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Crash Risk in Currency Returns

Mikhail Chernov, Jeremy Graveline, and Irina Zviadadze*

Abstract

We develop an empirical model of bilateral exchange rates. It includes normal shocks with
stochastic variance and jumps in an exchange rate and in its variance. The probability
of a jump in an exchange rate corresponding to depreciation (appreciation) of the U.S.
dollar is increasing in the domestic (foreign) interest rate. The probability of a jump in
variance is increasing in the variance only. Jumps in exchange rates are associated with
announcements; jumps in variance are not. On average, jumps account for 25% of currency
risk. The dollar carry index retains these features. Options suggest that jump risk is priced.

I. Introduction

The time variation and high magnitude of returns to currency speculation

have attracted a lot of recent attention. Much of the literature has focused on

measuring risk premiums, or expected excess returns, in this market (e.g., Lustig

and Verdelhan (2007)). However, expected returns alone do not tell the whole

story. Investors also care about the risks that they must bear to earn these returns.
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Therefore, the distribution of risks is an important ingredient in understanding

currency premiums.

Some researchers have suggested that investors in currency markets require

high returns on average as compensation for crash risk. The merit of this explana-

tion hinges on the magnitude and probability of large moves in currency markets.

The goal of our article is to offer an empirical study that uses an affine model to

systematically quantify crashes and document when they occur historically and

what their determinants are.

The main advantage of the affine framework is that it offers tractable asset

valuation. Therefore, our preferred formulation can be used for option pricing, as

well as for developing macro-based equilibrium models of currencies. Our model

incorporates both crash risk and regular, or normal, risk. Our objective is to use the

model to establish whether a large move in the exchange rate takes place because

of a crash or because the conditional variance of a normal shock is high. Using

data on implied volatilities in addition to exchange rates themselves is particularly

helpful for this task because they provide information about the market’s view on

conditional variance.

We establish the relative importance of three key modeling elements. First,

it is well documented that currency returns are heteroscedastic (e.g., Baillie and

Bollerslev (1989), Engel and Hamilton (1990), Engle, Ito, and Lin (1990), and

Harvey and Huang (1991)). Casual observation of time-series variation in option-

implied exchange rate volatility also confirms this point. We capture this feature

of the data with a standard stochastic volatility component in our model.

Second, there is also strong empirical evidence that daily changes in ex-

change rates are not conditionally normal (as would approximately be the case in

a model with only stochastic volatility). To account for this feature of the data, our

model includes jump risks in exchange rates.1 We allow the probability of these

jumps to be time-varying in order to capture the variation in conditional skewness

that has been previously documented (e.g., Bakshi, Carr, and Wu (2008), Brun-

nermeier, Nagel, and Pedersen (2008), Carr and Wu (2007), and Neely (1999)).

Third, changes in the at-the-money implied volatility of a typical exchange

rate exhibit an unconditional skewness of 1 and a kurtosis of 10 or more. To ac-

commodate this property, our model allows for jumps in the variance of normal

shocks to exchange rates. The importance of such jumps for modeling equity re-

turns has been emphasized by Broadie, Chernov, and Johannes (2007), Duffie,

Pan, and Singleton (2000), Eraker, Johannes, and Polson (2003), among others.

To our knowledge, our article is the first to investigate the role of jumps in the

volatility of exchange rates.

Although both are designed to generate large movements, a jump in an ex-

change rate is qualitatively different from a jump in its variance. A jump in an ex-

change rate is a model of a direct extreme shock. Because extreme events are rare,

one does not necessarily expect there to be many subsequent large innovations in

1In this article, we use “crash” and “jump” interchangeably. Because we are only studying asset

prices, not the economy, we cannot say anything about economic disasters. Despite this clarification,

we think that our findings could be useful for researchers interested in modeling the economy (see,

e.g., Backus, Chernov, and Martin (2011) for an example of how asset prices could be used to infer

the behavior of consumption).
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the near future. By contrast, when there is a jump in the variance, one expects

there to be many large subsequent changes generated by normal innovations in

the exchange rate because of the higher level of variance. We use our model and

empirical analysis to determine whether these qualitative distinctions lead to ma-

terially quantitative differences.

We use daily joint data for exchange rates and implied volatilities from 1986

to 2010 (the options data start in 1994) on four spot exchange rates: the Australian

dollar, the Swiss franc, the British pound, and the Japanese yen. Crashes are rare,

and volatility is persistent; thus, it is important to use a long time span of data.

Short samples are likely to either over- or underrepresent jumps and periods of

high or low volatility, leading to biased estimates of the required probabilities.

We rely on Bayesian Markov chain Monte Carlo (MCMC) to estimate can-

didate models. One of the key advantages of this approach is that it provides es-

timates of the conditional distribution of currency returns, as well as estimates of

the realized shocks. This feature allows us to link large shocks, or jumps, to impor-

tant macro-finance events and thereby illuminate the potential economic channels

that are responsible for crash risk in currencies.

Our statistical tests strongly favor jumps in both exchange rates and their

variances. This conclusion is similar to the one in the equity literature. However,

the similarity ends there. In contrast to equity models that rely on one Poisson

(counting) process controlling the arrival rate of all jumps, we find three such

processes in foreign exchange (FX). These three types of jumps arise via different

mechanisms. The arrival rate of a jump in the variance of currency returns is

positively related to the variance itself. Thus, this component belongs to the class

of self-exciting processes. The probability of a jump up in the exchange rate,

which corresponds to a depreciation of the U.S. dollar, is positively related to the

domestic (U.S.) interest rate. The probability of a jump down, which corresponds

to an appreciation of the U.S. dollar, is positively related to the foreign interest

rate.

Although jumps in currencies and in variance are alternative channels for

large currency returns, we find that they are quite distinct economically. We find

that most of the jumps in FX coincide with important macroeconomic or political

announcements. In contrast, jumps in variance cluster at moments of high uncer-

tainty in markets, which are captured by comments on current events, political

speculation, and overall anxiety about upcoming events.

