section we will show howmaking a simple assumption
allows the problem to be simpliÞed dramatically.

4.2 SimpliÞcation
As argued by Niu et al. [7] �far out� measurements will be
accorded a small weight when a reasonable data association
algorithm is used. Hence we can restrict our measurements
to a validation gate (see Bar-Shalom and Li, [1]), i.e.

��������� ��� �	��� * #$�� (38)

for � � �� � � � ��� and & � �� � � � � �. Now, in general
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�
�� � (39)

where ���� is a Jacobian term that accounts for the depen-
dency between the � different measurement dimensions.
Now, if we make a Þnal assumption (assumption A3) we

can simplify the expression for ����� to the point where we
are able to decouple the effects of the measurement uncer-
tainty and the target state uncertainty. This assumption is
that the � measurement dimensions, ��������� � � � � �

�
������

are independent/orthogonal. This ensures that ���� � �
and the gated observation region is then independent of the
state 	�.
Clearly, %��+�, & � �� � � � � � are even symmetric func-

tions. Hence'��%�'���%� is an odd symmetric function of
������ for ( 
� (�. It then follows from assumption (A3)
that ���� � �. Hence integrating an odd symmetric func-
tion over an even symmetric range (given by equation (38))
we have �

������
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�
�����

(40)
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if ( 
� (� and � 
� ��. Hence of the ��� � ��� terms in
the integrand of equation (44) all but ��� of them are zero.
Hence the integrand of (44) reduces to
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The �������s are independent and identically distributed.
Therefore the integrand can be further reduced to
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giving us equation (45).
Now, let
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(43)
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Equation (45) then becomes
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To proceed, %���+�, is given by

%���+� � �
+

$��
%��+�� for all +� (49)

Therefore
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The gating (c.f. equation (38)) ensures that the observation
volume of each measurement � ������, is symmetric about
��� �	��. Hence if we make the change of variable

����� �
�
���� � ��� �	��

�
� (51)

for � � �� � � � ���, & � �� � � � � � in equation (43) and
substitute equation (50), we obtain equation (46), where
���� � ������ � � � � � ��

�
���. �

� is the mapping of the region, �,
under the transformation(s) given by (51). It follows from
assumption (A3) that �� is given by the hypercube:

�� � ��#$�� #$��� � � �� ��#$�� #$�� � (52)

It is easy to see that,��	����� � ,�����, independent
of 	�, because both the integration region � � and the in-
tegrand are independent of 	�. The (gated) volume of the

�-dimensional hypercube is then

� � �� �

�
���

��#$�� � (53)

Combining equations (47) and (37) it now follows that
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�
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� �	����

�
� (54)

At this stage it is important to note that,���� is a function
of �, � , � and $�, ( � �� � � � � �. Each of these parameters
can be sensor speciÞc, however, if we assume that all sen-
sors have the same values of �,�, � and $�, ( � �� � � � � �,
then

��������� �
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�
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� �	����

��
� (55)

where

.���� �� $� � � � $��

�


���

�����,������ (56)

for ( � �� � � � � �. To remind the reader, ����� is given by
equation (25) and,����� is given by equation (46).

,����� can be determined using the method of Monte
Carlo integration (for example, see [9]). The expectation
� ��� in equation (55) is with respect to the target state,
	� and can be estimated by generating a number, �� ,
of (potential) target trajectories, �	�

� , � � �� �� � � � ; � �
�� � � � � �� , from the systemmodel (3) and averaging across
them:

�
�
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� �	����
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�

�
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4.3 Information Reduction Factor
If we deÞne� � "�
#�.�� � � � � .��, then in matrix notation
we can write

����� �

�

���

�
�
/��	��

��!��/��	��
�
� (58)

where the �
� )�th element of the � � " matrix /��	�� is
given by

/��	���� �
����
�	�

�

� (59)

and to remind the reader, ! � "�
#�$�
� � � � � � $

�
�� is the

covariance matrix of each target generated measurement
������. " gives the dimensionality of the state space.
If there is no measurement uncertainty, (i.e. � � �), and

we are guaranteed a single measurement at each stage, (i.e.
� � �), it is easily shown that (see also [11])

����� �

�

���

�
�
/��	��

�!��/��	��
�
� (60)

