
Crash-avoiding Program Repair

Xiang Gao
National University of Singapore

gaoxiang@comp.nus.edu.sg

Sergey Mechtaev
University College London
s.mechtaev@ucl.ac.uk

Abhik Roychoudhury
National University of Singapore

abhik@comp.nus.edu.sg

ABSTRACT

Existing program repair systems modify a buggy program so that

the modified program passes given tests. The repaired program

may not satisfy even the most basic notion of correctness, namely

crash-freedom. In other words, repair tools might generate patches

which over-fit the test data driving the repair, and the automatically

repaired programs may even introduce crashes or vulnerabilities.

We propose an integrated approach for detecting and discarding

crashing patches. Our approach fuses test and patch generation into

a single process, in which patches are generated with the objective

of passing existing tests, and new tests are generated with the objec-

tive of filtering out over-fitted patches by distinguishing candidate

patches in terms of behavior. We use crash-freedom as the oracle to

discard patch candidates which crash on the new tests. In its core,

our approach defines a grey-box fuzzing strategy that gives higher

priority to new tests that separate patches behaving equivalently

on existing tests. This test generation strategy identifies semantic

differences between patch candidates, and reduces over-fitting in

program repair.

We evaluated our approach on real-world vulnerabilities and

open-source subjects from the Google OSS-Fuzz infrastructure. We

found that our tool Fix2Fit (implementing patch space directed

test generation), produces crash-avoiding patches. While we do not

give formal guarantees about crash-freedom, cross-validation with

fuzzing tools and their sanitizers provides greater confidence about

the crash-freedom of our suggested patches.

1 INTRODUCTION

For a given program with a defect, the goal of program repair is

to eliminate the defect by automatically transforming the program

source code. Typically, program repair systems construct a space

of candidate patches (set S in Figure 1) and search for a patch

that passes the given tests. Such patches that pass given tests are

called plausible patches (set P in Figure 1) in the program repair

literature. Since a test suite is an incomplete specification, only part

of plausible patches are correct (setC in Figure 1), and the remaining

patches merely overfit the tests. When we repair a program crash,

the over-fitted patches may still cause program crash for the test

outside of the given test suite.

In this work, we propose to divide the set of plausible patches

P into two subsets Pcrash−free (crash-free plausible patches), and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ISSTA 2019, 15-19 July, 2019, Beijing, China

© 2019 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

is

space

that

may

S P Pcrash−free

Pcrashing

C

Figure 1: Structure of program repair search space, where S

is a space of candidate patches, P is a set of plausible patches,

Pcrash−free is a set of crash-free patches, C is a set of correct

patches, and Pcrashing ≔ P \ Pcrash−free is a set of crashing

patches.

Pcrashing (crashing plausible patches) and suggest that program re-

pair should aim to find a patch from the set Pcrash−free , that is a

patch that passes given tests and does not cause crashes for the

inputs outside of the repair test suite. Although crash-freedom is im-

plicitly assumed to hold for correct patches, existing program repair

systems do not guarantee this property and may generate patches

causing crashes or even introduce new crashes and vulnerabilities.

Ideally, the property of crash-freedom should be proven. How-

ever, software verification techniques often suffer from scalability

limitations that prevent them from being applied to real-world soft-

ware. A more practical and widely-used approach is to test crash-

freedom. In the context of program repair, testing crash-freedom

implies finding an overapproximation of Pcrash−free .

A prominent group of testing techniques that were successfully

used to find serious vulnerabilities in popular software is coverage-

based greybox fuzzing [1]. These techniques resort to compile time

instrumentation which guides the generation of test inputs. In these

algorithms, inputs are randomly mutated to generate new inputs,

and higher priority is assigned to inputs that exercise new and

interesting program paths. Whether a generated input exercise new

paths is predicted based on whether new control flow transitions

are exercised; this is found out with the help of the compile-time

instrumentation. The main intuition of these techniques is that

covering more program paths (that correspond to different semantic

partitions of the input space) enables them to cover more parts of

program functionality and therefore find more crashes.

Coverage-based greybox fuzzing can be applied to detect crashes

in automatically generated patches in the following way: (1) gener-

ate a high coverage test suite using fuzzing for the original program,

and (2) run this test suite on all plausible patches P to discard those

that introduce crashes, and thus find an over-approximation of

Pcrash−free . However, we argue that this approach is ineffective for

the following two reasons. First, each candidate patch alters the

semantics of the original program and therefore might induce differ-

ent semantic partitions of the input space, so tests generated for the

https://doi.org/10.1145/nnnnnnn.nnnnnnn

ISSTA 2019, 15-19 July, 2019, Beijing, China Xiang Gao, Sergey Mechtaev, and Abhik Roychoudhury

original program might not adequately cover the functionality of

the patched program. Second, to divide the set of plausible patches

P into subsets Pcrash−free and Pcrashing (dotted line in Figure 1), the

generated tests should also differentiate patches in the search space.

To take the above considerations into account, we suggest that

test generation for program repair should not be based merely on

the coverage of the original program, but also on the coverage

of the divergences introduced by the patches in the search space.

Thus, a test suite produced by our method is not just aimed to cover

functionality of the original program, but also (1) functionality that

is altered by the candidate patches, and (2) functionality that differs

across candidate patches. Since such a test suite is more likely to

find divergences among plausible patches P , consequently it is more

likely to differentiate between Pcrash−free and Pcrashing .

As a practical realization of this concept, we propose a new

algorithm that fuses patch and test generation into a single process.

In this process, patches are generated with the objective of passing

existing tests, and new tests are generated with the objective of

differentiating patches. To increase the likelihood of differentiating

two versions of a program, it is necessary to generate a test that

reaches the divergent statements, and the divergent statements

produce divergent values during the test execution. However, since

there could be many plausible patches, it is inefficient to separately

generate tests to distinguish each pair of these patches. Instead,

we propose to group patches into test-equivalence classes, sets of

patches that demonstrate equivalent behaviour on existing tests.

These are called as patch partitions. When generating tests, we

assign higher priority to those tests that refine patch partitions into

finer-grained partitions, since such tests cover previously uncovered

semantic differences between candidate patches. This allows us to

efficiently cover divergences between candidate patches without

explicitly considering all pairs of patches.

Contributions. Program repair techniques suffer from over-fitting,

and cannot distinguish correct patches from plausible incorrect

patches. Our work is a step towards rectifying this problem. First

and foremost, we propose to tightly integrate testing and program

repair to effectively discard crashing patches. Secondly, we devise

fuzz testing strategies to guide test generation towards differen-

tiating patches in the search space. Our fuzz testing tool Fix2Fit

actively exploits the search space of patches maintained as patch

partitions computed via test equivalence relations. Tests are gen-

erated with the goal of refining the patch partitions. Last but not

the least, we construct a set of subject programs from OSS-Fuzz

(a popular open-source repository from Google) capturing a wide

variety of software vulnerabilities. We evaluate our patch-aware

fuzz testing strategies as embodied by our tool Fix2Fit on the con-

structed benchmark, and show significant (up to 60% reduction) in

the space of candidate patches. If the oracles of a few (5-10) newly

generated tests are available, this reduction increases to 93% on our

OSS-Fuzz subjects.

2 RELATED WORK

Test-based automated program repair Test-based automated

program repair treats the provided test suite as specification of

intended behavior and generates patches that make program pass

all the given tests. Typically, patch generation methods include:

(1)search-based approaches search the correct patch from a huge

patch space using meta-heuristic [2, 3], random search [4] or test-

equivalence analysis [5] (2)constraint solving based approaches ex-

tract constraints from test executions, and synthesize patches by

solving the constraints [6ś9], and (3) potentially learning-based

approaches use a model to select patches that are more likely to

fix the defect based on existing patches [3, 10] or program con-

text [11]. While these approaches are able to generate high-quality

patches according to the provided tests, the weakness of test suites

remains a challenging problem in test-based program repair. Due

to the incompleteness of test suites, the generated patches may

overfit the available tests and can break untested functionality.

Over-fitting problem exists in both search-based repair [12] and

semantics-based repair techniques [13]. To alleviate the over-fitting

problem, existing approaches filter out overfitted patches by tech-

niques such as defining anti-pattern [14] or generating simplest

program repairs [8]. Different from those approaches, which add

more heuristic in the search process, Fix2Fit enhances the program

specification via test case generation. Actually, Fix2Fit is orthogonal

to those techniques and can be combined with them in the future.

