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Abstract

Background: Cardiometabolic risk is the risk of cardiovascular disease (CVD), diabetes, or stroke, which are leading

causes of mortality and morbidity worldwide.

Objective: The objective of this study was to determine the potential of low-calorie cranberry juice (LCCJ) to lower

cardiometabolic risk.

Methods: A double-blind, placebo-controlled, parallel-arm study was conducted with controlled diets. Thirty women and 26

men (mean baseline characteristics: 50 y; weight, 79 kg; body mass index, 28 kg/m2) completed an 8-wk intervention with

LCCJ or a flavor/color/energy–matched placebo beverage. Twice daily volunteers consumed 240 mL of LCCJ or the placebo

beverage, containing 173 or 62 mg of phenolic compounds and 6.5 or 7.5 g of total sugar per 240-mL serving, respectively.

Results: Fasting serum triglycerides (TGs) were lower after consuming LCCJ and demonstrated a treatment 3 baseline

interaction such that the participants with higher baseline TG concentrations were more likely to experience a larger

treatment effect (1.15 6 0.04 mmol/L vs. 1.25 6 0.04 mmol/L, respectively; P = 0.027). Serum C-reactive protein (CRP)

was lower for individuals consuming LCCJ than for individuals consuming the placebo beverage [ln transformed values of

0.522 6 0.115 ln(mg/L) vs. 0.997 6 0.120 ln(mg/L), P = 0.0054, respectively, and equivalent to 1.69 mg/L vs. 2.71 mg/L

back-transformed]. LCCJ lowered diastolic blood pressure (BP) compared with the placebo beverage (69.2 6 0.8 mm Hg

for LCCJ vs. 71.6 6 0.8 mm Hg for placebo; P = 0.048). Fasting plasma glucose was lower (P = 0.03) in the LCCJ group

(5.32 6 0.03 mmol/L) than in the placebo group (5.42 6 0.03 mmol/L), and LCCJ had a beneficial effect on homeostasis

model assessment of insulin resistance for participants with high baseline values (P = 0.035).

Conclusion: LCCJ can improve several risk factors of CVD in adults, including circulating TGs, CRP, and glucose, insulin

resistance, and diastolic BP. This trial was registered at clinicaltrials.gov as NCT01295684. J Nutr 2015;145:1185–93.
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Introduction

Cardiometabolic risk is a term that refers to a clustering of
physiologically related conditions, including cardiovascular
disease (CVD)7, diabetes, and stroke. These are 3 diseases that
pose great risk to adults in the developed world and are

modifiable by lifestyle changes. CVD is the leading cause of
death worldwide (1), accounting for almost 930,000 deaths
annually in the United States (2) and >4 million deaths annually
in Europe (3). Diabetes is a considerable risk factor of CVD, and
its prevalence continues to rise in the United States and around
the world. In the United States, nearly 26 million people have
diabetes (4). The WHO estimated the worldwide prevalence of

4 Supplemental Table 1 is available from the ‘‘Online Supporting Material’’ link in

the online posting of the article and from the same link in the online table of

contents at http://jn.nutrition.org.
7 Abbreviations used: BP, blood pressure; CRP, C-reactive protein; CVD, cardiovas-
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diabetes in 2000 was 171 million, with the expectation of it
reaching 366 million by 2030 (5).

Lifestyle modification is a long-recognized approach to
lowering incidence of chronic disease. Consuming flavonoids
and other polyphenols is a simple and potentially heart healthy
lifestyle modification. Cranberries are rich in a number of
polyphenols, including procyanidins, quercetin, myricitrin, and
anthocyanins (6), several of which have been associated with
reducing biomarkers of chronic disease risk, particularly risk of
heart disease. Quercetin has been shown effective in reducing
blood pressure (BP) in animal models (7–10) as well as in humans
(11–13). Procyanidin-rich extracts have reduced C-reactive
protein (CRP) in rats fed a high-fat diet (14, 15). In addition,
procyanidin-rich grape seed extract has been shown to inhibit
foam cell formation in vitro (16). Myricitrin is capable of
interfering with atherosclerotic plaque development in an apoE
deficient mouse model (17). Anthocyanin-rich products have
lowered TGs in animal models (18–20) and inflammatory
factors in human studies (21, 22).