We use entropy (a generalized measure of variance) of changes in an ex-

change rate to measure the amount of risk associated with currency positions and

to decompose this risk into the contributions from different sources of shocks

(Alvarez and Jermann (2005), Backus et al. (2011)). Appropriately scaled entropy

is equal to the variance of an exchange rate return if it is normally distributed but

otherwise includes high-order cumulants. Therefore, entropy is a convenient mea-

sure that captures both normal and tail risk in one number. We find that, depending

on the currency, the time-series average of the joint contribution of the three types

of jumps can be as high as 25% of the total risk, and on individual days, this

contribution can be up to 40%. Jumps in variance contribute about a third to the

average contribution and can be as high as 15% of the total risk on individual
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days. Also, the contribution of jumps in variance to the total risk increases with

investment horizon.

To test whether diversification eliminates or reduces the importance of these

jumps, we estimate the dynamics of the 21-currency dollar index studied by

Lustig, Roussanov, and Verdelhan (2014). Although diversification reduces jump

frequency, it also reduces the volatility of the normal risks. As a result, the relative

importance of jumps stays unchanged. We also estimate our model on the excess

return to the dollar carry trade, which switches the position of the dollar index

from long to short, depending on the difference between the U.S. interest rate and

the index of foreign interest rates. We find that this trade increases the number of

instances of jumps in currencies that go against the speculator. Jumps in variance

are not affected by the switching position.

Given the large contribution of jumps to the overall risk, it is natural to

ask whether the jump risk is priced. The full answer to this question requires

an explicit model of the pricing kernel and the use of assets, such as out-of-the-

money options, that are particularly sensitive to jumps for estimation. Although

such analysis is outside of the scope of this article, we carry out a limited option-

valuation exercise. We select representative implied volatility smiles and attempt

to fit them by allowing premiums for normal risks only. We find that the result-

ing theoretical implied volatilities cannot generate the asymmetries present in the

data.

Related literature is discussed in the Internet Appendix (available at www

.jfqa.org).

II. Preliminaries

This section motivates our analysis and highlights properties of the data that

our model is designed to capture.

A. Excess Returns

In this article we always treat U.S. dollars (USD) as the domestic currency.

Let rt be the continuously compounded USD interest rate, r̃t be the analogous

interest rate in the foreign currency (e.g., GBP), and St be the exchange rate

expressed as units of domestic currency per unit of foreign currency. Then 1

USD buys 1/St units of foreign currency at time t , which grows at the foreign

risk-free rate to 1/St ×exp(r̃t) units at time t +1, and can be exchanged for

St+1/St ×exp(r̃t) USD. Therefore, the log excess dollar-denominated return to

investing in the foreign currency (i.e., the return over and above investing at the

USD risk-free rate) is yt+1 =st+1 −st + r̃t −rt , where st = ln St .

Figures 1–4 display the time series of log excess returns, yt+1 (Graph A),

and implied volatilities (Graph B) for the currencies we consider in this article.

We have selected four currencies, the Australian dollar (AUD), the Swiss franc

(CHF), the British pound (GBP), and the Japanese yen (JPY), based on the avail-

ability of daily data and cross-sectional and time-series variation in the interest

rate differential. We use 1-month London Interbank Offered Rate (LIBOR) to

proxy for interest rates. Using 1-month rather than overnight rates implicitly as-

sumes a flat term structure at the very short end of the LIBOR curve and allows
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FIGURE 1

AUD Data and Estimated States

In Graph A of Figure 1, the gray line displays observed log currency returns (right scale); the black line displays the
conditional 6-month skewness of the log currency returns (left scale). In Graph B, the thick gray line shows observed
1-month at-the-money implied volatility; the thin black line shows the estimated spot volatility

√
v t . The bottom graphs

display estimated jump sizes in returns (Graph C) and volatility (Graph D) with jump intensities. In Graph C, the gray
solid line is the intensity of the jump down, the gray dashed line is the intensity of the jump up, and the black bars are the
jumps themselves. In Graph D, the gray line is the intensity of the jump in volatility; the black bars are jumps. We say that
there was a jump at time t if the estimated probability of a jump on that day was above 50%. Vertical bars with a dashed
border indicate recessions in Australia; vertical bars with a solid black border indicate recessions in the United States.
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Graph B. Volatility

us to abstract from potential high-frequency idiosyncratic effects associated with

fixed-income markets. Because we denominate exchange rates by the U.S. dollar,

movements up correspond to a depreciation in the USD.

B. Properties of Excess Returns

In Table 1 we provide summary statistics of daily log excess returns and

changes in the 1-month at-the-money implied volatility. Means are close to 0 at

a daily frequency. Therefore, these summary statistics inform us primarily about

the properties of shocks.

All currencies have a volatility of about 10% per year. There is evidence of

substantial kurtosis (AUD and JPY are the most notable in this regard), which is

suggestive of non-normalities. Skewness of all currencies is mild. It turns out that

this is a manifestation of time-varying and sign-switching conditional skewness.

We produce a suggestive estimate of conditional skewness by computing a 6-

month rolling window. The time series of these estimates are displayed in Graph A

of Figures 1–4. Depending on the currency, conditional skewness ranges from −2
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FIGURE 2

CHF Data and Estimated States

In Graph A of Figure 2, the gray line displays observed log currency returns (right scale); the black line displays the
conditional 6-month skewness of the log currency returns (left scale). In Graph B, the thick gray line shows observed
1-month at-the-money implied volatility; the thin black line shows the estimated spot volatility

√
v t . The bottom graphs

display estimated jump sizes in returns (Graph C) and volatility (Graph D) with jump intensities. In Graph C, the gray
solid line is the intensity of the jump down, the gray dashed line is the intensity of the jump up, and the black bars are the
jumps themselves. In Graph D, the gray line is the intensity of the jump in volatility; the black bars are jumps. We say that
there was a jump at time t if the estimated probability of a jump on that day was above 50%. Vertical bars with a dashed
border indicate recessions in Switzerland; vertical bars with a solid border indicate recessions in the United States.

