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Enlargement of the skull vault occurs by appositional growth at the fibrous joints between the bones, termed

cranial sutures. Relatively little is known about the developmental biology of this process, but genetically
determined disorders of premature cranial suture fusion (craniosynostosis) provide one route to the identification

of some of the key molecules involved. Mutations of the MSX2, FGFR1, FGFR2, FGFR3 and TWIST genes yield
new insights, both into normal and abnormal cranial suture biogenesis and into problems of broad interest, such

as the conservation of molecular pathways in development, and mechanisms of mutation and dominance.

INTRODUCTION aspects of craniofacial and limb development utilise common
molecular pathways, an idea supported by experimental evidence

del svstem for studving th " d . al fact 5). This insight has been an important contributor to recent
model system for studying the geneuc and environmental 1aclogy - .ass jn the identification of genes mutated in craniosynostosis.

in a pathway of developmental malformation; and it representsigy e genes identified to date were already known to be major
significant medical problem, occurringliil in 2500 individuals avers”in the development of fruitflies and mice and were
(1-4). The abnormal skull growth may be associated with ra'seﬁnpointed using positional candidate approaches in relatively
intracranial pressure, impaired cerebral blood flow, airwaya) families. The new findings from human syndromes reveal
obstruction, impaired vision and hearing, learning difficulties an itherto unsuspected aspects of the structure and biology of the

adverse psychploglcal effects-g). Thes_e remain significant mytated genes and their cognate proteins.
problems despite important advances in surgical managemen

over the past 20 years.

In humans, mineralisation of the cranial vault mostly occurtUTATIONS IN MSX2, FGFR1, FGFR2, FGFR3, FBN1
directly from membrane derived from paraxial mesodermpND TWIST GENES
proceeding outwards from several ossification centres fitt3n
weeks of embryonic development (reviewed)irAt (118 weeks Tablel catalogues all mutations that cause craniosynostosis as a
these mineralising bone fronts meet and sutures are induced algmgnary clinical feature, a list currently comprising 64 different
the lines of approximation. Subsequently, the skull enlarges bygutations of six genes in 474 independent patients. These range
appositional growth at the suture with deposition offrom unique missense mutations in M&X2(muscle segment
premineralised bone matrix (osteoid) along the suture marginsomeobox 2) and®BN1 (fibrillin) genes described in single
The major cranial sutures are shown in Figl#e Premature families, to 46 mutations in seven phenotypes FGFR2
fusion of one or more of these sutures (craniosynostosis) preve(fibroblast growth factor receptor 2). Mutations EBN1 are
further growth along the margin; excessive growth at othemore commonly associated with Marfan syndrome (reviewed in
sutures leads to skull distortion (reviewed @. The suture itself 64) and are not further discussed here. TWSTgene is the
is anatomically a simple structure (Fid3), comprising the two most recent (January 1997) addition to the list; relatively few
plates of bone separated by a narrow space containing immaturejtations have been published to date. Figuitkistrates the
rapidly dividing osteogenic stem cells, a proportion of which argosition of mutations in relation to functional motifs in MSX2,
recruited to differentiate into osteoblasts and make new boneGFR1, -2, -3 and TWIST.
Developmentally, the problem of craniosynostosis may be posedviany interesting patterns may be discerned from scrutiny of
as follows (1): what causes the sutural tissue to fail in theTablel and Figure2. FGFR mutations in particular present one
execution of its proliferative and anti-differentiative functions? of the most remarkable series in human genetics of

Both genetic and environmental factors contribute ta@enotype—phenotype correlations for allelic and non-allelic
craniosynostosis. Abnormal mechanical forces (external pressureitations. The following points are worth highlighting; their
or deficiency in underlying brain growth) may be a predisposinfunctional significance is addressed in the subsequent section.
cause in some casd¥). In others, a family history or associated (i) Most of theFGFR mutations are missense, with a smaller
anomalies suggest a genetically determined condition. Over 160mber of splice mutations or small insertions, deletions or
syndromes associated with craniosynostosis have been delineatettls, all of which remain in-frame. No nonsense or frameshift
(13,24): most of the common ones exhibit dominant inheritancenutations have been described. This contrasts with\WiST
The clinical observation that many craniosynostosis syndromggne, for which the mutations mostly comprise nonsense changes
are accompanied by limb abnormalities (see Box 1) suggests tlaid 21 bp duplications, with relatively fewer missense mutations.