An analysis of NHANES 2005–2008 data demonstrated that
a significantly higher proportion of cranberry beverage con-
sumers were predicted to be normal weight (BMI < 25 kg/m2; P =
0.001) with lower waist circumferences (P = 0.001) and had
significantly lower TGs and CRP (23). However, past human
intervention studies targeting the role of cranberry products in
protecting against cardiometabolic risk have produced a mix of
positive (24–31) and null results (24, 32). Reasons for inconsis-
tent results may be the short length of some of the trials, small
sample size, and the lack of a fully controlled diet or appropriate
control. We conducted a double-blind, placebo-controlled,
parallel-arm, human intervention study with low-calorie cran-
berry juice [LCCJ; 40 kcal per reference amounts customarily
consumed as defined in the 21 Code of Federal Regulation,
sections 101.60(b) and 101.12] that was longer in length than
previous studies and that included a fully controlled diet.
Biomarkers of cardiometabolic risk, including serum total
cholesterol, LDL cholesterol, HDL cholesterol, TGs, and high-
sensitivity CRP, BP, fasting plasma glucose, and fasting serum
insulin, were measured before and after the intervention.

Methods

Volunteers. Potential volunteers were recruited from the Washington,

DC, metropolitan area to participate in a controlled feeding study. Study

volunteers were aged 25–65 y with a BMI between 20 and 38 kg/m2,

nondiabetic, nonsmokers, and in basic good health, with fasting TGs <

3.39 mmol/L (300 mg/dL). Potential volunteers were excluded if any of

the following applied: use of cholesterol-lowering medications, use of BP

medications, history of bariatric or weight-loss surgery, recent weight

loss, history of gastrointestinal or malabsorption disorders, kidney

disease, liver disease, gout, hyperthyroidism, untreated or unstable

hypothyroidism, cancer, pancreatic disease, or other metabolic disorders.

Eligibility was determined by routine blood and urine screening and

health history questionnaire. All procedures were approved by the

MedStar Health Research Institute Institutional Review Board (Hyatts-

ville, MD) and were conducted in accordance with the Helsinki

Declaration of 1975 as revised in 1983. Volunteers provided written

informed consent after attending an informational meeting and before

screening. Sixty subjects were enrolled according to a power calculation

for LDL cholesterol based on data previously collected in our laboratory.

Subjects were assigned to 1 of 2 treatment groups using an adaptive

randomization method to achieve balance in sex, BMI, age, and LDL

cholesterol at baseline. This trial was registered at clinicaltrials.gov

(NCT01295684).

Design. The study was a placebo-controlled, double-blind, parallel-arm

study with 2 treatment groups. Volunteers consumed LCCJ or a color/

flavor/energy–matched beverage for 8 wk as part of a controlled diet.
Beverage products (240 mL/bottle) were supplied by Ocean Spray

Cranberries, Inc., and the products were differentiated by labels marked

in the colors blue or green but were otherwise identical in all other

aspects including bottle shape, size, and color. Neither the investigators
nor the participants knew which product was cranberry juice vs.

placebo, and the product code was not lifted until all analyses were

complete and the data set was locked. Compositions of treatment

beverages are shown in Table 1. Volunteers consumed 2 bottles of
beverage product daily for a daily total of 480 mL, which provided a

total of 80 kcal. During weekdays, treatment beverages were supplied at

breakfast and dinner (240mL at each meal) so that the products could be
consumed under supervision of study staff. On weekends, products were

consumed off-site, and empty bottles were returned to the USDA

Nutrition Center as a check of compliance. All analyses were completed

before the blinding code was revealed.