Test generation for program repair Automatically generating

more tests for automated program repair is a useful strategy to

alleviate the overfitting problem. Existing approaches generate ad-

ditional test cases using symbolic execution, grey box fuzzing [15]

(like AFL) or evolutionary algorithm [16] (like EvoSuite [17]). All

those approaches are designed to generate tests with the goal of

covering the patched methods or statements, but they do not take

the patch semantics into consideration. DiffTGen [18], the work

most relevant to us, generates test inputs that exercise syntactic

differences, monitors execution results and then selects tests that

uncover differences between the original faulty program and the

patched program. Compared with DiffTGen where the patch is

validated one by one, Fix2Fit is more efficient since it examines the

patches in the same patch partition together. Besides, different from

all existing approaches, Fix2Fit utilizes semantic difference between

patches as a search heuristic and guides the test case generation

process, so that we can efficiently find more semantic discrepan-

cies across patches. Inferring the expected behaviors (oracles) for

newly generated test inputs is another challenging problem. Exist-

ing approaches infer oracles of tests based on test similarity [19],

developers’ feedback [18, 20] or some obvious oracles (like mem-

ory safety [15]). In contrast, Fix2Fit utilizes security oracles from

sanitizers to avoid introducing crashes or vulnerabilities.

Goal-directed test generation Goal-directed test generation

can be used to generate test inputs to maximize code coverage [1,

21], cover the changes in a patch [22] or find behavioral asym-

metries between programs (differential testing) [23]. Symbolic ex-

ecution employs constraint collection and constraint solving to

systematically and effectively explore the state space of feasible

execution paths [24]. By precisely controlling the constraint collec-

tion and solving process, symbolic execution could generate test

inputs that achieve particular goals such as directed-ness and cov-

erage [25ś28]. In contrast to symbolic execution, grey box fuzzing

does not involve heavy machinery of symbolic execution and con-

straint solving. Greybox fuzzing directs the search to achieve a

certain goal by adjusting the mutation strategy according to the

Crash-avoiding Program Repair ISSTA 2019, 15-19 July, 2019, Beijing, China

1 int decode_dds1 (By teContex t ∗ gb , u i n t 8 _ t ∗ frame , int

width , int he i gh t) {
2 . . .
3 segments = by t e s t r e am2_ge t _ l e 1 6 (gb) ;
4 while (segments −−) {
5 if (b i t b u f & mask) {
6 . . .
7 }
8 else if (b i t b u f & (mask << 1)) {
9 v = by t e s t r e am2_ge t _ l e 1 6 (gb) ∗ 2 ;
10 if (f rame − f rame_end < v)
11 return AVERROR_INVALIDDATA ;
12 frame += v ;
13 } else {
14 int rema in ing_space = frame_end−f rame ;
15 if (r ema in ing_space < width+3)
16 //"width+3" → "width+4" (correct patch)

17 return AVERROR_INVALIDDATA ;
18 frame [0] = frame [1] = frame [width] =
19 frame [width +1] = by t e s t r e am2_ge t _byte (gb) ;
20 frame += 2 ;
21 frame [0] = frame [1] = frame [width] =
22 //buffer overflow location

23 frame [width +1] = by t e s t r e am2_ge t _byte (gb) ;
24 frame += 2 ;
25 }
26 } }

Listing 1: Buffer overflow vulnerability in FFmpeg

information collected at run-time with the help of compile-time in-

strumentation. Greybox fuzzing has been demonstrated to be useful

for increasing code coverage [1, 29], reaching target location [22],

and finding behavioral asymmetries between programs [23]. Dif-

ferent from those fuzzing techniques, Fix2Fit is designed with the

objective of finding semantic discrepancies between patches, and

we take the semantic of patches into consideration.

3 OVERVIEW

In this section, we give a high-level overview of our approach to

generate crash-free patches by presenting an example from FFm-

peg. FFmpeg is a collection of libraries and programs for handling

video, audio and other multimedia files, streams. A buffer over-

flow vulnerability is reported by OSS-Fuzz1 in May, 2017. This

vulnerability is caused by incorrect bounds checking when FFmpeg

decodes DirectDraw Surface (DDS) files2. Listing 1 shows the key

code snippet as well as its patch. The decode method in Listing 1

takes four parameters, where gb stores the origin data of the input

image, width and height are initialized based on the information

from input image header, and frame is a buffer to store decoded data.

If remaining_space is equal to width+3 (line 15), an invalid buffer

access will occur in line 23, since it will overwrite the memory

locations after frame_end. The correct patch3 for this vulnerability

is to modify the condition in line 15 from width+3 to width+4.

Automated program repair (APR) takes a buggy program and a

set of test cases (including failing tests which will cause program

crash) as inputs. Since the tests do not cover all program functional-

ities, APR tools may generate many over-fitted patches which make

program pass all the test suite but do not actually fix the bug. Given

the failing test case and a set of supported transformations, 1807

1https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=1345
2DDS is an image file format for storing texture and environments
3https://github.com/FFmpeg/FFmpeg/commit/f52fbf

Table 1: Plausible patches and their behaviors on new test

Id plausible patch T1 T2 T3 T4

1 remaining_space>width+1 (T) ✓ (F) ✗ Ð Ð

2 remaining_space>width+2 (F) ✗ Ð Ð Ð

3 remaining_space! =width+3 (T) ✓ (T) ✓ (T) ✓ (T) ✓

4 remaining_space<=width+3 (T) ✓ (T) ✓ (F) ✓ (F) ✓

5 remaining_space>=width+3 (F) ✗ Ð Ð Ð

6 remaining_space<width+4 (T) ✓ (T) ✓ (F) ✓ (F) ✓

7 remaining_space<width+5 (T) ✓ (T) ✓ (T) ✓ (F) ✓

8 remaining_space<width+6 (T) ✓ (T) ✓ (T) ✓ (F) ✓

plausible patches are generated to fix the buffer overflow vulnera-

bility. Column plausible patch in Table 1 shows part of patches that

can make the program pass the failing test. Out of them, the fourth

and sixth patches are semantically equivalent to the developers’

patch. However, other patches over-fit the existing test set. Those

patches fix the crash triggered by existing test set, but they do not

completely fix this vulnerability and even introduce new vulner-

abilities (e.g. the patched program using first patch crashes when

remaining_space is equal to width+2). The fundamental reason is

that the search space of candidate patches is under-constrained.

To tighten the search space and rule out crashing patches, one

solution is to automatically generate more test cases. This leads to

the following research question: how to generate test cases that

can filter out a large fraction of over-fitted patches?

Existing fuzzing techniques are not suitable for efficiently gen-

erating tests to constrain the patch space. Most fuzzing tools (e.g.

AFL [1]) favour the mutation of input with the goal of finding un-

explored statements, or enhancing code coverage. Different from

program testing, the role that fuzzing plays in repair is to gener-

ate test cases to find discrepancies between patches and filter out

overfitted patches instead of covering more statements or paths. In

this example, test cases that can drive the execution to the patch

location with different program states (values of remaining_space,

width) are expected. If behavioral discrepancies between plausible

patches are disclosed, we make one step forward to distinguish

crash-free patches from crashing patches, so that the chance to

filter out over-fitted patches is increased.

To efficiently generate test inputs that can filter out overfitted

patches and differentiate patches, we propose a strategy to integrate

test generation and program repair. Our main intuition is, if one test

is able to find the discrepancies between patches, its neighbors are

also likely to find discrepancies. Table 1 shows the patch behaviors

over four tests. The patch behavior is shown by its effectiveness

in repairing vulnerability and expression value, where ✓ and ✗

represent whether buffer overflow vulnerability is triggered or not

by each test, T and F represent the value of patch expression (true

or false). Suppose these four tests are generated in order, with

values of remaining_space equals to width+2, width, width+4, and

width+6 respectively. For instance, the expression value of patch

2 (remaininд_space > width + 2) is false (F) under test T1, and

program fixed by this patch still crashes (✗) under T1, so that patch

2 is filtered out andwill not be considered in the following iterations.

Test input T1 is able to find the discrepancies between patches, and

rule out two over-fitted patches. Correspondingly,T2 andT3, which

ISSTA 2019, 15-19 July, 2019, Beijing, China Xiang Gao, Sergey Mechtaev, and Abhik Roychoudhury

are two neighbors of T1 (a single increment or decrement mutation

over width or v on line 9), can also find discrepancies.