Craniosynostosis is important for two reasons. It provides
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Figure 1. Normal cranial suture developmem&) (View of child’s skull from above, showing position of the major sutures. Coronal craniosynostosis leads to a short,
broad skull; conversely, sagittal synostosis leads to a long, narrow Bkiiagrammatic cross section through coronal suture. The skull bones overlap slightly. In
craniosynostosis, the narrow space separating the bones is obliterated.

Box 1.Naming and recognition of craniosynostosis syndromes. Outside the field of clinical genetics, the basis for recognising
specific syndromes carries considerable mystique. This is not always helped by disputes about definition and the uséabfanultisy
eponymous terms. The naming of disorders has to be flexible, as it may need re-evaluation in the light of new clinicalidad mole
information. This is well illustrated by the craniosynostosis literature. Whereas some clinically defined disorders hawetttoned
correlate very closely with molecular pathogenesis (notably Apert syndrome), in other cases the distinction has becomednore blu
(for example, the Crouzon/Pfeiffer/Jackson—-Weiss group). FGFR3 associated coronal craniosynostosis only became clearly define
once the specific mutation was identified (the ‘labels’ previously attached to patients who turn out to have this mutatéah incl
Pfeiffer, Saethre—Chotzen and Crouzon syndromes, as well as Adelaide-type, non-syndromic and brachydactyly associated
craniosynostosis!): the term ‘Muenke craniosynostosis’ has been suggested by OMIM, and is used in this review. Boston
craniosynostosis is a ‘private’ syndrome defined by the MSX2 mutation in the single family currently known: as the phenotype is
variable and rather non-specific, it would be difficult to recognise clinically. This box summarises the disorders merttianed in

=

review.
Disorder MIM#  First Main clinical features Comments
recognised

Boston craniosynostosis 123101 1993 Supraorbital recession, Single family with MSX2 mutation
not diagnostic

Pfeiffer syndrome 101600 1964 Broad thumbs and Clinical boundary with Jackson-Weiss disputed
great toes

Apert syndrome 101200 1906 Bony syndactyly of
hands and feet

Crouzon syndrome 123500 1912 ‘Normal' limbs; subtygRadiology reveals subtle limb abnormalities
has acanthosis nigricans

Jackson—Weiss syndrome 123150 1976 Broad great toes, bdeny variable within one enormous family
fusions in feet

Beare—Stevenson syndrome 123790 1969 Cutis gyrata and
acanthosis nigricans

Muenke craniosynostosis 134394 1996 Difficult to diagnoseDefined by Pro250Arg mutation in FGFR3
clinically

Shprintzen—Goldberg syndrome 182212 1982 Generalised Possibly heterogeneous
connective tissue
defect

Saethre—Chotzen syndrome 101400 1931 2/3 syndactyly of Easily confused with Muenke craniosynostosis