Diets. Complete diets were provided to study volunteers, and volunteers

were instructed to eat all foods and only foods provided to them by the

USDA Nutrition Center. Background diets provided 15% energy
protein, 32% energy fat, and the remainder from carbohydrate, and

all foods were scaled in 836-kJ (200 kcal) increments to meet individual

energy requirements so that volunteers neither gained weight nor lost

TABLE 1 Composition of cranberry juice and placebo treatment
beverages1

Treatment beverage

Placebo Cranberry juice

Energy, kcal 40 40

Sugar, g 7.5 6.5

Sucrose 0.1 0.1

Fructose 5.6 4.6

Dextrose 1.7 1.8

Ascorbic acid, mg 60 60

Organic acids, mg 1.7 2.1

Total phenolics, mg 62 173

Anthocyanins, mg 0 10.3

Proanthocyanidins, mg 0 118

1 Values represent content per 240-mL serving with 2 servings (480mL) consumed daily.

FIGURE 1 CONSORT diagram for study trial. CONSORT, Consoli-

dated Standards of Reporting Trials.
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weight during the study (as confirmed by daily weighing). If patterns of

weight gain or loss were observed, diets were adjusted such that weight

maintenance was achieved. Background diets consisted of typical

American foods, and 3–5 servings of fruits or vegetables daily (328–
618 g/d depending on energy intake). The study food items are shown

in Supplemental Table 1. Coffee and tea intake was limited to 2 cups/d

(480 mL/d), which is similar to the mean US per capita intake of coffee

and tea, both of which are <2 cups/d (33). Breakfast and dinner were

consumed at the USDA Nutrition Center, and lunch and weekend meals

were packed for carryout.

Clinical assessments and sample collection and analysis. BP

measurements were taken in triplicate at the beginning and end of the

study treatment period. Volunteers were asked to rest in a quiet, dimly lit

TABLE 2 Characteristics of study volunteers at baseline1

Treatment group

Placebo Cranberry juice

Enrolled in intervention (n = 30) Completed intervention (n = 27) Enrolled in intervention (n = 30) Completed intervention (n = 29)

Weight, kg 82.3 6 5.4 82.2 6 16.1 76.6 6 13.9 76.6 6 14.1

BMI, kg/m2 28.9 6 4.5 29.1 6 4.7 27.8 6 3.8 27.8 6 3.9

Age, y 50.0 6 11.6 51.3 6 11.1 49.8 6 11.1 49.8 6 11.3

Men, n 14 12 15 14

Women, n 16 15 15 15

1 Values for weight, BMI, and age represent means 6 SDs. Statistical comparisons were made by ANOVA. No differences between groups were observed at baseline.

TABLE 3 BP and fasting serum lipids, lipoproteins, CRP, and adhesion molecules in adults at baseline
and after 8 wk of consuming cranberry juice or placebo as part of a controlled diet1

Analysis2

Baseline3 8 wk4

Treatment group Treatment group

Placebo Cranberry juice Placebo Cranberry juice P5

Total cholesterol, mmol/L Per Prot 5.09 6 0.16 5.00 6 0.13 5.09 6 0.06 5.08 6 0.06 0.93

ITT 5.14 6 0.18 4.98 6 0.13 5.10 6 0.05 5.09 6 0.05 0.91

LDL cholesterol, mmol/L Per Prot 3.25 6 0.11 3.21 6 0.11 3.28 6 0.05 3.31 6 0.05 0.67

ITT 3.27 6 0.12 3.21 6 0.11 3.28 6 0.04 3.31 6 0.04 0.64

HDL cholesterol, mmol/L Per Prot 1.24 6 0.07 1.19 6 0.05 1.27 6 0.02 1.23 6 0.02 0.18