Graph A. Excess Return Graph B. Volatility
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to 2. Thus, excess returns are not only fat tailed but also asymmetric, with the

degree of asymmetry changing over time.

The implied volatility is itself quite variable at about 60% per year (the num-

ber in the table multiplied by
√

252) and highly non-normal, with skewness and

kurtosis much higher than those of the currency returns themselves. The implied

volatility from the short-dated options should be close to the true volatility of ex-

change rates (which is unobservable), and therefore its properties provide insight

into the features that a realistic model of variance must incorporate.

As a reference, we report the same summary statistics for the Standard &

Poor’s (S&P) 500, whose risks have been thoroughly studied in the literature. The

index returns are more volatile and exhibit much stronger departures from nor-

mality compared with currencies. In particular, negative unconditional skewness

is evident (in fact, a measure of conditional skewness rarely becomes positive).

In contrast, changes in the volatility index (VIX), a cousin of implied variance,

display weaker non-normalities than those of currencies. These statistics suggest
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FIGURE 3

GBP Data and Estimated States

In Graph A of Figure 3, the gray line displays observed log currency returns (right scale); the black line displays the
conditional 6-month skewness of the log currency returns (left scale). In Graph B, the thick gray line shows observed
1-month at-the-money implied volatility; the thin black line shows the estimated spot volatility

√
v t . The bottom graphs

display estimated jump sizes in returns (Graph C) and volatility (Graph D) with jump intensities. In Graph C, the gray
solid line is the intensity of the jump down, the gray dashed line is the intensity of the jump up, and the black bars are
the jumps themselves. In Graph D, the gray line is the intensity of the jump in volatility; the black bars are jumps. We
say that there was a jump at time t if the estimated probability of a jump on that day was above 50%. Vertical bars with
a dashed border indicate recessions in the United Kingdom; vertical bars with a solid border indicate recessions in the
United States.

Graph A. Excess Return Graph B. Volatility

Graph C. Jumps in Excess Return Graph D. Jumps in Volatility
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that a model of currency risks could be substantively different from that of equity

risks even though one clearly has to use similar building blocks.

C. Risks and Expected Excess Returns

We can generically represent excess returns as follows:

(1) yt+1 = Et (yt+1) + SHOCKS.

Most research has focused on conditional expected excess returns Et (yt+1). For

example, if currencies do not carry a risk premium, then uncovered interest rate

parity (UIP) holds, and Et (yt+1)=0. However, Bilson (1981), Fama (1984), and

Tryon (1979) establish that the regression

(2) st+1 − st = a1 + a2( ft − st ) + SHOCKS,

where ft is the log of the 1-month forward exchange rate, typically yields esti-

mates of a2 of approximately −2. If covered interest rate parity (i.e., no arbitrage)
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FIGURE 4

JPY Data and Estimated States

In Graph A of Figure 4, the gray line displays observed log currency returns (right scale); the black line displays the
conditional 6-month skewness of the log currency returns (left scale). In Graph B, the thick gray line shows observed
1-month at-the-money implied volatility; the thin black line shows the estimated spot volatility

√
v t . The bottom graphs

display estimated jump sizes in returns (Graph C) and volatility (Graph D) with jump intensities. In Graph C, the gray
solid line is the intensity of the jump down, the gray dashed line is the intensity of the jump up, and the black bars are the
jumps themselves. In Graph D, the gray line is the intensity of the jump in volatility; the black bars are jumps. We say that
there was a jump at time t if the estimated probability of a jump on that day was above 50%. Vertical bars with a dashed
border indicate recessions in Japan; vertical bars with a solid border indicate recessions in the United States.

Graph A. Excess Return Graph B. Volatility

Graph C. Jumps in Excess Return Graph D. Jumps in Volatility
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holds, then the log forward exchange rate is given by ft =st +rt − r̃t . Therefore,

this result is equivalent to the following:

(3) yt+1 = a1 + (a2 − 1)(rt − r̃t ) + SHOCKS,

with a slope coefficient of about −3. Subsequent research has extended the

specification of risk premiums Et (yt+1) (e.g., Bekaert and Hodrick (1992),

Lustig, Roussanov, and Verdelhan (2011), and Menkhoff, Sarno, Schmeling, and

Schrimpf (2012), among others).

Asset pricing theory relates expected excess returns to compensation for

bearing risks; that is, it relates “Et (yt+1)” to the “shocks” in equation (1). In the

language of pricing kernels, expected excess returns are determined by the covari-

ation of currency risks with a pricing kernel. We do not empirically test any spe-

cific asset pricing theories (pricing kernels) in this article, but a thorough analysis

of the shocks is a necessary ingredient for full testing of any dynamic asset pricing

model. To illustrate this point, we provide in the Internet Appendix (available at

www.jfqa.org) an example of two theories that can lead to identical expected
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TABLE 1

Properties of Excess Log Currency and S&P 500 Returns and Changes in Implied Volatility

Table 1 shows descriptive statistics for daily log currency and log Standard & Poor’s (S&P) 500 excess returns and
changes in implied volatility, in percentages, per day: AUD return from Sept. 25, 1986, to Dec. 31, 2010, and AUD IV
from Dec. 6, 1995, to Dec. 31, 2010; CHF return from Jan. 3, 1986, to Dec. 31, 2010, and CHF IV from May 8, 1996, to
Dec. 31, 2010; GBP return from Jan. 3, 1986, to Dec. 31, 2010, and GBP IV from May 8, 1996, to Dec. 31, 2010; JPY
return from July 2, 1986, to Dec. 31, 2010, and JPY IV from Dec. 5, 1995, to Dec. 31, 2010. The currency index return
is from Jan. 2, 1986, to Dec. 31, 2010; S&P 500 return from Jan. 3, 1986, to Dec. 31, 2010; and VIX from Jan. 2, 1996,
to Dec. 31, 2010. The interest rates used to compute returns are 1-month London Interbank Offered Rate (LIBOR) rates.
Source: Bloomberg.