Hence� can again be interpreted as a matrix of constant in-
formation reduction factors that scale the effect of the mea-
surement uncertainty.
In the case of bearings-only tracking (i.e. � � �), the

information reduction factor, .� is given in table 1, for dif-
ferent combinations of � and �. In each case the bearing
error standard deviation of a true detection, $ � ��� radi-
ans, and # � � (hence � � ���).

probability, �� ��� �
0.7 0.8 0.9 1.0

0.00 (0.00) 0.7000 0.8000 0.9000 1.0000
0.20 (0.16) 0.5750 0.6867 0.8057 0.9364
0.40 (0.32) 0.5021 0.6128 0.7371 0.8872
0.60 (0.48) 0.4490 0.5568 0.6790 0.8350
0.80 (0.64) 0.4058 0.5097 0.6304 0.7894
1.00 (0.80) 0.3700 0.4696 0.5866 0.7464

Table 1: The value of the information reduction factor,
.���� �� $� � � for bearings-only tracking.

It can be seen from table 1 that .���� decreases as both the
false alarm rate increases and the probability of detecting
the target decreases. Zhang and Willett [14] showed that
the steady-state PCRLB root mean square position errors
increase as .���� decreases. Hence as the false alarm rate in-
creases and the probability of detecting the target decreases
the theoretical bound on the performance of any Þltering
algorithm worsens, as one would expect.
Equation (58) is the generalization of Zhang and Willett

[14] equation (41) to allow for non-linear measurements

and multiple sensors. If we use a single sensor (� � �)
and linear model for target generated measurements, i.e.
���	�� � 0�	�, then /��	�� � 0� and equation (58)
reduces to equation (41) from [14].

4.4 Assumption Relaxation
In the previous analysis we have made the following as-
sumptions:

� A1: false alarms have a uniform distribution,

� A2: target generated measurements are independent
and identically distributed and have a Gaussian distri-
bution around the true measurement,

� A3: the � measurement dimensions are orthogo-
nal/independent.

Assumptions (A1) and (A2) are consistent with [7] whereas
assumption (A3) is the clear distinction between our re-
search and that of [7]. These conditions are sufÞcient (but
not necessary) for the measurement uncertainty to express
itself as a constant information reduction factor.
Assumptions (A2)-(A3) ensure that equation (40) holds,

and this enables us to reduce equation (44) to equation
(45). Crucially (A2)-(A3) also ensure that we can factor
out � �� �	��, & � �� � � � � � from the integral (43) and this al-
lows us to create the decomposition (54) fromwhich we get
the information reduction factor. However it is the fact that
the distribution of target generated measurements is even
symmetric around the true measurement that, together with
assumption (A3), allows these simpliÞcations. Hence as
noted in [7] we can relax (A2) and use any symmetric, zero
mean error distribution.
The effect of assumption (A1) is to reduce equation

(27) to equation (29) and hence reduce the dependency
of ���������	����� on the measurements ������, � �
�� � � � ���. However, again as noted in [7], we can weaken
this assumption, and assume that false alarms also have an
even symmetric distribution around the true measurement.
This will make things notationally even more complicated.
However, in this case an information reduction factor will
still exist. This task is left to the reader.
Assumption (A3) is critical in allowing us to express the

observation region as a hypercube that is independent of the
target state,	�. It is easy to see that with range and bearing
�!� 1� measurements this assumption does not hold. In this
case, with a gate of # standard deviations in each measure-
ment dimension the volume of the gate (at sensor �) is

�� � �#�$�$�

�
��� � ����

� 
 �2� � 2�� �
�� (61)

which is clearly dependent on the target location ��� � 2��.
To take account of this general dependencywe must include
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a Jacobian term ����. In the case of range and bearing
tracking

������ � �
�
��� �

�
��� � ����

� 
 �2� � 2�� �
�� (62)