To guide the test generation process, Fix2Fit adopts an evolution-

ary algorithm similar to the popular AFL fuzzer [1]. AFL undergoes

compile-time instrumentation to capture control flow edges, and

at run-time during test generation it uses the instrumentation to

predict whether a newly generated test exposes new control flows.

Tests which expose new control flows are favored and they are

retained for further examination by mutating them further. In ad-

dition to this code coverage enhancing heuristic used in AFL, we

propose a new heuristic: we favor tests with greater ability to dis-

tinguish plausible patches. In our example program, AFL will not

retain T1, since it does not cover new statements (edges). However,

in our proposed patch-aware fuzzing, T1 will be retained for fur-

ther mutation, so we have a chance of finding tests like T2 or T3
via mutation. In addition, this chance of finding tests which find

discrepancies across patches, can be further increased by assign-

ing higher łenergy" to T1 (meaning more mutations of T1 will be

constructed by the fuzzer).

Out of eight patches given in Table 1, three plausible patches

(1, 2, 5) can be ruled out, since the program constructed by those

patches still crashes over some tests. For the remaining five plausible

patches, the patched program does not crash, but the semantic

behaviors of them are different (two of them are correct). The

remaining incorrect patches cannot be ruled out due to the lack of

oracles of the generated tests. If the oracle of certain tests such asT3
is provided (could come from more fine-grained program analysis

or developers), all the incorrect patches can be ruled out.

4 BACKGROUND

We denote a program as p and a program obtained from p by substi-

tuting an expression e with e ′ as p[e 7→e ′]. The substitution (e 7→e ′)

of expressions are called patch of p, and sets of patches are denoted

as P, P1, ..., Pn . The letters t, t1, ..., tn are used to represent program

inputs (tests), and the letters T ,T1, ...,Tn represent sets of program

inputs (test suites).

4.1 Program repair

Automated program repair techniques take in a buggy program,

and a set of passing and failing tests, and aim to generate a patched

program that passes all the given tests. We consider the search

spaces of candidate patches that consist of only modifications of

program expressions. The search space in our approach is defined

by the following transformation schemas:

• Change an existing assignment:

x ≔ e; 7→ x ≔ e′;

• Change an existing if-condition:

if (e) {...} 7→ if (e′) {...}

• Add an if-guard to an existing statement S:

S; 7→ if (e) S;

where e and e ′ are arbitrary expressions of bounded size. Patches

that pass all the given tests are called plausible patches. Since a

test suite is an incomplete specification, plausible patches may not

be correct, but merely overfit the given tests. Besides, the plausi-

ble patches may even introduce new bugs and break the under-

tested program functionality. The most basic approach to patch

generation is the generate-and-validate algorithm [30] that enumer-

ates and tests individual patches. This algorithm, however, scales

only to small search spaces because of the cost of test execution.

Test-equivalence analysis [5, 31, 32] can significantly optimize this

process.

Definition 4.1 (Test-equivalence). Let p and p′ be programs, t be

a test. We say that p is test-equivalent to p′ w.r.t. t if both p and p′

produce same output by executing t .

In some cases, test-equivalence of two programs can be detected

without executing each of them individually, but instead performing

dynamic analysis while executing only one of them, which helps

to reduce the number of test executions required for evaluation. In

this work, we consider one such analysis referred to as value-based

test-equivalence [5]. The search space of patches is represented as a

collection of patch partitions. The patch partitions are constructed

by using a value-based test-equivalence relation.

Definition 4.2 (Value-based test-equivalence). Let e and e ′ be ex-

pressions, p and p′ be programs such that p′ = p[e 7→ e ′], t be a

test. We say that p is value-based test-equivalent to p′ w.r.t. t if e is

evaluated into the same sequence of values during the execution of

p with t , as e ′ during the execution of p′ with t .

4.2 Greybox fuzzing

We briefly describe how Greybox Fuzzing (e.g. AFL [1]) works in

Algorithm 1. Given a set of initial seed inputsT , the fuzzer chooses

t fromT (line 2) in a continuous loop. For each selected t , the fuzzer

determines the number of tests to be generated bymutating t , which

is called the energy of t , and its assignment is dictated by a power

schedule. The fuzzer generates new inputs by mutating t according

to defined mutation operators and the power schedule. New input t ′

will be added to the circular seed queue (line 7) for further mutation

if it is a łinteresting" input, meaning it potentially exposes new

control flows as deemed from the compile-time instrumentation.

ALGORITHM 1: Greybox Fuzzing

Input: seed inputs T

1 while timeout is not reached do

2 t := chooseNext(T);

3 energy := assignEnergy(t);

4 for i from 1 to energy do

5 t ′ := mutate(t);

6 if isInteresting(t ′) then

7 T := T ∪ t ′;

8 end

9 end

AFLGo [22], an extension of the popular grey-box fuzzer AFL,

directs the search to given target locations. In AFLGo, an estimation

of the distance of any basic block to the target(s) is instrumented at

compile time, and these estimates are used during test generation

to direct the search to the targets. Specifically, tests with lower esti-

mated distance to the target are preferred by assigning more energy

to these tests, and this energy difference increases as temperature

decreases. The temperature is controlled by a cooling schedule [33],

Crash-avoiding Program Repair ISSTA 2019, 15-19 July, 2019, Beijing, China

which dictates how the temperature decreases over time. Based on

cooling schedule, the current temperature Texp is defined as:

Texp = 20
− ctime

timex (1)

where timex is user-defined time to enter "exploitation" (preferring

tests deemed closer to the target) from exploration, ctime is current

execution time. Given the current temperature Texp , normalized

distance d(t,Tb) between test t and target location Tb , AFLGo in-

troduces an annealing-based power schedule (APS):

aps(t) = (1 − d(t,Tb)) ∗ (1 −Texp) + 0.5Texp (2)

and determines the energy assigned to t by multiplying the energy

assigned by AFL with a power factor calculated using APS:

energyaflgo(t) = energyafl(t) ∗ 2
10∗aps(t)−5 (3)

5 METHODOLOGY

Fix2Fit is designed to generate new test cases to efficiently rule out

over-fitted plausible patches and generate crash-free patches. Our

goal is to strengthen the filtering of patches by adding additional

test cases. Specifically, Fix2Fit observes the semantic differences

across plausible patches, and then guides the test generation pro-

cess. Fix2Fit utilizes the notion of separability: the ability to find

semantic discrepancies between plausible patches. To represent

the semantic discrepancies, we group all patches showing same

semantic behavior under all available test cases into an equivalence

class, which is called a patch partition. More formally,

Definition 5.1 (Patch Partition). Let T be a set of available test

cases and P be a set of plausible patches of program p. The patched

program by patch pi ∈ P is denoted as p[e 7→ei]. ∀pi ,pj ∈ P , pi and

pj belong to same equivalent patch partition if and only if ∀t ∈ T .

p[e 7→ei] is value-based test-equivalence to p[e 7→ej] w.r.t t .

The ability of a test to find semantic discrepancies is formal-

ized as its effectiveness in refining patch partitions. For any two

patches pi ,pj from the same equivalence partition EP , if p[e 7→ei]

is not value-based test-equivalence to p[e 7→ej] w.r.t new test t , we

say test t refines partition EP . Different from existing fuzz testing

techniques that maximize the code coverage (AFL), or minimize

distance to the target location (AFLGo), Fix2Fit is designed to maxi-

mize semantic discrepancies across patches (thereby refining patch

partitions). To find more semantic discrepancies between plausi-

ble patches, we essentially generate test cases that can make the

execution reach the patch location with divergent program states.5.1 Integration of Test Generation and Repair

Figure 2 presents a visual summary of our integrated testing and

repair loop. In directed grey-box fuzzers such as AFLGo [22], the

generation of new tests are guided by distance to the target gathered

at run-time with the help of compile-time instrumentation. In our

fuzzer, the fuzzing is guided not only by distance feedback but also

by separability, the ability of a test to distinguish patches. In this

way, we prioritize tests which can distinguish existing patches and

as a result rule out more over-fitted patches.

Algorithm 2 shows the key steps of Fix2Fit. The main procedure

is built on top of an automated patching technique, and directed

greybox fuzzing technique. Given a buggy program p, a test-suiteT ,

and at least one test case in T that can trigger a bug, this algorithm

will return a set of plausible patch partitions for fixing the bug.