Std. No. of
Asset Metric Mean Dev. Skewness Kurtosis Obs.

AUD Excess return 0.0186 0.7435 −0.3870 13.7202 6,332

1
√
IV 0.0109 3.7661 0.9077 9.7290 3,933

CHF Excess return 0.0057 0.7232 0.1194 4.7841 6,521

1
√
IV 0.0073 3.8057 0.9966 9.8095 3,823

GBP Excess return 0.0096 0.6197 −0.2337 5.6832 6,521

1
√
IV 0.0142 4.0001 1.3884 44.2683 3,823

JPY Excess return 0.0003 0.6950 0.3626 8.0878 6,393

1
√
IV −0.0045 4.8277 1.0395 10.7764 3,934

Currency Index Excess return 0.0086 0.4664 0.0342 4.6448 6,393

S&P 500 Excess return 0.0090 1.1803 −1.3584 32.9968 6,522

1
√
VIX 0.0089 5.8997 0.5096 6.7502 3,914

excess returns despite their different shock structures. In this situation, the dis-

tribution of shocks is the only element that can distinguish one theory from the

other.

To measure shocks, we need to model conditional means as well. We use

a simple specification that encompasses the uncovered interest rate parity (UIP)

regressions result by allowing for linear dependence of means on the domestic and

foreign interest rates and includes the variance of FX returns as an extra variable.2

Because we are working with daily returns, the magnitude of the conditional mean

is much smaller than the higher-order moments, and so any omitted variables that

might affect expected returns are not likely to introduce much bias in our results.

As such, to avoid overfitting, we did not include any other variables in the drift of

the exchange rate.3

Although our focus is on careful modeling of currency risks themselves, our

conclusions should have implications for modeling of economic channels leading

to the observed risk premiums. As highlighted by our examples in the Internet

Appendix, successful equilibrium models should be able to replicate not only the

measured risk premiums but also the distribution of currency shocks as well. To

this end, our model can be used to construct portfolios that isolate jump risks and

serve as inputs to traditional factor models that examine the pricing of these risks.

Moreover, our extensive analysis of the shocks to currency returns provides useful

guidance for specifying shocks to fundamentals in equilibrium models.

2This addition can be supported in various theoretical settings (Bacchetta and Van Wincoop (2006),

Brennan and Xia (2006)). Empirical work with such a term includes Bekaert and Hodrick (1993),

Brandt and Santa-Clara (2002), Graveline (2006), Lustig et al. (2011), and Menkhoff et al. (2012).
3Recent literature suggests that inference about the conditional mean of excess returns can be

improved by considering portfolios of currencies (e.g., Barroso and Santa-Clara (2015), Lustig et al.

(2011), Lustig and Verdelhan (2007), and Menkhoff et al. (2012)).
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III. Empirical Model

We start by presenting our empirical model in Section III.A. In Section III.B,

we discuss how we arrived at the assumed functional forms.

A. Currency Dynamics

We model bilateral log excess FX returns as

(4) yt+1 ≡ (st+1 − st ) − (rt − r̃t ) = µt + v1/2
t

ws

t+1 + zu

t+1 − zd

t+1,

where ws
t+1 is a standard normal shock (i.e., 0 mean and unit variance), zu

t+1 is

a jump up (i.e., depreciation of USD), and the negative of zd
t+1 is a jump down

(i.e., appreciation of USD). The conditional spot variance is vt , and the jump

intensities of zu
t+1 and zd

t+1 are hu
t

and hd
t
, respectively.4 Consistent with the empir-

ical literature estimating conditional expected currency returns, we assume that

µt =µ0 +µrrt + µ̃r r̃t +µvvt . Details regarding the properties of µt are provided

in the Internet Appendix.

The conditional spot variance vt is assumed to follow a mean-reverting

“square-root” process,

(5) vt+1 = (1 − ν)v + νvt + σvv
1/2
t

wv

t+1 + zv

t+1,

which itself can jump with intensity hv
t
.5 The normal shocks to excess re-

turns ws and to conditional spot variance wv have a correlation coefficient

corr(ws ,wv)=ρ. Finally, to ensure positivity of the variance when jumps are

present, we only allow for upward jumps so that zv
t+1 has non-negative support.

The jump arrival rate is controlled by a Poisson distribution. The assumed

jump intensities imply that the number of jumps takes non-negative integer values

j with probabilities

(6) Prob( j k

t+1 = j) = e−hk
t (hk

t
) j/j !, k = u,d,v.

We allow all of the jump intensities to depend on the domestic and foreign interest

rates, as well as on the conditional spot variance,

(7) hk

t
= hk

0 + hk

r
rt + h̃k

r
r̃t + hk

v
vt , k = u,d ,v.

For a given number of jumps j per period, the magnitude of a jump size is as-

sumed to be random with a gamma distribution,

(8) zk

t
| j ∼ Gamma( j ,θk), k = u,d,v.

4This specification can be viewed as a discrete-time model or as a Euler discretization of a

continuous-time model (see, e.g., Platen and Rebolledo (1985)). In any case, a discrete-time model

is required at the estimation stage, which is why we omit explicit continuous-time formulation.

Formally, all shocks, even the normal variables, are jumps in discrete time. We model small jumps

via normal shocks and large jumps via the compound Poisson process. We distinguish the small and

the large jumps by imposing the respective priors at the estimation stage. We apply the term “jump”

to the large component only for the ease of referral.
5In continuous time, the Feller condition σ 2

v <2v(1−ν) ensures that the variance stays positive

if there are no jumps. A formal modeling of this process in discrete time is achieved via a Poisson

mixture of gamma distributions (e.g., Gourieroux and Jasiak (2006), Le, Singleton, and Dai (2010)).