Depending on the functional form of this Jacobian, we may,
in some instances still be able to factor out the effect of
the measurement uncertainty from the integrand of equa-
tion (44). However in this case any general expression for
the information reduction factor will be even more compli-
cated than before. This task is left for future work.
For speciÞc nonlinear measurement models for which it

is possible, one could use an unbiased conversion such as
that in [5] to circumvent the problem of having a Jacobian
that varies across the gate. However, the focus of this report
is on the general case of nonlinear measurements. Since
relaxing assumption (A3) greatly complicates the analysis,
here we assume that the gate is sufÞciently small with re-
spect to the non-constant nature of the Jacobian that the Ja-
cobian can always be taken to be unity.
We note that if neither assumptions (A1)-(A3), nor the

relaxations discussed above hold, then it is generally not
possible to decouple the measurement uncertainty and the
target state uncertainty. In determining the PCRLBs we
must then determine � ������ ��, for each value of �� by
performingMonte Carlo integration (again, see [9]), simul-
taneously generating samples from the target state space
(at time �) and the � � �� dimensional measurement
space. This is computationally expensive, and in such cases
PCRLBs may not be suitable for implementation in �real-
time� systems.

5 Example: Sensor Management
5.1 Model SpeciÞcation
A nearly constant-velocity (CV) model [1], with power
spectral density, 3 � ��� � ����, prescribes the target dy-
namics. A measurements is available at each sensor every
10 seconds. Measurements are bearings-only:

���	�� � �����

�
2� � 2��
�� � ���

�
� (63)

��� � 2�� is the cartesian position of the target at time epoch
� and ���� � 2

�
� � is the location of the �th sensor at that time.

5.2 Simulation Results
We compare the PCRLBs determined for two sensor con-
Þgurations (see Þgure 1). For each sensor, the bearing er-
ror standard deviation, $ � ����; # � �, � � ���� and
� � ���. We use �� � ��� randomly generated target
trajectories. The initial target state has a Gaussian distri-
bution with mean, ���������4�� ��������4��, and vari-
ance, �	, where �	 is the � � � identity matrix. Distances
are in metres and speeds are in metres per second.

(a)

(b)

Figure 1: PCRLBs for two sensor arrays. The sensor posi-
tions are marked in red. The centre of each PCRLB ellipse
gives the mean target position at each measurement epoch.

BOUND (a)
PDAF (a)
BOUND (b)
PDAF (b)

Figure 2: Probabilistic data association Þlter (PDAF) RM-
SEs compared with the RMSE bounds for the two sensor
arrays given in Þgures 1(a) and 1(b) respectively.

In Þgure 2 we show the largest (of the �, 2 coordinate) root
mean square error (RMSE) bounds, plotted against time, for
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each of the two sensor arrays. The sudden decreases in the
RMSE occur as the target approaches and passes between
the sensors. It is clear that in this particular example the
sensor conÞguration shown in Þgure 1(a) achieves greater
control over the target uncertainty, and should be preferred
(compare the red and blue lines).
A non-parametric PDAF [1] was then applied to data

simulated for the �� � ��� target trajectories. The track
estimate RMSEs were consistent with the PCRLB predic-
tions (again, see Þgure 2). This both adds further weight
to the usefulness of PCRLBs for sensor array management,
and validates the theory developed.

6 Conclusions
We have introduced a general framework for determining
PCRLBs that extends previous work by [7] and [14] by al-
lowing the marriage of non-linear measurements and un-
certain dynamics. We show that under certain assumptions
the measurement uncertainty expresses itself as a constant
information reduction factor.
These assumptions are consistent with [7] and are sufÞ-

cient conditions for the existence of an information reduc-
tion factor. Calculating PCRLBs is then relatively straight-
forward and computationally inexpensive. As a result, they
can be determined and utilized for real-time, online prob-
lems, such as multi-sensor management (see [2]).
However, if the assumptions sufÞcient to produce an in-

formation reduction factor do not hold, in determining the
PCRLB it is generally no longer possible to decouple the
effects of measurement uncertainty and target state uncer-
tainty. In such cases the computational expense in deter-
mining the bound is greatly increased, and Monte Carlo in-
tegration must be performed at each update.
We corroborated the PCRLB with simulation results for

bearings-only tracking of a CV target. We used a prob-
abilistic data association Þlter, and the performance of the
Þlter was consistent with the bound. Moreover, the example
demonstrated how PCRLBs can be used for sensor manage-
ment, by enabling us to determine the sensor combination
that can most effectivelyminimize the root mean square po-
sition errors of optimal estimators of the target state.
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