ALGORITHM 2: Patch-aware Greybox Fuzzing

Input: test suite Tin , program p
1 Par := genPlausiblePatches (p ,T); // generate set of patch partitions

2 pLocs := extractPatchLocs (Par); // extract set of patch locations

3 p′ := instrument (p , pLocs); // instrument fuzzing targets

4 Tnew := { };

5 T := Tin ;

6 while true do
7 t := chooseNext(T);

8 for i from 1 to t.energy do
9 t ′ := mutate(t); Tnew := Tnew ∪ {t ′ };

10 (isReached, distance, coverage) := exec(p′, t ′);

11 if isReached then
12 Par := refine_and_filter(Par, t ′);

// Break patch partitions & remove over-fitted

partitions

13 sep := separability(t ′, Tnew) // Equation 4

14 end

15 t’.energy := powerSchedule(sep, distance, coverage); // Sec 5.3

16 if isInteresting(coverage, sep) then
// Sec 5.4

17 T := T ∪ {t ′ };

18 end

19 end

20 if timeout | | sizeOf(Par) == 0 then
21 break;

22 end

23 Output: remaining patch partitions Par

Mutators

Test suite
(Seeds)

Mutated files

Input Queue

(IsInteresting)
Enqueue

Dequeue

Pool of Patches

}
Refine

patch pool

Assign
energy

Figure 2: Structure of integrated testing and repair loop

Fix2Fit generates the initial set of plausible patches by inheriting

the traditional Generate and Validate approach, where a set of patch

candidates are generated and evaluated using a provided set of test

cases (line 1). Incorrect patches are filtered out in the evaluation

process, and a set of plausible patches are returned back. Besides

plausible patches, it groups patches with same semantic behavior

into a set of patch partitions (as per the value-based test equivalence

Definition 5.1). The plausible patches may be over-fitting, and the

patch partitions can be broken by generating more tests.

To filter out over-fitted patches by generating new tests, the

newly generated tests must at least reach the patch location. We

instrument program p with the patch location as target (Line 3) to

produce an instrumented program p′. At runtime, the instrumen-

tation is used to calculate code coverage and the distance to the

patch location (line 10), and also the separability for each newly

generated test. The separability of a test t ′ captures its ability to

find semantic discrepancies between plausible patches.

For each newly generated input t ′, Fix2Fit first evaluates whether

t ′ drives the execution to the patch locations (isReached). If test

t ′ reaches any target(Lines 11-13), procedure refine_and_filter is

invoked, which refines the patch partitions and also filters out patch

partitions as follows.

ISSTA 2019, 15-19 July, 2019, Beijing, China Xiang Gao, Sergey Mechtaev, and Abhik Roychoudhury

• first, refine_and_filter refines the current patch partitions

Par using test t ′. The refinement process may break the

existing patch partition into several sub-partitions since the

underlying value-based test-equivalence relation now also

considers the newly generated test t ′.

• After the patch partitions are refined using t ′, the procedure

refine_and_filter checks which of the patch partitions can

be shown to be over-fitting (patches which crash on test t ′)

and filters out those patch partitions.

Separability of a generated test t ′ (the patch-awareness in our

fuzzing method) is exploited along two dimensions: (1) it is used

in power schedule to determine the energy assigned to new test

t ′ as shown in line 15, and (2) it is used to determine whether

the generated input t ′ is added to the seed input set T for further

investigation/mutation (Lines 16-17).

The integrated fuzzing and repair algorithm is terminated on

timeout, or when all plausible patches are filtered out.

5.2 Separability of Test Cases

In Algorithm 2, test generation is guided by the behavioral differ-

ences across plausible patches. The ability of a test to find semantic

discrepancies between plausible patches is formalized as separabil-

ity. We now explain how the separability is calculated.

When a new test t ′ is introduced, its effects on the current patch

partitions can be captured in two ways: (1) patch filtering: rule out

over-fitted patches (2) partition refinement: refine existing patch

partition into several sub-partitions. Both of these can be used to

calculate the separability of test t ′, which in turn determines the

łenergyž assigned to t ′ in fuzzing.

We argue that the partition refinement is a better heuristic than

patch filtering for the purpose of guiding fuzzing. In the fuzzing

process, by mutating a test with high separability, we hope that the

generated neighbors are also tests with high separability. If we de-

fine separability in terms of number of over-fitted/crashing patches

filtered, we note that whether the patch is crashes on new test t ′

or not often depends on very specific values, for instance divide-

by-zero error can only be triggered when input is 0. Therefore, we

cannot assume that by mutating a test which exposes crashes, we

are also likely to get tests exposing crashes.

Compared to patch filtering, partition refinement is a smoother

metric, since the patches are grouped into partitions using test-

equivalence relation and whether partitions can be refined only

depends on the values of patch expressions. In other words, if one

test t ′ is able to pin-point semantic differences between patch candi-

dates (refine patch partitions), its neighbors (obtained by mutating

t ′) also have high chance to find semantic differences between

patch candidates. Once we generate one test that can refine patch

partitions, it is more likely that we can distinguish the crash-free

patches from crashing patches, and as a result, rule out over-fitted

patches. Based on this intuition, we define the separability of test

as its ability to refine test-equivalence based patch partitions.

Our notion of separability judges how much refinement is ob-

served on the patch partitions once a new test is introduced. Given

a set of patch partitions {P1, P2, ...Pn }, and a newly generated test

t ′, if the patches in partition Pi show different behaviors on test t ′,

we say t ′ refines partition Pi . We use b(t ′) to represent the number

0.0 0.2 0.4 0.6 0.8 1.0
separability(t)

0.0

0.2

0.4

0.6

0.8

1.0

sc
he

du
le
(t)

ctime=0

ctime=20

ctime=120

0 20 40 60 80 100 120
current time(min)

0.0

0.2

0.4

0.6

0.8

1.0

sc
he

du
le

(t)

seperability=0

seperability=0.5

seperability=1

Figure 3: (a) energy of a test with different separability at

0min, 20min, 120min (b) energy of a test t at different time

when separability(t)=0, 0.5, 1. timex=60min

of patch partitions that can be refined by test t ′. Fix2Fit always

maintains a set Tnew of newly generated tests, as shown in Algo-

rithm 2. We define the separability of test t ′ as b(t ′) divided by

maximum b(t) of any pre-generated test t ∈ Tnew :

separability(t ′,Tnew) =
b(t ′)

maxt ∈Tnew b(t)
(4)

5.3 Power Schedule

We now define the notion of power schedule, which is a measure of

the łenergyž with which the neighborhood of a test is investigated

(line 14 of Algorithm 2). Our goal is to investigate those tests more,

which can differentiate between plausible patch candidates.

To differentiate plausible patches in the search space, we should

first generate tests that reach patch location. Therefore, we inherit

the power schedule of the directed grey-box fuzzer AFLGo [22],

which directs the search to given target locations. Specifically, tests

with lower estimated distance to the target are preferred by assign-

ing more energy to these tests. Apart from reaching patch locations,

generating divergent program states in the patch location is neces-

sary to differentiate plausible patches. Fix2Fit prioritizes the tests

with higher separability by assigning more energy to these tests.

Note that separability of a test is calculated at run-time with the

help of compile-time instrumentation.

To generate divergent program states in the patch location, two

kinds of tests are needed: (1) tests that make execution reach patch

location following various paths (2) tests that make execution reach

patch location following same path but with different values (to

refine value-based test-equivalence relation). To take both kinds

of tests into consideration, we utilize the cooling schedule [33] no-

tion adapted from simulated annealing. Specifically, the degree to

which a test with high separability is preferred (over a test with

low separability) is increased over execution time (łtemperature

decreases" using the simulated annealing terminology). In other

words, Fix2Fit performs exploration at the very beginning to explore

various paths, and gradually changes to exploitation to differentiate

plausible patches. Given current temperature Texp (as defined in

Equation 1) as well the separability(t’) of test t , our power schedule

is defined as:

schedule(t ′) = separability(t ′) ∗ (1 −Texp) (5)

Thus schedule(t ′) ∈ [0, 1]. The behavior of this power sched-

ule is illustrated in Figure 3. We describe the integration of this

power schedule into a fuzzer. Suppose energyaflgo(t
′) is the energy

assigned to t’ by AFLGo, we define the integrated energy as:

energy(t ′) = energyaflgo(t
′) ∗ 2schedule(t

′)∗log2Max_Factor (6)

Crash-avoiding Program Repair ISSTA 2019, 15-19 July, 2019, Beijing, China

OSS-Fuzz

Test suite

Candidate

generator

Mutator
Guidance

engine

Runtime

Buggy

program

Program

(instrumented)

Patch pool

instrument

refine

cov, dis, sep

Figure 4: Architecture of tool Fix2Fit

where Max_Factor is the user-defined max factor integrated to

existing energy, and
energy(t ′)

energyaflgo(t
′)
∈ [1,Max_Factor].