We use a direct discretization of the continuous-time counterpart because this is what most researchers

do at the estimation stage anyway. We ensure that the variance stays positive at the estimation stage

by a careful design of the simulation strategy.
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Intuitively, because we consider daily data, a Bernoulli distribution is a very good

approximation to our model because it is reasonable to assume no more than one

jump per day. Then, the probability of a jump is 1−e−hk
t ≈hk

t
, and the distribution

of the jump size is exponential with mean parameter θk .
6

A popular alternative to our modeling approach is to specify the pricing ker-

nel expressed in the units of domestic and foreign currencies. A ratio of the two

would imply the exchange rate. One cannot identify how the multiple sources of

risk contemplated in this article are priced using exchange rate data alone. There-

fore, there is no need to use pricing kernel language in the context of the questions

that we are addressing. The Internet Appendix outlines conditions when our ap-

proach (direct specification of the dynamics of y) is equivalent to the pricing ker-

nel formulation. The Internet Appendix also illustrates why one cannot identify

prices of risk using FX data only.

We model each exchange rate in isolation from others. This approach speaks

to the large fraction of currency analysis, such as UIP regressions, option valua-

tion, or equilibrium modeling, that is conducted on a currency-by-currency basis.

We are able to identify the normal and non-normal shocks and how they should be

modeled. However, we cannot say which fraction of shocks can be explained by

common variation in the exchange rates and which fraction is country-pair spe-

cific. The Internet Appendix discusses how one may approach modeling of the

joint behavior of multiple currencies using our bilateral models as a foundation.

This discussion in the Internet Appendix has a number of implications. First,

our bilateral models are a useful input into building joint behavior. Second, joint

modeling leads to the proliferation of jump parameters because possible interac-

tions between jumps in different currencies can be quite involved. Third, there

are no economic restrictions gained by considering exchange rates jointly. For all

these reasons, we leave a rather complicated analysis of joint behavior for future

research.

To identify dynamics of variance better, we complement our data on ex-

change rates with variances implied from option prices. In this respect we follow

the rich options literature that highlights the importance of using information in

options for model estimation (e.g., see Brandt and Santa-Clara (2002), Chernov

and Ghysels (2000), Jones (2003), Pan (2002), and Pastorello, Renault, and Touzi

(2000)). Our empirical specification is motivated by the fact that the risk-adjusted

expectation of the average future variance realized over an option’s lifetime is

a linear function of state variables vt , rt , and r̃t in our model. See the Internet

Appendix for details.

Because implied variance is not exactly equal to the risk-adjusted expectation

of the future variance, we treat the former as a noisy and biased observation of the

conditional spot variance vt :

(9) IVt = αiv + βivvt + σivvt

√

λt ǫt ,

6Our choice of the variance jump size distribution is frequently used when modeling variance to

ensure its positivity, as discussed previously. The model of variance is also capable of generating quite

rapid variance declines after jumps. A jump leads to a large deviation from the long-run mean v, and

mean reversion controlled by parameter ν ensures that the variance is pulled back.
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where IVt is computed using prices of a 1-month at-the-money option and is ex-

pressed in daily terms; ǫt has a standard normal distribution, N(0,1); and λt has an

inverse gamma distribution, IG(ν/2,ν/2). So the product
√

λtǫt is tν distributed

(Cheung (2008), Jacquier, Polson, and Rossi (2004)).7 We have considered a ver-

sion of equation (9) with non-zero loadings on rt and r̃t , but this specification did

not find empirical support.8

Many authors use implied variance or model-free implied variance (MFIV)

in empirical work by interpreting it as a very accurate approximation of the risk-

adjusted expectation of the average future variance realized. This is certainly true

for models with stochastic volatility only. The one-for-one relationship between

implied variance and risk-adjusted expected variance may break down in the pres-

ence of jumps. For example, Chernov (2007) has to assume that the risk-adjusted

mean of jumps in FX is equal to 0 to retain the simple relationship. The im-

portance of careful accounting for jumps is manifested more clearly in the lit-

erature on MFIV, such as VIX for the S&P 500, where analytic expressions are

feasible. Martin (2013) shows that in the presence of jumps, VIX is equal to the

risk-adjusted expected variance plus additional terms reflecting the higher-order

risk-adjusted cumulants of returns. Our empirical specification allows us to avoid

these difficulties in the explicit connection between implied variance or MFIV

and risk-adjusted expected future variance. The cost of such an approach is our

inability to estimate the risk-adjusted parameters of the model.

We conclude with a discussion of our approach to modeling interest rates.

We do not need an explicit model of interest rates to estimate our model of FX

excess returns if we are willing to assume that 1-day rt and r̃t can be reasonably

proxied with short-term yields. We view this feature as a strength of our approach

because explicitly modeling the behavior of spot interest rates entails significant

effort.9 Further, interest rates and currencies have a low conditional correlation,

and variability in interest rates is much smaller than that in currencies. Thus, elab-

orate modeling and estimation of interest rate dynamics do not appear to be a

first-order concern for the questions that we are addressing.

Nonetheless, we will need to use a model to compute the expectation of

future variance that depends on the distribution of interest rates. In order to obtain

reasonable quantities, we assume the simplest possible model for the interest rates.

The foreign interest rate is r̃t+1 = (1− b̃r )ãr + b̃r r̃t + σ̃r r̃
1/2
t w̃r

t+1, and the domestic

is the same without tildes. A square-root process for interest rates is subject to

the caveats in discrete time that we previously discussed for the variance process.

We calibrate the models to match the mean, variance, and serial correlation of the

respective observed short-term interest rates. Our computations with reasonable

7Jones (2003) makes a strong case for heteroscedastic measurement errors in implied variance. His

specification sets λt =1. Cheung (2008) generalizes the specification to the Student t-error. We tried

using a normal error with volatility σiv, a normal error with volatility σivvt , and the Student t-error

described previously. We find that heavy-tailed t3 works very well.
8Interest rates have low variability relative to exchange rates and their variance. Therefore, it could

be the case that the contribution of interest rates to the variation in implied variance cannot be empiri-

cally distinguished from the measurement error if the former is reasonably small.
9There is a separate area of the literature dedicated to this task, and state-of-the-art models rely on

five factors for capturing interest rate dynamics. These studies are typically conducted with monthly

or quarterly data.
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variation in parameters confirm our intuition that they have minimal impact on the

role of normal and non-normal currency risks.