hands; bifid great toes




Table 1.Mutations identified in craniosynostosis
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Gene Mutatiorf Phenotyp@ n¢ Referenceé
MSX2 Prol148His B 1 17
FGFR1 Pro252Arg P 10 18-20 (1)
FGFRZ Tyrl05Cys C 1 21
Ser252Trp A 191 20,22-31 (39)
Ser252Phe(CG TT) A 2 31,32
Ser252Leu N,C 1 32
934CGC- TCT[SP- FS] P 1 32
Pro253Arg A 93 20,22-26,29-31 (20)
Ser267Pro Cc 1 33
982insTGG[insG] C 1 20
Cys278Phe C,P 8 20,33
1037del9[delHIQ] C 1 33
GIn289Pro cJ 3 20,33,34
Trp290Arg(T- C) C 2 33
Trp290Gly C 2 35,36
Trp290Cys(G-C) P 1 37
Trp290Cys(G-T) P 1 Q)
Lys292Glu C 1 38
1119-3T- Gf P 1 19
1119-2A- G P,A 6 19,30,39 (1)
1119-1G. Cf P 1 26
Ala314Seb P 2 19
Asp321Ala P 1 39
Tyr328Cys C 1 40
Asn33llle C 1 41
1190ins6[insDA] C 1 41
Gly338Arg(G- C) C 2 34 (1)
Gly338Glu C 2 21
Tyr340His C 5 26,40,42-44
Thr341Pro P 1 45
Cys342Tyr CP 18 20,33,34,42-46 (1)
Cys342Arg P,C,J 14 19,20,26,35,43,45
Cys342Phe C 2 20,33
Cys342Ser(G.C) P,C 4 20,34,47 (1)
Cys342Ser(T- A) P.C 2 20,43
Cys342Trp C,P 5 26,35,42,44
Ala344Ala(G- A)f c\u 8 35,40,42,43,48-50 (2)
Ala344Gly J,.C 2 34,40
Ala344Pro P 1 20
Ser347Cys C 4 26,33,40
Ser351Cys U 1 21
Ser354Cys C 5 33-35,43
1245del9[delWLT] C 1 41
Val359Phe P 1 20
1263ins6 P 1 20
Ser372Cys BS 1 51
Tyr375Cys BS 2 51
Gly384Arg U 1 21
FGFR3 Pro250Arg M 33 52-56 (1)
Ala391Glu C-A 6 57,58
FBN1 Cys1223Tyr SG 1 59,60
TWIS® Tyr103stop(308insA) S 1 61
Tyrl03stop(C- A) S 1 62
Glul04stop S 1 Q)
GIn119Pro S 1 61
Serl23stop S 1 62
Serl23Trp S 1 1)
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Table 1. continued

Gene Mutatior? Phenotyp@ n¢ Referenceé
Glul26stop S 1 62
Leul31Pro S 1 62
405ins21[insAALRKII] S 1 61
416ins21[insKIIPTLP] s 4 61,62 (1)
417ins21[insKIIPTLP] s 1 62
Aspl41Tyr S 1 1)
433del23 S 1 61

Notation for mutations follows ref. 16. Square brackets show amino acid changes in single letter notation.

bSyndrome abbreviations: A, Apert; B, Boston craniosynostosis; BS, Beare—Stevenson; C, Crouzon; C-A, Crouzon/acanthasis nigiéapon—Weiss; M,
Muenke craniosynostosis; N, normal phenotype; P, Pfeiffer; S, Saethre—Chotzen; SG, Shprintzen—Goldberg; U, unclassifieatevif@rene phenotype has
been described, the most frequent is indicated first.

CNumber of unrelated individuals.

drigures in brackets indicate number of unpublished observations from the author’s laboratory that are included in the total.

€Amino acid and DNA numbering from ref. 63.

fEffect on splicing proven or presumed.

9Amino acid and DNA numbering from ref. 61.

(i) Many of the mutations are recurrent. In the cadeGFR], Identification of these mutations has necessitated some reappraisal
-2 and-3, some missense mutations occur much more frequentbyf the rather confusing clinical classification of the craniosynostosis
than others; in the case of th@VISTgene, 21 bp duplications disorders. Although a reasonable correlation between clinical
(with three distinct molecular origins) have already been recordetbscription and mutation has emerged, a notable exception is the
six times. P250R mutation in FGFR3. The phenotype is rather non-specific

(iii) Allelic missense mutations dFGFR2andFGFR3have and quite variable, as withnessed by the variety of labels previously
widely varying phenotypes. ManfGFR3 mutations are attached to patients who have subsequently turned out to have this
characterised by short-limbed bone dysplasia of varying severitqutation (see Box 1). This is a good example of a disorder that is
(hypochondroplasia, achondroplasia, thanatophoric dysplasidgtter classified by mutation rather than phenotype. Another area of
craniosynostosis is rare in the first two of these disordersontention is the distinctiveness, or lack of it, of the syndromic labels
(reviewed in 67). Especially noteworthy is that mutations of Crouzon, Pfeiffer and Jackson-Weiss. Classically, these have
immediately adjacent to the P250R mutation in FGFR3 (R248Been distinguished primarily on examination of the limb. Although
and S249C) cause thanatophoric dysplasia type 1ZJig. the limbs in Crouzon syndrome are supposed to be normal,

(iv) Identical mutations of FGFR paralogs are observed imadiological examination often reveals subtle abnormalii€s (
several regions of the molecule (F. Pro- Arg mutations of The frequently quoted assertion that the phenotypes breed true
the Iglli—Iglll linker cause Pfeiffer syndrome in FGFR1, Apertwithin families lacks careful documentation and has many
syndrome in FGFR2 and Muenke craniosynostosis in FGFR8punter-example2(,26,38,48).