Different from AFLGo where the optimization goal (reaching

target location) is fixed, our optimization goal keeps changing as the

patch partitions gradually get refined. Fix2Fit always tries to refine

new partitions thereby ruling out under-tested plausible patches.

Specifically, if test t1 refines a specific patch partition EP , t1 will be

assigned with higher separability and then assigned with higher

energy; moreover EP will be refined into several sub-partitions.

However, when we generate test t2 which can potentially refine

the partition EP into same sub-partitions, this does not necessarily

contribute to high separability of t2 since EP has already been

refined (broken into many partitions) by now.

5.4 Is Interesting?

Coverage-based greybox fuzzers always maintain a seed queue

to save łinteresting" tests for further mutation and investigation.

This appears as the procedure isInteresting in line 15 of Algorithm

2. In existing coverage based grey-box fuzzers, a test is deemed

łinteresting", if it is predicted to expose new control flows (and

hence improve code coverage); the prediction about discovering

new control flows is aided by compile-time instrumentation. In our

patch-generation guided fuzzer Fix2Fit, on top of retaining tests

exposing new control flows, we also want to retain tests which

makes execution follow a path but with different values thereby

improving the chance to refine patch partitions. Besides tests which

improve code coverage, Fix2Fit also regards the tests with non-

zero separability as łinteresting" and adds them to seed queue for

further mutation. As a result, we retain tests which are capable of

distinguishing between existing patch partitions, and the mutations

of such tests are examined by the fuzzer in Algorithm 2.

5.5 Sanitizer as Oracles

The absence of program crashes may not be sufficient to guarantee

program correctness. To mitigate this problem, we enhance patch

checking by introducing sanitizers, including UndefinedBehavior-

Sanitizer4 (UBSan) and AddressSanitizer5 (ASan). UBSan is used to

catch various kind of undefined behaviors during program execu-

tion, e.g. using misaligned or null pointer, signed integer overflow.

ASan is a tool that detects memory corruption bugs such as buffer

overflows or accesses to a dangling pointer. The patch partitions

are not only checked for crashes, but are also checked against all

available sanitizers.

6 IMPLEMENTATION

The architecture of Fix2Fit tool is shown in Figure 4. Fix2Fit takes as

inputs the buggy program and test suites extracted from OSS-Fuzz

benchmark, and outputs a set of crash-free patches. The initial test-

suite is composed of available developer test cases and the failing

tests from OSS-fuzz benchmark. Fix2Fit consists of three main

components: Candidate generator, Runtime and Guidance engine.

Candidate Generator takes the buggy program and tests as inputs

and generates a pool of patch candidates. The Runtime executes the

tests generated by fuzzing, collects necessary information, including

code coverage cov, distance to the patch location dis and separability

sep, and refines the patch pool. Guidance engine is used to guide the

fuzzing according to all the information collected at runtime.

Instrumentation: To enable Fix2Fit’s grey-box guidance, we

first of all instrument the buggy program to gather information

on the path executed for each test input. To collect the distance to

patch locations, we inherit the instrumentation strategy used in

AFLGo [22], where the estimated distances between basic blocks

are calculated and injected at compile-time. Besides, we insert a

logging instruction after each basic block to collect the execution

trace, which is then used for fault localization and for determining

whether the patch location is reached. To enhance the checking of

patch candidates, we instrument the buggy program using Clang’s

sanitizers, including Undefined Behavior Sanitizer (UBSan) and

Address Sanitizer (ASan). After the instrumentation with sanitizers,

we can treat the violation of sanitizer as normal program crash. All

instrumentation is completed at compile-time using Clang.

Candidate Generator We first generate the search space ac-

cording to pre-defined transformation operators. The transforma-

tions supported in our prototype include: changing the right-hand

side of an assignment, condition refinement and adding if-guard.

All the operators are borrowed from Prophet [34], Angelix [9] or

F1X [5]. The plausible patch candidates are grouped into patch

partitions based on their runtime value. To collect the run-time

values of patches, Fix2Fit synthesizes a procedure, say procallpatch
enumerating all plausible patches, and generates a meta-program

by dynamically replacing the to-be-fixed expression with a call to

this procedure. At runtime, the procedure procallpatch is invoked

when the patch location is reached. By controlling the enumeration

strategy, this procedure procallpatch can generate run-time values

for all the patches with one run and can select the run-time value

of one particular patch to return. This mechanism enables us to

generate and refine patch partitions with one run for each test.

Patch partitions are saved and maintained in the patch pool.

Runtime andGuidance engine Themain procedure of fuzzing

is built on top of the directed greybox fuzzer AFLGo [22]. Different

from AFLGo, Fix2Fit evaluates each of the newly generated tests

on the patched programs at runtime, and continuously maintains

and refines the patch partitions based on test-equivalence relations.

Since new tests are generated, the test-equivalence relations are

refined and hence the patch partitions are refined. Since our goal is

to expose the semantic discrepancies between patches, theGuidance

engine also takes the separability (Equation 4) into account.

4UBSan website: https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
5ASan website: https://clang.llvm.org/docs/AddressSanitizer.html

https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://clang.llvm.org/docs/AddressSanitizer.html

ISSTA 2019, 15-19 July, 2019, Beijing, China Xiang Gao, Sergey Mechtaev, and Abhik Roychoudhury

7 EVALUATION

We perform the evaluation on the effectiveness of Fix2Fit in gener-

ating test inputs, filtering out over-fitted patches and refining patch

partitions. Our research questions are as follows.

RQ1 What is the overall effectiveness of Fix2Fit in ruling out

over-fitted patches?

RQ2 Is Fix2Fit effective for generating crash-free patches?

RQ3 How far can Fix2Fit reduce the pool of patch candidates, if

the oracles of only a few (say 5-10) tests are available? Can

this reduction lead to a sufficiently small number of patch

partitions which can be manually examined?

7.1 Benchmark Selection

To evaluate our technique, we do not use existing benchmarks since

(1) some existing benchmarks are over-engineered where the given

tests are already complete enough to generate correct patches (2)

we focus on generating crash-free patches for software crash or

vulnerabilities, while most of the defects in existing subjects are

logic errors e.g. ManyBugs [35] and Defects4j [36]. Instead, we

select a set of real-world subjects from the OSS-Fuzz (Continuous

Fuzzing for Open Source Software) dataset 6. OSS-fuzz, which has

recently been announced by Google, is a continuous testing plat-

form for security-critical libraries and other open-source projects.

We select projects which contain a large number of bugs and try

to reproduce the defects by installing the corresponding versions

in our environment. The defects that cannot be reproduced in our

environment are not considered. Furthermore, for our current ex-

periments, we focus on subjects which are written in C, since our

repair infra-structure works on C programs. Last but not the least,

the goal of our experiments is not to measure the effectiveness of

automated repair; instead our goal is to measure the effectiveness of

curbing over-fitting in automated repair. Hence we do not consider

those defects for which the correct patch cannot be generated by

the supported program transformations in program repair.

Eventually, we select six well-known open source projects: Proj.4,

FFmpeg, Libarchive, Openjpeg, Libssh and Libchewing. Brief descrip-

tions of those projects are given in Table 2. Column #Test denotes

the number of tests from developers accompanying each software

project in the OSS-Fuzz repository. For each project, we select a set

of reproducible defects based on the above criteria. Column #Defect

shows the number of selected defects for each project. Totally, 81

unique defects are selected as our subjects. Besides, the bug type of

the selected defects is various. Table 3 shows the number of defect

for each bug type. Specifically, 49 defects are caused by integer

overflow or buffer overflow, 7 of them are caused by invalid access,

and 25 by arithmetic error or other bugs (e.g. memory leak).