ITT 1.24 6 0.06 1.19 6 0.05 1.26 6 0.02 1.23 6 0.02 0.21

TGs,6 mmol/L Per Prot 1.28 6 0.11 1.28 6 0.10 1.25 6 0.04 1.15 6 0.04 0.027

ITT 1.39 6 0.17 1.28 6 0.09 1.31 6 0.04 1.18 6 0.04 0.022

apo A-I, mg/dL Per Prot 129.9 6 3.6 127.6 6 3.3 128.2 6 1.4 127.4 6 1.4 0.67

ITT 130.7 6 3.7 127.6 6 3.2 129.0 6 1.3 127.6 6 1.3 0.47

apo A-II, mg/dL Per Prot 30.6 6 0.7 30.2 6 0.7 29.4 6 0.5 30.4 6 0.5 0.14

ITT 31.3 6 1.0 30.2 6 0.7 29.8 6 0.5 30.6 6 0.5 0.24

apoB, mg/dL Per Prot 78.7 6 3.2 78.8 6 2.5 79.2 6 1.3 79.6 6 1.3 0.81

ITT 79.8 6 3.8 78.8 6 2.4 79.7 6 1.2 80.0 6 1.2 0.85

sICAM, ng/mL Per Prot 265.4 6 15.8 263.0 6 15.2 278.9 6 7.9 263.6 6 7.6 0.17

ITT 277.7 6 16.1 263.0 6 14.7 284.7 6 7.2 268.3 6 7.2 0.11

sVCAM, ng/mL Per Prot 471.3 6 41.0 444.0 6 29.2 451.5 6 14.3 469.2 6 13.8 0.38

ITT 469.1 6 37.3 444.0 6 28.2 450.7 6 13.1 468.1 6 13.1 0.35

Diastolic BP, mm Hg Per Prot 68.1 6 1.5 73.9 6 1.6 71.6 6 0.8 69.2 6 0.8 0.048

ITT 68.4 6 1.4 73.9 6 1.6 71.5 6 0.7 69.2 6 0.7 0.11

Systolic BP, mm Hg Per Prot 111.5 6 2.4 121.9 6 3.2 116.1 6 1.1 115.2 6 1.1 0.57

ITT 111.9 6 2.4 121.9 6 3.1 116.3 6 1.0 115.0 6 1.0 0.41

CRP,7 ln(mg/L) Per Prot 0.800 6 0.186 0.708 6 0.0.180 0.997 6 0.120 0.522 6 0.115 0.005

ITT 0.768 6 0.176 0.724 6 0.175 0.938 6 0.113 0.539 6 0.113 0.014

1 BP, blood pressure; CRP, C-reactive protein; ITT, intention to treat; Per Prot, per protocol; sICAM, soluble intercellular adhesion molecule;

sVCAM, soluble vascular cell adhesion molecule.
2 Analyses were conducted Per Prot (analysis of volunteers who completed the intervention: n = 29 for cranberry juice, n = 27 for placebo)

and ITT (analysis of all volunteers enrolled: n = 30 for cranberry juice, n = 30 for placebo).
3 Values are means 6 SEs from samples collected before dietary intervention (pretreatment).
4 Values are least-squares means6 SEs from an ANOVA linear mixedmodel that included covariates of age, baseline (pretreatment), BMI, and sex.
5 Values are for the placebo vs. cranberry juice comparison at 8 wk.
6 For TGs, there was a significant baseline 3 treatment interaction (P = 0.0005 for ITT analysis) such that individuals with higher baseline TG

concentrations had a greater lowering effect after consumption of cranberry juice.
7 ANOVA of high-sensitivity CRP was based on log-transformed data. Back-transformed means (for volunteers completing intervention) are as

follows: placebo baseline concentration of 2.23 mg/L, cranberry juice baseline concentration of 2.03 mg/L, placebo 8-wk concentration of 2.71 mg/L,

cranberry juice 8-wk concentration of 1.69 mg/L.
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room for 5 min. BP was then measured by an automated cuff 3 times at

2.5-min intervals. The mean of those 3 BP measurements was used for

statistical analysis.
Blood was collected at the beginning and end of the study treatment

period, on 2 different mornings separated by 1 d. Blood was collected

after a 12-h fast by a certified phlebotomist using sterile blood collection

supplies. Blood in serum separator tubes was allowed to sit at room
temperature (25�C) for 30 min, and then serum was removed, imme-

diately aliquoted into cryovials, and stored at 280�C until analysis.