Ser or Gly- Cys and Tyr- Cys mutations of the juxtamembrane

region cause Beare-Stevenson syndrome in FGFR2 ayb|lECULAR MECHANISM OF CRANIOSYNOSTOSIS
thanatophoric dysplasia type | in FGFR3; Glfrrg mutationsin - \UTATIONS

the transmembrane region (differing in position by two amino

acids) cause unclassified craniosynostosis in FGFR2 ardl the mutations described to date are dominantly acting and,
achondroplasia in FGFR3. hence, the abnormal gene products must exert their effects in the

(v) Many of the other missense mutations of FGFR2 create presence of wild-type protein. The mechanisms of action have
destroy a cysteine residue in one of the immunoglobulin-likeeen the subject of keen investigation and provide some excellent
domains. Most notably, C342 represents a mutation hotspot; akamples of mechanisms of dominang®).(
but one of the amino acid substitutions that can arise by mutatingA good starting point is to consider the effects of heterozygous
one nucleotide of the TGC codon have been observed (thell mutation. The phenotypes Bgfrl+/— andFgfr3+/— mice,
exception is Cys Gly). andFGFR3+/— humans (4p— syndrome), are very different from

(vi) Different substitutions of the same amino acid may givehe craniosynostosis syndromes resulting from mutation of the
different phenotypes: in FGFR2, S252W and S252F cause Aperdrresponding genes 1370-73). By contrast, possible
syndrome whereas the phenotype with S252L is usually normédicalisation of Saethre—Chotzen syndrome to human 7p was
C342Y tends to give a Crouzon phenotype whereas C342R teraigjinally investigated because the phenotype appeared similar to
to give a Pfeiffer phenotype (there is, however, some overlap)patients with 7p deletions 74), and murine twistt/—

(vii) Identical substitutions may be associated with variabl&eterozygotes, although described as normal in the original report
limb phenotypes: noteworthy examples include the variabl€’5), exhibit subtle cranial and digital abnormalities strikingly
phenotype associated with the A344G mutation in the originaéminiscent of the human disorde82). These and other
Jackson-Weiss pedigree, and the Apert-like phenotype obsenauservations suggest that the human MSX2 and FGFR mutations
in a single instance of the 1119-245 splice mutation30), involve gain of function, whereas the TWIST mutations are
which is more usually associated with Pfeiffer syndrome. largely loss of function (haploinsufficiency). This is supported by
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Figure 2. Structure of MSX2, FGFR2 and TWIST (drawn to scale) showing conserved motifs and mutations in craniosyAp$tt&¥2 (s a transcription factor
cloned by homology to tHerosophilamshgene and includes a highly conserved DNA-binding homeodomain BY&GFR2 is a transmembrane receptor tyrosine
kinase. Ligand binds to extracellular immunoglobulin-like domains (Igl, Igll and Iglll), each of which contains a paipbfd#idirked cysteines. Ligand-induced
dimerisation leads to autophosphorylation of the split tyrosine kinase (TK1 and TK2). The relative frequency of mutdtidgditelading to Apert, Crouzon and
Pfeiffer syndromes is indicated on the histogram. Coloured dots denote other rare but important mutations. Below, amiremeegiafdgli-Iglll linker (FGFRL1,