7.2 Experimental Setup

To answer RQ1, we compare Fix2Fit with AFL7 and AFLGo8 based

approaches in generating tests to rule out overfitted patches. AFL

(AFLGo) based approach constructs candidate patch space using

same operators as Fix2Fit, but rules out patches using tests gener-

ated by AFL(AFLGo). We choose AFL as our baseline, since it is a

6https://bugs.chromium.org/p/oss-fuzz/issues/list
7http://lcamtuf.coredump.cx/afl/
8https://github.com/aflgo/aflgo

Subject #Defect #Test Description

Proj.4 10 3
cartographic projection and geo-

detic transformation library

FFmpeg 26 11 audio & video processing library

Libarchive 12 4 multi-format archive library

Openjpeg 12 13
open-source library to encode and

decode JPEG 2000 images

Libssh 8 23 C library for the SSHv2 protocol

Libchewing 13 11 phonetic input method library

Total 81 Ð Ð

Table 2: Subject Programs

fuzz testing which is widely used in industry and academia. AFLGo,

a directed greybox fuzzer, can be used for patch testing.

Decidingwhether a patch is over-fitted usingwhether the patched

program fails on tests is imprecise [12]. Opad [15] proposes a new

over-fitting measure(O-measure), which is built based on the as-

sumption that a correctly patched program should not behaveworse

than the buggy program. Given a test suite T,

B: the set of test cases that make the buggy version pass(B⊂T)

P: the set of test cases that make the patched version fail(P⊂T)

O-measure is defined as the size of B ∩ P. Opad determine a patch

is over-fitted if it has a non-zero O-measure. In our experiment, we

utilize a similar metric, but we change the definition of B. We define

B as the set of test cases that (i) either make the buggy version pass,

or (ii) make buggy version crash due to łsame" defect as the one

we try to fix (by comparing stack trace). The intuition is as follows:

if the patched program still crashes due to same defect, we regard

the corresponding patch as over-fitted patch.

To address RQ2, we compare the number of crash-free patches

generated by Fix2Fit, AFL and AFLGo-based approach. In our exper-

iment, cross-validation is used to evaluate the crash-free property,

where the remaining patches after the filtering of one approach is

validated by the tests generated by other techniques. Specifically,

suppose (T , P) is a pair of test set and plausible patch set, where

the patched program using any patch p ∈ P does not crash under

any test t ∈ T . Let (T1, P1), (T2, P3) and (T3, P3) be the test-patch

pairs generated by Fix2Fit, AFL and AFLGo, respectively. We regard

p ∈ Pi as crash-free patch, if and only if the patched program by p

does not crash under any test t ∈ T1 ∪T2 ∪T3. Then, we evaluate

the percentage of crash-free patches of different techniques.

We answer RQ3 by evaluating how many plausible patches can

be further ruled out if the newly generated tests are empowered

with a few oracles. For any test case which is able to break one

partition into several sub-partitions, it finds semantic discrepancies

between patches. However, the sub-partitions cannot be ruled out if

the patched programs do not crash, even though they show different

behaviors. If the program is deterministic, it is highly possible that

the patches from only one subpartition are correct. We can thus

study the reduction in the pool of candidate patches if detailed

oracles (such as expected output) for a few (say 5) tests are available.

Assuming better oracle of test is given and each subpartition has

equal probability to be filtered out, we evaluate the number of

patches that can be ruled out (Fig. 7).

Crash-avoiding Program Repair ISSTA 2019, 15-19 July, 2019, Beijing, China

Defect Type Integer overflow Buffer overflow Unknown address Invalid array access Arithmetic error Others

#Defects 29 20 4 3 4 21

Table 3: The statistic of defect type

All the experiments are conducted in the crash exploration mode9

of fuzzer. We start the fuzzing process with the failing test case

as seed corpus, and terminate it on timeout. As in state-of-the-art

fuzzing experimentation, we set timeout as 24 hours; at the same

time we report the effectiveness of our patch pool reduction for

smaller values of timeout such as 8 hours. Meanwhile, we set time

(timex in Equation 1) to enter "exploitation" as four hours. The

experiments are conducted on a device with an Intel Xeon CPU

E5-2660 2.00GHz process (56 cores) 64G memory and 16.04 Ubuntu.

7.3 Results

RQ1: Effectiveness in ruling out plausible patches

Figure 5 shows the percentage of plausible patch that is ruled

out by AFL, AFLGo and Fix2Fit within 8 and 24 hours, where the

percentage of filtered patch within the first 8 hours is marked

using diagonal stripes. Note that the AFL-based approach is almost

same as Opad [15], except that we utilize a more precise over-fitting

measure. For each project, we give the average number of all defects.

Compared with AFL and AFLGo, our technique is able to rule out

more plausible patches for all those six subjects within both 8 and

24 hours. For instance, Fix2Fit is able to filter out 61% plausible

patches for FFmpeg, while only 52% of them can be ruled out by

AFL and 53% by AFLGo within 24 hours. To investigate the reason

why Fix2Fit is able to rule out more patches, we give the number

of tests generated by each technique that can filter out plausible

patches in Table 4. On average, Fix2Fit generates 23% more tests

that can rule out patches than AFL, and 18% more than AFLGo.

Although our approach mostly outperforms existing approaches

in terms of filtering patches, there are scenarios where our tech-

nique does not perform better. According to our manual inves-

tigation, there are two situations where our technique does not

outperform existing approaches (1) most of the generated tests can-

not find discrepancies between patches and their separability are 0,

so that our approach of preferring inputs with non-zero separability

is rarely used (2) existing approaches already reduce the plausible

patches to a very small number (for some defects in libchewing), so

there is not much room to improve.

To filter out over-fitted patches, fuzzing in Fix2Fit is guided to

generate tests that can uncover semantic discrepancies between

plausible patches. Therefore, we also evaluate the patch partition

refinement effectiveness of AFL, AFLGo and Fix2Fit. Figure 6 shows

the number of generated tests that can refine partitions and number

of patch partitions after refinement. Origin is the number of test-

equivalence patch partitions with respect to the provided test suite.

The histogram represents the number of partitions after refinement,

which corresponds to the primary axis (left), while the line chart

shows the number of partition-refining tests, which corresponds

to the secondary axis (right). Fix2Fit performs better than AFL

and AFLGo in both generating partition-refining tests and refined

partitions. On average, Fix2Fit breaks 34% and 30% more partitions

than AFL and AFLGo, respectively.

9https://lcamtuf.blogspot.com/2014/11/afl-fuzz-crash-exploration-mode.html

Table 4: The number of generated test cases that can rule out

plausible patches

Projects AFL(Opad) AFLGo Fix2Fit

Proj.4 4.8 5.9 12.5

Libarchive 11.2 12.8 16.0

FFmpeg 9.8 10.2 13.8

Openjpeg 35.3 35.8 50.3

Libssh 5.1 7.9 8.6

Libchewing 10.7 11.5 11.5

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Proj4 Libarchive FFmpeg Openjpeg Libssh Libchewing

Fix2Fit(24) Fix2Fit(8) AFLGo(24) AFLGo(8) AFL(24) AFL(8)

Figure 5: Percentage of plausible patches that are ruled out
Table 5: % of plausible patches ruled out using partition re-

finement (PR) and patch filtering (PF) based heuristic

Projects Proj.4 Libarchive FFmpeg Openjpeg Libssh Libchewing

PF 68% 27% 56% 55% 51% 92%

PR 71% 28% 61% 56% 51% 95%

Although we argue that partition refinement is a better heuristic

than patch filtering for the purpose of guiding fuzzing, we also

evaluate heuristics based on patch filtering. For patch filtering based

heuristic, we change the definition of separability in Equation 4 to

separability(t ′,Tnew) =
r (t ′)

maxt ∈Tnew r (t)
(7)

where r (t ′) represents the number of over-fitted patches that are

ruled out by test t ′. Table 5 shows the percentage of patches that

are ruled out using the heuristic based on patch filtering (PF) and

partition refinement (PR). The results show that PR outperforms PF

on five subjects and performs equally on one subject.

Fix2Fit is able to rule out 18% and 12% more over-fitted

patches than AFL and AFLGo based approaches.