B. Qualitative Features of the Model

In this section we explain how we arrived at the specified functional form

of the model. We evaluated too many models to provide a detailed account of

our analysis, so we briefly summarize the results that led us to the previously

described specification. Our initial specifications were motivated by the well-

developed literature on equity returns (Andersen, Benzoni, and Lund (2002),

Chernov, Gallant, Ghysels, and Tauchen (2003), Eraker et al. (2003), Eraker

(2004), and Jones (2003)) and some of the few models of currencies (Bates

(1996), Jorion (1988), and Maheu and McCurdy (2008)). The salient features of

equity data are the presence of substantial moves up and down and a pronounced

negative skewness in the return distribution. Therefore, jumps in equity returns are

often modeled via a single compound Poisson process with a normally distributed

non-zero-mean size. However, in contrast to equity returns, currency returns have

very mild skewness over long samples, which suggests a zero-mean symmetric

distribution for jump sizes.

Further, Bates (1996), Campa, Chang, and Reider (1998), and Carr and Wu

(2007) emphasize the time-varying and sign-switching nature of the risk-adjusted

skewness of exchange rates. The key to modeling this feature successfully is to

allow the conditional expected jump to vary over time. A single-jump process

with a zero-mean jump size implies a zero conditional expected jump. Two-jump

processes have the potential to generate the requisite variation via either time-

varying jump intensities or time-varying jump size distributions, or both. We do

not explore time-varying jump means because such specifications do not allow

for tractable option valuation in the affine framework, and we eventually want our

model to be used to analyze option prices. We have also considered normally dis-

tributed jump sizes in excess returns with means of the jump size distribution hav-

ing opposing signs. However, because normal distributions have infinite support,

it is hard to distinguish the down and up components empirically. The exponential

distribution does not have this issue because the support is on the positive line.

Another interesting feature of our specification is that we allow not only for

two different Poisson processes in currency returns but also for a third one in

the variance. Our starting point is again in the equity literature, where all jumps

in returns and variance are guided by the same (or at least correlated) Poisson

processes. We find that the model with correlated Poisson processes fits the data

poorly.

IV. Empirical Approach

We use Bayesian MCMC to estimate the model. This method has been suc-

cessfully implemented in many applications (see Johannes and Polson (2009) for

a review). For our purposes, a key advantage of this approach over other method-

ologies is that unobserved variables (e.g., variance, jump times, and jump sizes)

are a natural by-product of the estimation procedure. The Internet Appendix de-

scribes all the details of the implementation.
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It is worth pointing out how we distinguish jumps and normal shocks in the

model. Formally, all shocks are discontinuous in our discrete-time formulation.

We think of jumps as relatively infrequent events with relatively large variance.

We use priors on jump arrival and jump size parameters to express this view.

It proved to be extremely fruitful to use option-implied variances in our es-

timation. Ignoring information in option prices made it very hard to settle on a

particular model. Parameters were estimated imprecisely, and the algorithm had

poor convergence properties; both are manifestations of the data being not suffi-

ciently informative about the model. We had a similar experience when estimating

the most general model, even when using the options data. The complicated de-

pendencies of jump intensities on state variables and the sheer number of separate

Poisson processes were too much for the available data.

As such, we pursue the following model selection strategy. First, we treat

implied variances as observed spot variances and estimate the model of variance

(equation (5)). At this stage, we select the best model by checking the signifi-

cance of parameters on the basis of both credible intervals and Bayes odds ratios.

Specifically, the parameters of concern are the ones controlling the jump inten-

sity in equation (7) for k =v. It turns out that regardless of the currency, only the

loading on variance is significant. In other words, the probability of jumps in the

variance is affected by the variance itself. Thus, jumps in the variance are self-

exciting (Hawkes (1971)).10 Pinning down the model of variance is an extremely

useful step in our estimation procedure.

Second, we use the lessons from the estimation exercise on the basis of im-

plied variance alone to guide us in a formal search in the context of our full model.

That is, we take the model of equations (4) and (5) and combine it with equa-

tion (9) that recognizes implied variances as noisy observations of the spot vari-

ance. As a benchmark, we estimate the stochastic variance model with no jumps.

Next, we estimate a model with jumps in variance but no jumps in exchange rates

(hu
t
=hd

t
=0). We refer to this model as stochastic variance with jumps.

Finally, we allow for the full model with jumps in both exchange rates and

variance. Here, we focus on the significance of the parameters controlling the

jump intensities in equation (7) for k =u and d. We are not reporting all the de-

tails here, but we find that h̃u
r
, hu

v
, hd

r
, and hd

v
are insignificant. Thus, the prob-

ability of jumps up in the exchange rate is driven by the domestic rates only,

and the probability of jumps down in the exchange rate is driven by the foreign

rate only. Such a result does not necessarily preclude the dependence of the FX

distribution’s asymmetry on the interest rate differential because the behavior of

the FX skewness is dramatically affected by the expected effect of jumps, which

is equal to hu
t
θu −hd

t
θd . Here we are interested in testing whether θu =θd =θ ,

hu
0 =hd

0 =h0, and hu
r
= h̃d

r
=hr . These hypotheses are interesting because if they

cannot be jointly rejected, then the expected jump would be equal to θhr (rt − r̃t ).

10The recent literature on equity returns also finds support for self-exciting jumps (see, e.g.,

Ait-Sahalia, Cacho-Diaz, and Laeven (2015), Nowotny (2011), and Santa-Clara and Yan (2010)).
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Thus, the excess return asymmetries will be directly driven by the interest rate dif-

ferential, as noted by Brunnermeier et al. (2008).11 The final version of this model

that incorporates all the unrejected null hypotheses is referred to as the preferred

model.

We implement a series of informal diagnostics and specification tests to

establish the preferred model. The diagnostics test the null hypothesis that the

shocks to the observable excess return, ws , and implied variance, ε, should be

normal under the null of a given model. The Internet Appendix describes the

details.