-2 and -3) and transmembrane (TM) region (FGFR2 and -3) are given, with conserved residues highlighted in black. Treremtiadgléhe membrane-spanning
region. Substitutions leading to craniosynostosis (coloured letters) or bone dysplasia (black letters) are shown aboemeadim $&€g§FR3, the mutations R248C,
S249C, G370C, S371C and Y373C cause thanatophoric dysplasia type |; G375C and G380R cause achondroplasia). The doSRB2RURZESS in FGFR2
is omitted for clarity. C) TWIST is a transcription factor. Molecules dimerise via the helix-loop—helix (HLH) motif, binding DNA at the basic refgioriubther
information see refs 17 (MSX2), 65,66 (FGFR) and 61,62 (TWIST).

evidence of frequent nonsense mutations iTWWé&STgene, but  protein interactions. Although initial studies did not demonstrate

not in theMSX2or FGFR genes (Tablé and Fig.2). Several any difference in the binding properties of the mutant protein to a

approaches have been taken to elucidate the gain of functitamget DNA sequence, more recent work has shown that the P148H

mechanisms of the MSX2 and FGFR mutations. These asabstitution does confer enhanced DNA binding affinity with a

described below, and the conclusions summarised in Zable reduced dissociation rate, without altering target specificiy. (

Two groups have reported the production of mice carrying inserted

MSX2 msx2or MSX2transgenes, with markedly different effects on the
phenotype 77,78). In one study, said to have achievedx2

The P148H substitution occurs at position 7 of the highlpverexpression of 2-fold or lessg), the mice were viable and a

conserved homeodomain, which is involved in both DNA angroportion developed premature cranial suture fusion, mimicking
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the human disordei7{). In the other study, 13—22 copies of thecells was measure8@1). Full length FGFR2 (normal or mutant)
MSX2transgene were integrated and the mice died around birtfas inactive in this assay, so chimeric molecules containing the
with severe craniofacial malformations, but with no evidence dfansmembrane and/or tyrosine kinase portions of the NEU
craniosynostosis7@). No consistent differences in phenotypereceptor were constructed. Broadly similar results tX#mopus
between mice carrying the normal and mutant versions of tlexperiments, including evidence of mutant receptor dirasgg,
transgene were observed in either study. The results suggest thate obtained for the mutations Y340H, C342Y and S354C. The
normal craniofacial development is very sensitive to (wild-typejindings for Y340H suggest that intermolecular cross-linking
MSX2 dosage; the enhanced DNA binding affinity of the P148Hbetween cysteines may occur even when the cysteines remain as
protein may mimic the effect of a mild elevation in MSX2 dosagea pair: this may be due to unfolding of the domain leading to
sufficient to cause craniosynostosis but not the more sevesgposure of the buried cysteiné4,82).

malformations. The mechanism of the transmembrane mutation G384R in
FGFR2 has not been studied directly, but several groups have
FGER investigated the similar (Fig) G380R achondroplasia mutation

in FGFR3. A variety of evidence suggests that this mutation

The mechanism of FGFR craniosynostosis mutations has be#tpws weak ligand independent activation (review&d)nThe
reported in two experimental systetisnopusocytes/embryos basic side chain Arg is presumed to form a transient hydrogen
and HeLa cells. Blastomere injection of mRNA encoding th@ond with the transmembrane helix of a partner molecule,
XenopusFGFR2 mutation C332Y (corresponding to C342Y inrendering the receptor monomers slightly ‘sticky’. The
the human), but not wild-type mRNA, caused elongation ofrouzon/acanthosis nigricans mutation A391E in FGFR3 might
animal pole ectoderm and induction Xbra, a marker of also form intermolecular hydrogen bonds, but the qualitative
mesodermal expression, mimicking the effects of exogenowkfferences in phenotype with achondroplasia show that there
fibroblast growth factor 1 (FGF1). Mutant FGFR2 protein,must be differences in how this is executed. One suggestion is that
assayed after mRNA injection of oocytes, demonstrated greatée A391E/FGFR3 mutant might act through heterodimerisation
binding to antiphosphotyrosine antibodies and higher kinagaith a normal FGFR2 molecul€7).
activity than wild-type, yet was unable to bind FGF1. Under The mechanism of the paralogous RPwrg mutations in the
non-reducing but not reducing conditions, a slower migratinggll-Iglll linker of FGFR1, -2 and -3 appears to be distinct.
form of the mutant protein was apparent, consistent witkvidence from the naturally occurring mutations shown in Figure
dimerisation. These data were interpreted as showing two distiribtsuggests that it results from a highly specific interaction
conseguences of the Cy3yr mutation: (i) abolition of FGF1 (summarised if82). It is of interest that iDrosophilaDFR2 and
binding due to disruption of the Iglll domain but also (ii) theCaenorhabditis egl-15, an arginine occurs naturally at the
mutated cysteine leaves an unpaired partner (C2B@riopus  corresponding position of these FGFR homol@gs, (ndicating
C278 in human) which is free to bond covalently with anothethat in a different biological context the presence of Arg is
mutant molecule, resulting in ligand-independent constitutiveonsistent with normal receptor function. We have speculated that
activation 9). A prediction of this model is that homozygosity substitution to bulky residues in this linker region might alter the
for the mutation would cause early embryonic lethality, due teelative orientation of the Igll and Iglll domains and hence mimic
abolition of FGF binding. or accentuate the effects of ligand bindih®) (Tentative evidence