EDTA-coated vacutainers were centrifuged at 2000 3 g for 10 min, and

then plasma was removed, aliquoted into cryovials, and stored at280�C
until analysis. Blood for glucose analysis was collected in a tube

containing sodium fluoride, immediately inverted, set on ice for ~10 min,

and then stored in cryovials at 280�C until analysis.
Serum total, HDL and LDL cholesterol, and TG concentrations were

determined by enzymatic procedures using a Vitros Clinical Chemistry

Analyzer (Vitros 5,1; Ortho-Clinical Diagnostics, Inc.). Serum apo A-I,

apo A-II, and apoB were measured by immunoturbidimetric assay
(Bacton Assay Systems and Express 550 Plus analyzer, Siemens Health-

care Diagnostics). Serum IL-10, IL-1b, IL-6, TNF-a, and CRP were

analyzed with sandwich-type immunoassay methods using electro-

chemiluminescence detection (Meso Scientific Discovery). Plasma glu-
cose concentrations were determined using an automated enzymatic/

colorimetric assay (Vitros 5,1). Serum insulin concentrations were

measured using a sandwich-type immunoassay method (EMD Millipore
Corp.) performed on a Dynex system (Dynex Technologies, Inc.). All

analytes were measured in duplicate. HOMA-IR was calculated by the

following equation: fasting glucose 3 fasting insulin/22.5 (34), where

glucose was expressed in millimoles per liter and insulin was expressed in
milliunits per liter. HOMA-b was calculated by the following equation:

20 3 fasting insulin/(fasting glucose 2 3.5) (34), where glucose was

expressed in millimoles per liter and insulin was expressed in milliunits

per liter.

Statistical analysis. A power calculation was based on data from

previous studies in our laboratory. Our target detectable difference was a

10% change in LDL cholesterol. With anticipated mean LDL cholesterol
of 110 mg/dL for the recruited population, we aimed to detect a

difference of 11 mg/dL. Based on previous research in our laboratory

with similar dietary interventions, we found an SD of the difference of
treatment to be 12.5 mg/dL. A sample size calculation was performed for

a 1-factor ANOVA for a parallel-arm study with 90% power to detect a

change of 11 mg/dL at P = 0.05. Twenty-seven participants per group

were needed, and 30 per group were enrolled to allow for attrition.
Values for analytes on the 2 blood days at the beginning or at the end

of the intervention were averaged, and those mean values were used in

the statistical analysis. To determine the effect of treatment (cranberry

juice), statistical analyses were performed in SAS (version 9.3; SAS
Institute, Inc.) using an ANOVA linear mixed model with covariates of

age, baseline (pretreatment), BMI, and sex retained in all models.

Interactions of these covariates with treatment were removed from the
model if not significant. Data were tested for normality with the Shapiro-

Wilk statistic and by inspection of stem-leaf plots and normal probability

plots of residuals. The data for CRP were skewed and therefore were ln

transformed before statistical analysis. Model effects are reported as
least-squares means. A per protocol analysis was conducted to predict

the true potential efficacy of cranberry juice for improving risk factors of

cardiometabolic disease, and intention-to-treat analysis was performed

to allow estimation of population effects in the presence of some
noncompliance, with data for dropped participants handled by standard

approaches (35).

Results

Of 191 individuals who completed a study application and
informed consent form, 60 individuals were selected to partic-
ipate in the study, and 56 completed the intervention (Figure 1).
Four subjects dropped out because of scheduling difficulties.
Twenty-nine volunteers finished the cranberry juice arm (15

women, 14 men), and 27 volunteers finished the placebo arm (15
women, 12 men). Characteristics of volunteers enrolled in the
protocol and completing the protocol are shown in Table 2.

Serum total cholesterol, LDL cholesterol, and HDL choles-
terol were not different after 8 wk of consumption of LCCJ
compared with placebo (Table 3). In addition, serum apo A-I,
apo A-II, and apoB were not different (Table 3). Serum TGs were
lower for those consuming cranberry juice compared with
placebo (Table 3). In addition, there was a baseline 3 treatment
interaction such that individuals with higher baseline TG
concentrations experienced a greater lowering of serum TG
after consuming cranberry juice (Figure 2A). For volunteers with
the highest baseline TG concentrations, there was a 0.54-mmol/L
difference in TG concentration at the end of the intervention
between cranberry juice and placebo consumption. Diastolic BP
was lower for the cranberry juice group than for the placebo
group, whereas systolic BP was not different (Table 3). Note that
baseline systolic BP was different between the groups; however,
the baseline values were included in the statistical model to
account for this difference.