Bayes odds ratios offer a formal specification test of the models. The test

produces a number that measures the relative odds of two models given the data

(the posterior distribution of the null model is in the denominator of the ratio).

Following Kass and Raftery (1995), we interpret a log odds ratio that is greater

than 3 as strong evidence against the null. Odds ratios do not necessarily select

more complex models because the ratios contain a penalty for using more param-

eters (the so-called automatic Occam’s razor). The computations are described in

the Internet Appendix.

V. Results

We start by highlighting the statistical properties of the estimated models.

Next, we study economic implications.

A. Statistical Properties of Currency Risks

Tables 2–5 report the parameter estimates. The corresponding model diag-

nostics are reported in the Internet Appendix. Table 6 displays the results of speci-

fication tests on the basis of Bayes odds ratios. Table 7 summarizes the parameters

of the calibrated interest rates.

The results exhibit a lot of similarities across the different currencies.12 As

we move from models with stochastic variance to models with stochastic variance

with jumps, we observe a change in two key parameters: Both the persistence ν of

variance and the long-run mean of its conditionally normal component v decline.

Taking AUD as an example, ν declines from 0.9943 to 0.9855. This seemingly

small change translates into a drop in the half-life of the conditionally normal

component, ln(2/(1−ν)), from 122 to 48 days. The high persistence of variance

in the model without jumps is a sign of misspecification. Variance has to take

high values occasionally to generate the observed exchange rates in the data. In

the absence of jumps, variance builds up to the high values gradually via the

high-persistence channel. Additionally, in the case of GBP only, the volatility

of variance σv declines significantly from 0.0321 to 0.0272. High σv helps the

misspecified model with stochastic variance in generating high values of variance.

The diagnostics support this interpretation. IV var (time-series average of the

11An alternative way to generate such a relation between skewness and the interest rate differential

is to hardwire the linear dependence of jump intensity on the latter. Because the interest rate differential

may switch signs, the probability of a jump may become negative.
12This is not the focus of our article, but for completeness, we provide a discussion of the theoret-

ical and empirical implications of our model for UIP regressions in the Internet Appendix.
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TABLE 2

AUD Parameter Estimates

In Table 2, the estimates correspond to daily excess currency returns, in percentages. The 95% credible intervals are
reported in parentheses. The preferred model is as follows:

yt+1 = µ0 +µr (rt − r̃t )+µv vt + v
1/2
t w s

t+1 + z u
t+1 − z d

t+1,

vt+1 = (1− ν)v + νvt + σv v
1/2
t w v

t+1 + z v
t+1,

hu
t = h0 +hr rt , hd

t = h0 +hr r̃t , hv
t = hv

0 +hv vt ,

z u
t |j ∼ Gamma(j ,θ), z d

t |j ∼ Gamma(j ,θ), z v
t |j ∼ Gamma(j ,θv ).

‘‘Risk-adjusted’’ is the preferred model calibrated to 1-month options (with parameters that are denoted by symbols fixed
at their time-series values).

Parameter SV (θ=0, θv =0) SVJ (θ=0) Preferred Risk-Adjusted

µ0 −0.0004 0.0003 0.0014 0.0640
(−0.0181, 0.0173) (−0.0175, 0.0182) (−0.0166, 0.0194)

µr −2.4893 −2.5200 −2.7643 −0.2988u /0.2888d

(−3.5895, −1.3910) (−3.6170, −1.4190) (−3.8613, −1.6801)

µv −0.0150 −0.0152 −0.0147 −0.0050
(−0.0247, −0.0053) (−0.0249, −0.0056) (−0.0244, −0.0051)

v 0.4968 0.2819 0.2819 0.2165
(0.2903, 0.8984) (0.2101, 0.3728) (0.2110, 0.3734)

ν 0.9943 0.9855 0.9857 0.8198
(0.9925, 0.9961) (0.9837, 0.9873) (0.9838, 0.9875)

σv 0.0391 0.0343 0.0342 σv
(0.0379, 0.0404) (0.0330, 0.0357) (0.0329, 0.0356)

ρ −0.2924 −0.2770 −0.2839 ρ
(−0.3279, −0.2563) (−0.3156, −0.2378) (−0.3237, −0.2435)

θv 0.3864 0.3837 θv
(0.3392, 0.4406) (0.3367, 0.4362)

θ 1.6910 θ
(1.5208, 1.8779)

hv
0 0.0037 0.0036 0.0098

(0.0029, 0.0040) (0.0028, 0.0040)

hv 0.0038 0.0038 hv

(0.0031, 0.0040) (0.0031, 0.0040)

h0 0.0017 0.0136u /0.0525d

(0.0000, 0.0038)

hr 0.1737 hr

(0.1177, 0.1992)

αiv 0.0033 0.0027 0.0033
(0.0009, 0.0064) (−0.0002, 0.0056) (0.0005, 0.0063)

βiv 1.0006 1.0021 1.0022
(0.9958, 1.0054) (0.9983, 1.0059) (0.9984, 1.0061)

variance of the error term in equation (9)) drops by 50% across all currencies; this

change is statistically significant. As expected, diagnostics for ε show that it is

close to a normal variable for both models because of the flexibility in λt . Bayes

odds ratios strongly favor stochastic variance with jumps.

Continuing with AUD, its volatility (
√

v) declines from 0.70% to 0.53% per

day (11.19% to 8.43% per year). This happens because the total variance has

contributions from the regular and jump components in the model with stochastic

variance with jumps. When there are no jumps in FX, the long-run variance is

equal to vJ =[(1−ν)v+hv
0θv]/[1−ν −hv

v
θv]. See the Internet Appendix for more

details. This expression produces the average volatility of 0.65%, much closer to

the figure in the model with stochastic variance.