In a follow up paper, further FGFR2 mutations were studied ifor this was found in th&enopusystem, in which greater binding
Xenopug(80). Injection of C268F mutant MRNA gave similar of FGF1 and FGF2 to translated receptor was consistently
results to those for C332Y. Co-injection with mRNA encoding abserved after injection &f§GFR1 mRNA encoding the P160R
dominant-negative FGFR1 molecule caused the mesodemmutation, compared with wild-type. No elongation of animal pole
inducing effect to be competed out (the dominant-negativectoderm or increased tyrosine kinase activity was however
FGFR1 forms non-productive heterodimers, demonstrating thabserved&0). In a different approach, surface plasmon resonance
the mutant FGFR2 needs to dimerise for its action). A doublenalysis has been used to investigate in real time the binding of
mutant, C268F/C332Y (which lacks an unpaired cysteine), failetlGFs to normal and mutant FGFR2 constructs. Reduced
to induce elongation of animal pole ectoderm although it didissociation of FGF2 from FGFR2 constructs containing the Apert
exhibit increased phosphotyrosine levels. mutations S252W or P253R, compared to wild-type, was observed

In an alternative approach, the ability of human FGFRZJ.Anderson, H.D.Burns, P.Enriquez-Harris, A.O.M.Wilkie and
mutants to induce focus formation when transfected into NIH 3T3K. Heath, manuscript in preparation).

Table 2.Proposed mechanisms of dominance in craniosynostosis mutations

Mechanism Example
Haploinsufficiency TWIST
Structural disruption FBN1
Reduced dissociation of ligand P148H in MSX2 (DNA binding)
S252W and P253R in FGFR2 (FGF2 binding)
Covalent cross-linking of Cys C278F, Y340H, C342Y, S354C in FGFR2

Transmembrane hydrogen bonding ?G384R in FGFR2, A391E in FGFR3
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In summary, a variety of evidence points to the activating nature How do TWIST and MSX2 link up with FGFR in biogenesis of
(constitutive or prolonged signalling) of FGFR2 mutations andhe suture? Nothing is known about this at present, but there is a
this is largely corroborated by work on FGFR3 mutations in bongrowing consensus that certain developmental pathways are
dysplasia (reviewed idi7). However, one study of FGF2-induced conserved betweeDrosophila and vertebrates98) and suture
calcium signalling in fibroblasts from patients with biogenesis could represent a further examplést is well
achondroplasia and thanatophoric dysplasia gave resulistablished as a critical gene for mesoderm induction in
apparently inconsistent with other findings. Cells heterozygouSrosophila and later functions as a myogenic swité&).(
for either R248C or S371C, or homozygous for the G380Expression of a fibroblast growth factor reced@*R1, depends
mutation in FGFR3 (Fig2) exhibited a defective response toon twist (95,96) and null mutants foDFR1 (heartles} are
FGF2, leading the authors to suggest thahthieoeffect of these  defective in muscle formation and show abnormal directional cell
mutations was actually dominant-negativ@d)( A possible migration ©7,98). Mesodermal expression of timesh gene is
resolution of this paradox is discussed in the next section.  turned on later in myogenesis and is abolishetvist mutants