Several serum markers of inflammation were measured.
Serum CRP was lower in the cranberry juice group than in the
placebo group (Table 3). For the group of volunteers that completed

FIGURE 2 Relation between baseline serum TG concentration and

postintervention TG concentration (A) and between baseline HOMA-IR

and postintervention HOMA-IR (B) in adult volunteers who consumed

cranberry juice or placebo as part of a controlled diet for 8 wk. Cranberry

juice had a TG-lowering effect for volunteers with baseline TG concen-

trations and lowered the HOMA-IR for volunteers with high baseline

concentrations.
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the intervention, the log-transformed values back-transform to
1.69 mg/L for LCCJ (95% CI: 1.35, 2.11) and 2.71 mg/L for
placebo (95% CI: 2.14, 3.43). The median CRP concentrations
at 8 wks were 1.47 mg/L for LCCJ vs. 2.63 mg/L for placebo;
thus, median CRP concentrations for participants consuming
cranberry juice were 44% lower than those for participants
consuming the placebo. Other serum markers of inflammation
(IL-6, IL-10, IL-1b, and TNF-a) were not significantly different
between groups.

The group consuming the LCCJ had significantly lower fasting
plasma glucose concentrations than the group consuming the
placebo (Table 4). Fasting serum insulin was not significantly
different between groups. For HOMA-IR, there was a significant
baseline3 treatment interaction such that individuals with higher
baseline HOMA-IR concentrations experienced a greater lower-
ing of HOMA-IR after consumption of cranberry juice (Figure
2B). Thus, with increasing baseline HOMA-IR, there was greater
improvement of insulin sensitivity for the group consuming
cranberry juice than for the group consuming placebo. HOMA-b
was not significantly different between groups (Table 4).

The intention-to-treat analysis suggested a trend that did not
reach statistical significance for lower soluble intercellular
adhesion molecule concentrations when consuming cranberry
juice (P = 0.11; Table 3). Concentrations of soluble vascular cell
adhesion molecule did not differ between groups.

Discussion

Heart disease kills more people throughout the world than any
other cause of death (1). Polyphenols hold promise for lowering
risk of CVD (36, 37). In our study, consumption of an LCCJ for
8 wks resulted in lowering of several CVD risk factors, including
diastolic BP, CRP, TGs, blood glucose, and HOMA-IR, with a
trend for improved soluble intercellular adhesion molecule.

In the present study, participants consuming LCCJ had lower
diastolic BP after 8 wks than those consuming the placebo,
which is in accord with other intervention studies of polyphenol-
rich products (38–42), although a few other studies showed no
effect (29, 43–46). Animal studies support these findings. One

study showed that BP dropped in vasculature of anesthetized
rats when infused with dilute buffered cranberry juice (47), and
another study showed that cranberry juice prevented a high-fat
diet–induced increase in BP in hamsters (48). One mechanism
may be decreased angiotensin-converting enzyme, as suggested
by human studies with pomegranate juice (38) and chokeberry
extract (40) and by in vitro studies with polyphenols (49–55).
Cranberries are a good source of quercetin (6), which has also
been shown to reduce BP both in humans (11–13) and in animal
models (7, 9, 10). Proposed mechanisms include reduction of
oxidative stress (56–59), improved endothelium-dependent
vasodilation (56, 58, 59), and inhibition of angiotensin-
converting enzyme I (60, 61), an important target in hyperten-
sion therapy (49, 62). The magnitude of the change in BP
observed in this study is consistent with that obtained with
recommended dietary patterns to reduce BP, such as the Dietary
Approaches to Stop Hypertension Trial diet (63) or with a low-
sodium diet (64). The magnitude of the change observed in the
current study could be associated with a 15% decrease in risk of
stroke and a 10% decrease in risk of coronary heart disease (65).