RQ2: Crash-free patches

To fix a bug, new bugs or security vulnerabilities should not be

introduced. If one generated test makes the patched program crash,

a patch will be directly ruled out. However, since fuzzing does not

exhaustively generate all possible tests, the remaining patches may

still cause program crash or introduce new software crashes and

vulnerabilities. In this experiment, we evaluate the crash-freedom

of patches generated via cross-validation. Based on cross-validation,

a crash-free patch should not make program crash under any test

ISSTA 2019, 15-19 July, 2019, Beijing, China Xiang Gao, Sergey Mechtaev, and Abhik Roychoudhury

Table 6: The percentage of crash-free patches generated by

AFL, AFLGo, Fix2Fit

Subject AFL(Opad) AFLGo Fix2Fit

Proj.4 92% 90% 99%

Libarchive 88% 96% 97%

FFmpeg 84% 86% 95%

Openjpeg 82% 85% 91%

Libssh 83% 83% 99%

Libchewing 94% 94% 99%

0

2

4

6

8

10

0

8

16

24

32

40

Origin AFL AFLGo Fix2Fit

Proj4

#Partition

#Test

0

16

32

48

64

80

0

50

100

150

200

250

Origin AFL AFLGo Fix2Fit

Libarchive

0

20

40

60

80

100

0

60

120

180

240

300

Origin AFL AFLGo Fix2Fit

FFmpeg

0

16

32

48

64

80

0

60

120

180

240

300

Origin AFL AFLGo Fix2Fit

Openjpeg

0

5

10

15

20

0

20

40

60

80

100

Origin AFL AFLGo Fix2Fit

Libssh

0

3

6

9

12

15

0

20

40

60

80

100

Origin AFL AFLGo Fix2Fit

Libchewing

Figure 6: Number of equivalent partitions and the number

of generated test case that can break partitions

f

0

120

240

360

480

600

0 1 2 3 4 5 6 7 8 9 10

Openjpeg

0

200

400

600

800

1000

0 1 2 3 4 5 6 7 8 9 10

Number of oracles

Libssh

0

30

60

90

120

150

0 1 2 3 4 5 6 7 8 9 10

Libchewing

75

81

87

93

99

105

0 1 2 3 4 5 6 7 8 9 10

Proj.4

0

200

400

600

800

1000

0 1 2 3 4 5 6 7 8 9 10

FFmpeg

0

300

600

900

1200

1500

0 1 2 3 4 5 6 7 8 9 10

Libarchive

N
u

m
b

e
r

o
f

p
la

u
si

b
le

p
a

tc
h

e
s

Figure 7: Number of plausible patches that can be reduced if

the tests are empowered with more oracles

cases generated by any techniques. Table 6 shows the percentage

of crash-free patches generated by AFL, AFLGo, Fix2Fit. Compared

with AFL and AFLGo, our technique significantly improves the

percentage of crash-free patches. On average, Fix2Fit generates

96.3% crash-free patches, while 85.4% and 87% patches generated

by AFL and AFLGo are crash-free. Especially for Proj.4, more than

99.5% patches generated by our technique is crash-free, compared

with 92% of AFL and 90% of AFLGo.

Although most of patches generated by Fix2Fit are crash-free,

there are some patches (3.7%) which cause program to crash un-

der the test cases generated by AFL or AFLGo. Fix2Fit may miss

some corner cases since it will enter the łexploitation" mode af-

ter sufficient łexploration", while AFL and AFLGo keep broadly

searching.

Fix2Fit could significantly improve the percentage of crash-

free patches, and more that 96% patches are crash-free.

RQ3: Improvement with better oracles

Table 7: Number of remaining partitions after refinement

Projects Proj.4 Libarchive FFmpeg Openjpeg Libssh Libchewing

#Partition 4.8 74.4 98.9 47.3 28.3 1.3

The ability of test cases to filter out over-fitted patches is limited

by the non-availability of oracles (or expected output) of the gener-

ated tests. We also evaluate whether the automatically generated

test case can further reduce plausible patches if empowered with

better oracles (for at least a few of the generated tests).

Figure 7 shows how the number of patch candidates reduces as

the number of tests empowered with oracles. For a test which can

break a patch partition into several sub-partitions, we assume only

one of sub-partitions is correct if the correct behavior of this test is

given. This is because the patch partitions rely on a value-based test

equivalence; it is highly possible that only one of the sub-partitions

will produce an output value same as the expected output captured

by a given oracle.We select the top-10 tests with highest separability

(heuristic based on partition refinement), and collect the number of

patches if one, two...ten oracles are given. Generally, the plausible

patches for most of the defects can be reduced to a reasonable

number. For defects in Openjpeg, the number of plausible patches

can be reduced to around 20. In other words, if the oracles of a few

of the generated tests is available, the pool of candidate patches

can be reduced sufficiently so that the remaining patches can be

examined manually by the developers.

For the defects which are left with large number of remaining

plausible patches after patch-aware greybox fuzzing, we are faced

with the task of examining these remaining plausible patches. For-

tunately, developers do not need to examine the remaining patches

one by one. They can examine the patches in the same patch parti-

tion together, since they show same behaviors over all the available

tests. Table 7 shows the average number of remaining patch par-

titions after the partition refinement by Fix2Fit. The number of

remaining partitions, and hence the number of patches to examine,

varies between 1-100 in each project. We feel that there might be

opportunities for visualization techniques to choose from these

remaining 1 − 100 patch partitions, using criteria such as syntactic

or semantic "distance" from the buggy program. Such support for

patch choices can further reduce over-fitting in program repair, and

can be studied in the future.

The plausible patches can be reduced to a reasonable num-

ber if few tests (<10) are empowered with better oracles.

7.4 Threats to Validity

Our current experiments have been conducted for one-line fixes.

While extension of the approach to multi-line fixes is entirely fea-

sible, it can blow up the search space. While we have compared

with Opad [15], we could not directly compare with [18, 19] which

improve patch quality by test generation; the tools for those ap-

proaches are geared to repair Java programs while our repair infra-

structure operates on C programs. Finally, our reported results are

obtained from the OSS-Fuzz subjects in Table 2, and more experi-

ments could be conducted on larger set of subject programs.

Crash-avoiding Program Repair ISSTA 2019, 15-19 July, 2019, Beijing, China

8 CONCLUSION

Automated program repair, specifically test-suite driven program

repair, has gained traction in recent years. This includes a recent

use of test-driven automated repair at scale in Facebook [37], re-

porting positive developer feedback. However, the automatically

generated patches can over-fit the test suite T driving the repair,

and their behavior on tests outside T is unknown. In this paper, we

have taken a step towards tackling this problem by filtering crash

introducing patch candidates via fuzz testing. Our solution inte-

grates fuzzing and automated repair tightly by modifying a fuzzer

to prioritize tests which can rule out large segments of the patch

space, represented conveniently as patch partitions. Results from

the continuous fuzzing service OSS-Fuzz from Google show signifi-

cant promise. By systematically prioritising crash-avoiding patches

in the patch search space, we take a step to tackle the over-fitting

problem in program repair.

ACKNOWLEDGMENTS

This work was supported in part by Office of Naval Research

grant ONRG-NICOP-N62909-18-1-2052. This work was partially

supported by the National Satellite of Excellence in Trustworthy

Software Systems, funded by NRF Singapore under National Cyber-

security R& D (NCR) programme.

REFERENCES
[1] Michal Zalewski. American fuzzy lop, http://lcamtuf.coredump.cx/afl/, 2018.
[2] Claire Le Goues, ThanhVu Nguyen, Stephanie Forrest, and Westley Weimer.

Genprog: A generic method for automatic software repair. Ieee transactions on
software engineering, 38(1):54, 2012.

[3] Fan Long and Martin Rinard. Staged program repair with condition synthesis. In
Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering,
pages 166ś178. ACM, 2015.

[4] Yuhua Qi, Xiaoguang Mao, Yan Lei, Ziying Dai, and Chengsong Wang. The
strength of random search on automated program repair. In Proceedings of the
36th International Conference on Software Engineering, pages 254ś265. ACM, 2014.

[5] Sergey Mechtaev, Xiang Gao, Shin Hwei Tan, and Abhik Roychoudhury. Test-
equivalence analysis for automatic patch generation. ACM Transactions on
Software Engineering and Methodology (TOSEM), 27(4):15, 2018.

[6] Hoang Duong Thien Nguyen, Dawei Qi, Abhik Roychoudhury, and Satish Chan-
dra. Semfix: Program repair via semantic analysis. In Software Engineering (ICSE),
2013 35th International Conference on, pages 772ś781. IEEE, 2013.

[7] J. Xuan, M. Martinez, F. Demarco, M. Clement, S.L. Marcote, T. Durieux, D. Le
Berre, and M. Monperrus. Nopol: Automatic repair of conditional statement bugs
in java programs. IEEE Transactions on Software Engineering, 43, 2017.