(99,100). Certainly, the idea that aspects of mesoderm formation

in Drosophila and development of the cranial suture (a
CRANIAL SUTURE MORPHOGENESIS AND mesodermal structure) involve conserved pathways represents a
CRANIOSYNOSTOSIS reasonable working hypothesis, which has the benefits of

harnessing the power Bfrosophilagenetics to the study of the

The modern techniques of developmental biology have onfUman.

recently been focused on the cranial sutures, following the

discovery of craniosynostosis mutations in humans. There is SffUTATION HOTSPOTS IN FGFRs AND TWIST?

very little known about the molecular and cellular factors

controlling the balance between proliferation and differentiation i©One further problem remains. It is clear that the spectra of
these structures. It has been demonstrateiithé(17) andFgfr2 ~ mutations observed in thHBNVISTand FGFR genes are highly
(85), as well agransforminggrowth factor 3 1-3 (86,87) are  non-random. Although relatively few mutations have been
expressed in mouse or rat sutures. In the cdsgfi®, the domain  described INTWIST 21 bp duplications (with three distinct
of RNA expression coincides with active cell proliferation, but ismolecular origins) comprise about one third. This is interesting,
mutually exclusive withosteopontin an early marker of bone but the explanation can be accommodated within conventional
differentiation 85). This suggests thagfr2 is a marker of molecular biology, as a repeat unit with 21 bp periodicity is
proliferative, uncommitted cells of the suture, and is switched offresent in this regior52). Something more remarkable seems to
as a cause or consequence of osteogenic differentiation. be happening with theGFR mutations in craniosynostosis and

This conclusion raises a paradox. If FGFR2 is associated witlone dysplasia. It is unlikely to be coincidental that the three
the undifferentiated state, why do activating mutations apparenthighest germline point mutation rates described in the human
cause differentiation, leading to craniosynostosis? Recently, ugdevated [1000-fold over background) all concern FGFRs:
of ex-uterosurgical techniques on fetal mice has shed new light380R in FGFR31(01), P250R in FGFR354) and S252W in
on this question. Implantation of FGF2-soaked beads over th&FR2 @5). Increased paternal age associated with
coronal suture disrupted the normal suture and resulted in taehondroplasia and Apert syndrome has long been suspected
ectopic expression afsteopontinFgfr2 expression was absent (reviewed inl02), and an exclusively paternal origin of mutation
from the immediate area underlying the bead, but was apparemas shown in studies of 57 Apert syndronis)(and 10
as aring surrounding its margB&j. This suggests that excessive achondroplasia patient&(3. This implicates spermatogenesis
FGF2 signalling (i) does result in osteogenic differentiation, ands being specifically involved in the elevated mutation rate, but
(i) is associated with down-regulation of FGFR2 in thethe mechanism is not known. Conventional explanations, e.g.,
experimental system. The former conclusion is reminiscent gfene conversion appear unlikely given the diverse pattern of
recent work on thanatophoric dysplasia type Il, indicating thanhutations observed. Circumstantial evidence for an alternative
different intensities of FGFR3 signalling have qualitativelyhypothesis, that the mutation rate is not elevated per se but that
distinct cellular consequence®s(89), whilst the latter explains germ cells carrying the mutation have a selective advantage, is
the finding that cranial sutures from patients with Crouzomliscussed elsewhergd).
syndrome contain a lower proportion of cells positive for FGFR2
antibody than sutures from control individu&§){ A reciprocal
relationship between FGF production and FGFR expression hég: KNOWLEDGEMENTS
been observed previousl91(92).

Under this model, the behaviour of cells carrying FGFR
mutations may be viewed as a subtle balance between
opposing forces: the intrinsically activating nature of the,
mutations, and the tendency for activaton to caus
down-regulation. This balance may change with time, place al
cellular identity. This view would accommodate the paradoxic
‘dominant-negative’ effect of FGFR3 mutations on FGF2-induce
calcium signalling in fibroblasts, described abogd).( More e
speculatively, it may also begin to explain the mystery of why the%
mutations are neither lethal in early embryogenesis, nor associajg
with marked predisposition to neoplasia in later life.
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