Cranberry juice lowered TGs, in accord with other studies,
including a study in which grape powder decreased TGs after
21 d (66). NHANES 2005–2008 data showed that cranberry juice
consumers had significantly lower TGs than nonconsumers (23).
In rodent models, TGs were lowered by quercetin (67),
lyophilized grape (68), and green tea polyphenols (69). One
possible mechanism is inhibition of microsomal TG transfer
protein (MTP) (67, 69–72), which would prevent assembly of
apoB-containing lipoproteins (chylomicrons and VLDL), but
this would also be expected to decrease total cholesterol, LDL
cholesterol, and apoB. The magnitude of TG change seen in this
study is consistent with other dietary interventions used to lower
TGs, such as eliminating trans FAs, replacing carbohydrates
with MUFAs or PUFAs, or adding marine-derived PUFAs to the
diet (73).

CRP was lower for volunteers consuming cranberry juice, as
similarly seen in a group of men consuming purple-flesh potatoes
(74). Analysis of NHANES 1999–2002 data demonstrated that
CRP levels were inversely associated with total flavonoid in-
take, flavonol intake, quercetin intake, kaempferol intake, and

TABLE 4 Fasting glucose and insulin concentrations, HOMA-IR, and HOMA-b in adults after 8 wk of
consuming cranberry juice or placebo as part of a controlled diet1

Analysis2

Baseline3 8 wk4

Treatment group Treatment group

Placebo Cranberry juice Placebo Cranberry juice P5

Fasting plasma glucose, mmol/L Per Prot 5.36 6 0.08 5.42 6 0.08 5.42 6 0.03 5.32 6 0.03 0.03

ITT 5.37 6 0.07 5.41 6 0.09 5.39 6 0.03 5.26 6 0.03 0.04

Fasting serum insulin, IU/mL Per Prot 7.21 6 0.82 7.39 6 0.73 7.39 6 0.32 7.36 6 0.30 0.94

ITT 7.21 6 0.75 7.39 6 0.72 7.38 6 0.29 7.38 6 0.30 0.99

HOMA-IR6 Per Prot 1.74 6 0.20 1.80 6 0.19 1.82 6 0.08 1.76 6 0.07 0.044

ITT 1.74 6 0.19 1.80 6 0.19 1.81 6 0.07 1.76 6 0.07 0.036

HOMA-b Per Prot 77.8 6 8.1 78.3 6 7.3 76.7 6 3.6 82.5 6 3.5 0.23

ITT 77.8 6 7.6 78.3 6 7.0 77.1 6 3.3 82.7 6 3.3 0.24

1 ITT, intention to treat; Per Prot, per protocol.
2 Analyses were conducted Per Prot (analysis of volunteers who completed the intervention: n = 29 for cranberry juice, n = 27 for placebo)

and ITT (analysis of all volunteers enrolled: n = 30 for cranberry juice, n = 30 for placebo).
3 Values are means 6 SEs from samples collected before dietary intervention (pretreatment).
4 Values are least-squares means6 SEs from an ANOVA linear mixedmodel that included covariates of age, baseline (pretreatment), BMI, and sex.
5 Values are for the placebo vs. cranberry juice comparison at 8 wk.
6 For HOMA-IR, there was a significant baseline 3 treatment interaction such that individuals with higher baseline HOMA-IR concentrations had

greater lowering of HOMA-IR after consumption of cranberry juice.
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anthocyanidin intake (75), and NHANES 2005–2008 data
showed that cranberry juice consumers had significantly lower
CRP than nonconsumers (23). Possible active agents include
quercetin, which lowered CRP in a human CRP transgenic
mouse model and in a human-like lipoprotein mouse model
(apoE-Leiden) (76), and procyanidins, which, when derived
from grape seed, lowered CRP in obese Zucker rats fed a high-
fat diet (14). Quercetin also suppressed cytokine-induced
expression of CRP in Hep3B cells (77), and both quercetin
and kaempferol inhibited gene expression and production of
CRP in Chang liver cells (78). The median CRP concentration
for participants consuming cranberry juice was 44% lower than
that for participants consuming the placebo beverage. This
decrease is similar to that seen in other studies, such as
32% lower CRP with a Mediterranean-style diet rich in
MUFAs, PUFAs, and fiber (79), and 39% lower CRP with a
Mediterranean-style weight-loss diet rich in complex carbohy-
drates (80).