[8] Sergey Mechtaev, Jooyong Yi, and Abhik Roychoudhury. Directfix: Looking for
simple program repairs. In Proceedings of the 37th International Conference on
Software Engineering-Volume 1, pages 448ś458. IEEE Press, 2015.

[9] Sergey Mechtaev, Jooyong Yi, and Abhik Roychoudhury. Angelix: Scalable
multiline program patch synthesis via symbolic analysis. In Proceedings of the
38th international conference on software engineering, pages 691ś701. ACM, 2016.

[10] Dongsun Kim, Jaechang Nam, Jaewoo Song, and Sunghun Kim. Automatic patch
generation learned from human-written patches. In Proceedings of the 2013
International Conference on Software Engineering, pages 802ś811. IEEE Press,
2013.

[11] Ming Wen, Junjie Chen, Rongxin Wu, Dan Hao, and Shing-Chi Cheung. Context-
aware patch generation for better automated program repair. In International
Conference on Software Engineering (ICSE), 2018.

[12] Edward K Smith, Earl T Barr, Claire Le Goues, and Yuriy Brun. Is the cure worse
than the disease? overfitting in automated program repair. In Proceedings of the
2015 10th Joint Meeting on Foundations of Software Engineering, pages 532ś543.
ACM, 2015.

[13] Xuan Bach D Le, Ferdian Thung, David Lo, and Claire Le Goues. Overfitting
in semantics-based automated program repair. Empirical Software Engineering,
pages 1ś27, 2018.

[14] Shin Hwei Tan, Hiroaki Yoshida, Mukul R Prasad, and Abhik Roychoudhury.
Anti-patterns in search-based program repair. In Proceedings of the 2016 24th
ACM SIGSOFT International Symposium on Foundations of Software Engineering,

pages 727ś738. ACM, 2016.
[15] Jinqiu Yang, Alexey Zhikhartsev, Yuefei Liu, and Lin Tan. Better test cases for

better automated program repair. In Proceedings of the 2017 11th Joint Meeting on
Foundations of Software Engineering, pages 831ś841. ACM, 2017.

[16] Zhongxing Yu, Matias Martinez, Benjamin Danglot, Thomas Durieux, and Martin
Monperrus. Alleviating patch overfitting with automatic test generation: a study
of feasibility and effectiveness for the nopol repair system. Empirical Software
Engineering, pages 1ś35, 2018.

[17] Gordon Fraser and Andrea Arcuri. Evosuite: automatic test suite generation for
object-oriented software. In Proceedings of the 19th ACM SIGSOFT symposium
and the 13th European conference on Foundations of software engineering, pages
416ś419. ACM, 2011.

[18] Qi Xin and Steven P Reiss. Identifying test-suite-overfitted patches through test
case generation. In Proceedings of the 26th ACM SIGSOFT International Symposium
on Software Testing and Analysis, pages 226ś236. ACM, 2017.

[19] Yingfei Xiong, Xinyuan Liu, Muhan Zeng, Lu Zhang, and Gang Huang. Identi-
fying patch correctness in test-based program repair. In Proceedings of the 40th
International Conference on Software Engineering, pages 789ś799. ACM, 2018.

[20] David Shriver, Sebastian Elbaum, and Kathryn T Stolee. At the end of synthesis:
narrowing program candidates. In Software Engineering: New Ideas and Emerg-
ing Technologies Results Track (ICSE-NIER), 2017 IEEE/ACM 39th International
Conference on, pages 19ś22. IEEE, 2017.

[21] libfuzzer - a library for coverage-guided fuzz testing. https://llvm.org/docs/
LibFuzzer.html, 2018. Accessed: 2018-12-21.

[22] Marcel Böhme, Van-Thuan Pham,Manh-DungNguyen, andAbhik Roychoudhury.
Directed greybox fuzzing. In Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, pages 2329ś2344. ACM, 2017.

[23] T. Petsios, A. Tang, S. Stolfo, A. D. Keromytis, and S. Jana. Nezha: Efficient
domain-independent differential testing. In 2017 IEEE Symposium on Security
and Privacy (SP), pages 615ś632. IEEE, 2017.

[24] Cristian Cadar, Daniel Dunbar, Dawson R Engler, et al. Klee: Unassisted and
automatic generation of high-coverage tests for complex systems programs. In
OSDI, volume 8, pages 209ś224, 2008.

[25] Paul Dan Marinescu and Cristian Cadar. Katch: high-coverage testing of software
patches. In Proceedings of the 2013 9th Joint Meeting on Foundations of Software
Engineering, pages 235ś245. ACM, 2013.

[26] Raul Santelices, Pavan Kumar Chittimalli, Taweesup Apiwattanapong, Alessan-
dro Orso, and Mary Jean Harrold. Test-suite augmentation for evolving software.
In Automated Software Engineering, 2008. ASE 2008. 23rd IEEE/ACM International
Conference on, pages 218ś227. IEEE, 2008.

[27] Dawei Qi, Abhik Roychoudhury, and Zhenkai Liang. Test generation to expose
changes in evolving programs. In Proceedings of the IEEE/ACM international
conference on Automated software engineering, pages 397ś406. ACM, 2010.

[28] Suzette Person, Guowei Yang, Neha Rungta, and Sarfraz Khurshid. Directed
incremental symbolic execution. In Acm Sigplan Notices, volume 46, pages 504ś
515. ACM, 2011.

[29] Sanjay Rawat, Vivek Jain, Ashish Kumar, Lucian Cojocar, Cristiano Giuffrida,
and Herbert Bos. Vuzzer: Application-aware evolutionary fuzzing. In Proceedings
of the Network and Distributed System Security Symposium (NDSS), 2017.

[30] Zichao Qi, Fan Long, Sara Achour, and Martin Rinard. An analysis of patch plau-
sibility and correctness for generate-and-validate patch generation systems. In
Proceedings of the 2015 International Symposium on Software Testing and Analysis,
pages 24ś36. ACM, 2015.

[31] René Just, Michael D Ernst, and Gordon Fraser. Efficient mutation analysis by
propagating and partitioning infected execution states. In Proceedings of the 2014
International Symposium on Software Testing and Analysis, pages 315ś326. ACM,
2014.

[32] Vu Le, Mehrdad Afshari, and Zhendong Su. Compiler validation via equivalence
modulo inputs. In ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI), pages 216ś226, 2014.

[33] Scott Kirkpatrick, C Daniel Gelatt, andMario P Vecchi. Optimization by simulated
annealing. science, 220(4598):671ś680, 1983.

[34] Fan Long and Martin Rinard. Automatic patch generation by learning correct
code. ACM SIGPLAN Notices, 51(1):298ś312, 2016.

[35] Claire Le Goues, Neal Holtschulte, Edward K. Smith, Yuriy Brun, Premku-
mar Devanbu, Stephanie Forrest, and Westley Weimer. The ManyBugs and
IntroClass benchmarks for automated repair of C programs. IEEE Transac-
tions on Software Engineering (TSE), 41(12):1236ś1256, December 2015. DOI:
10.1109/TSE.2015.2454513.

[36] René Just, Darioush Jalali, and Michael D Ernst. Defects4j: A database of existing
faults to enable controlled testing studies for java programs. In Proceedings of the
2014 International Symposium on Software Testing and Analysis, pages 437ś440.
ACM, 2014.

[37] A. Marginean, J. Bader, S. Chandra, M. Harman, Y. Jia, K. Mao, A. Mols, and
A. Scott. Sapfix: Automated end-to-end repair at scale. In ACM/IEEE International
Conference on Software Engineering (ICSE), Track Software Engineering in Practice,
2019.

http://lcamtuf.coredump.cx/afl/
https://llvm.org/docs/LibFuzzer.html
https://llvm.org/docs/LibFuzzer.html
http://dx.doi.org/10.1109/TSE.2015.2454513
http://dx.doi.org/10.1109/TSE.2015.2454513

	Abstract
	1 Introduction
	2 Related Work
	3 Overview
	4 Background
	4.1 Program repair
	4.2 Greybox fuzzing

	5 Methodology
	5.1 Integration of Test Generation and Repair
	5.2 Separability of Test Cases
	5.3 Power Schedule
	5.4 Is Interesting?
	5.5 Sanitizer as Oracles

	6 Implementation
	7 Evaluation
	7.1 Benchmark Selection
	7.2 Experimental Setup
	7.3 Results
	7.4 Threats to Validity

	8 Conclusion
	References