Although the volunteers in this study had fasting blood
glucose levels in the normal range, the volunteers consuming
cranberry juice had lower fasting glucose at the end of the
intervention than those consuming the placebo beverage. Cran-
berry juice also improved HOMA-IR for those with higher
baseline values, suggesting improved glucose tolerance for those
becoming insulin resistant. These findings are supported by
animal models. In rats, supplementation of a high-fructose diet
with cranberry powder lowered fasting glucose and insulin and
improved HOMA-IR and b-cell function (81). In addition,
cranberry polyphenols also lowered fasting insulin and HOMA-
IR in obese mice fed a high-fat diet (82). In a prior placebo-
controlled human feeding study of 42 diabetic adults, blueberry
leaf extract, which, like cranberries, is high in myricetin, lowered
fasting plasma glucose, whereas the placebo did not (83).
However, a few other studies have not produced an effect of
cranberry juice on glucose management (31, 84).

Multiple outcomes were tested for this study, which increases
the possibility of false-positive results, and in this case, with 22
outcome variables tested, 1 false positive could be expected. A
Bonferroni-adjusted P value cutoff for 22 tests would allow only
a value of P < 0.002 to be declared significant, eliminating all 5
positive outcomes, despite the fact that the chance of 5 false-
positive results is only 0.3%. For this reason, Bonferroni
adjustments are dismissed by many scientists and statisticians
as overly conservative because of their disproportionate in-
crease in type II errors (85–89). For a study such as this with
22 outcome variables tested, only 1 false positive would be
expected.

This study used an LCCJ that was sweetened with sucralose.
Use of low-calorie sweeteners is on the rise in the United States
(90, 91). Some early observational, associative, or animal studies
with low-calorie sweeteners reported that such sweeteners may
be detrimental to weight control (92–94). However, more recent
studies have demonstrated that non-nutritive, low-calorie
sweeteners are not associated with weight gain (95) but rather
are beneficial for weight loss and weight maintenance (96, 97).
In a recent clinical intervention trial, participants consuming
non-nutritive sweetened beverages lost significantly more weight
and reported less hunger than participants consuming water, the
‘‘gold standard’’ for hydration (96). Some studies, particularly
rodent studies, have also suggested that non-nutritive, low-
calorie sweeteners negatively impact glucose management (98,
99), and others have suggested the opposite (100–105). This
human feeding study suggests that cranberry juice sweetened
with sucralose has a positive impact on glucose management.

Cranberry juice sweetened with sugar contains the same
polyphenol content as LCCJ, contains among the highest con-
centration of polyphenols compared with other juices (106), and
contains similar amounts of sugar compared with other juices on
the market (106), although effects of sugar-sweetened juice were
not tested here.

Dietary guidance has included a recommendation that the
majority of fruit be consumed whole rather than as juice (107).
However, because fresh cranberries are not typically consumed
raw because of their tart and astringent taste and because
cranberries are consumed almost entirely as juice in the US diet
(108), our study used juice. It is unknown whether the benefits
observed here would translate to whole fruit, which would
provide fiber in addition to the polyphenols.

In conclusion, consumption of LCCJ for 8 wk resulted in
lowering of several factors associated with cardiometabolic risk
in an adult population. The magnitude of the significant changes
is consistent with the magnitude of changes achieved with other
dietary and lifestyle interventions. Lifestyle characteristics, such
as consumption of healthful food items, should be encouraged to
improve health, reduce incidence of chronic disease and asso-
ciated morbidities, and ultimately lower health care costs.
Consumption of high-polyphenol products such as cranberry
juice is a sustainable lifestyle practice that holds notable promise
for improving health.
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