To aid in interpreting the parameters controlling jumps in variance, consider

the impact of a jump in variance. Suppose the current variance is at its long-run

https://doi.org/10.1017/S0022109017000801 Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0022109017000801


Chernov, Graveline, and Zviadadze 153

TABLE 3

CHF Parameter Estimates

In Table 3, the estimates correspond to daily excess currency returns, in percentages. The 95% credible intervals are
reported in parentheses. The preferred model is as follows:

yt+1 = µ0 +µr (rt − r̃t )+µv vt + v
1/2
t w s

t+1 + z u
t+1 − z d

t+1,

vt+1 = (1− ν)v + νvt + σv v
1/2
t w v

t+1 + z v
t+1,

hu
t = h0 +hr rt , hd

t = h0 +hr r̃t , hv
t = hv

0 +hv vt ,

z u
t |j ∼ Gamma(j ,θ), z d

t |j ∼ Gamma(j ,θ), z v
t |j ∼ Gamma(j ,θv ).

‘‘Risk-adjusted’’ is the preferred model calibrated to 1-month options (with parameters that are denoted by symbols fixed
at their time-series values).

Parameter SV (θ=0, θv =0) SVJ (θ=0) Preferred Risk-Adjusted

µ0 0.0340 0.0353 0.0324 −0.0138
(0.0150, 0.0531) (0.0163, 0.0543) (0.0132, 0.0516)

µr −2.9851 −3.0674 −3.2501 −0.2995u /0.2914d

(−4.3345, −1.6354) (−4.4174, −1.7169) (−4.5952, −1.8996)

µv −0.0198 −0.0199 −0.0199 −0.0050
(−0.0333, −0.0064) (−0.0335, −0.0065) (−0.0334, −0.0064)

v 0.5088 0.3502 0.3427 0.2377
(0.3136, 0.8364) (0.2564, 0.4741) (0.2507, 0.4639)

ν 0.9891 0.9789 0.9785 0.7324
(0.9863, 0.9919) (0.9758, 0.9818) (0.9755, 0.9815)

σv 0.0388 0.0337 0.0337 σv
(0.0373, 0.0404) (0.0321, 0.0352) (0.0321, 0.0352)

ρ 0.0875 0.0856 0.0856 ρ
(0.0480, 0.1271) (0.0439, 0.1273) (0.0416, 0.1298)

θv 0.2205 0.2145 θv
(0.1845, 0.2622) (0.1804, 0.2550)

θ 1.3582 θ
(1.1771, 1.5744)

hv
0 0.0037 0.0037 0.0212

(0.0029, 0.0040) (0.0028, 0.0040)

hv 0.0145 0.0144 hv

(0.0131, 0.0150) (0.0130, 0.0150)

h0 0.0051 0.0376u /0.0283d

(0.0011, 0.0078)

hr 0.2175 hr

(0.0615, 0.2973)

αiv 0.0061 0.0041 0.0056
(0.0009, 0.0113) (−0.0013, 0.0093) (0.0003, 0.0104)

βiv 0.9919 0.9934 0.9946
(0.9753, 1.0091) (0.9795, 1.0071) (0.9802, 1.0096)

mean, and the variance jumps by the average amount θv. Then in the case of AUD,

the resulting volatility will move from 0.65% to (vJ +θv)1/2 =0.90%, a nearly 40%

increase in volatility (this increase ranges from 20% to 40% for the different cur-

rencies). The average jump intensity is equal to hv
0 +hv

v
vJ =0.0053 jumps per day,

or 1.34 per year (this number ranges from 1.34 to 2.61 for the different curren-

cies). Jumps in variance are self-exciting, so a jump increases the likelihood of

another jump. When the variance jumps by θv, the intensity changes to 1.71 per

year for AUD (the range is from 1.71 to 3.41 for all the currencies).

Also note that ρ, the “leverage effect,” has the same sign as the average

interest rate differential. It is positive for JPY and CHF and negative for AUD

and GBP. This result is consistent with the analysis of Brunnermeier et al. (2008)

and the common wisdom among market participants that investors who are long

carry are essentially short volatility. For example, consider the position of a carry
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TABLE 4

GBP Parameter Estimates

In Table 4, the estimates correspond to daily excess currency returns, in percentages. The 95% credible intervals are
reported in parentheses. The preferred model is as follows:

yt+1 = µ0 +µr (rt − r̃t )+µv vt + v
1/2
t w s

t+1 + z u
t+1 − z d

t+1,

vt+1 = (1− ν)v + νvt + σv v
1/2
t w v

t+1 + z v
t+1,

hu
t = h0 +hr rt , hd

t = h0 +hr r̃t , hv
t = hv

0 +hv vt ,

z u
t |j ∼ Gamma(j ,θ), z d

t |j ∼ Gamma(j ,θ), z v
t |j ∼ Gamma(j ,θv ).

‘‘Risk-adjusted’’ is the preferred model calibrated to 1-month options (with parameters that are denoted by symbols fixed
at their time-series values).

Parameter SV (θ=0, θv =0) SVJ (θ=0) Preferred Risk-Adjusted

µ0 0.0348 0.0360 0.0337 0.0445
(0.0128, 0.0565) (0.0138, 0.0584) (0.0116, 0.0556)

µr −3.0632 −3.1692 −3.1897 −0.1445u /0.1412d

(−4.4127, −1.7209) (−4.5046, −1.8351) (−4.5138, −1.8673)

µv −0.1326 −0.1377 −0.1341 −0.0050
(−0.1928, −0.0720) (−0.1986, −0.0773) (−0.1952, −0.0731)

v 0.3773 0.2227 0.2180 0.1015
(0.1855, 0.8002) (0.1631, 0.2989) (0.1619, 0.2909)

ν 0.9941 0.9810 0.9809 0.7544
(0.9919, 0.9963) (0.9786, 0.9834) (0.9786, 0.9833)

σv 0.0321 0.0272 0.0273 σv
(0.0311, 0.0332) (0.0262, 0.0283) (0.0263, 0.0284)

ρ −0.1341 −0.1295 −0.1303 ρ
(−0.1713, −0.0965) (−0.1692, −0.0896) (−0.1709, −0.0895)

θv 0.1953 0.1959 θv
(0.1728, 0.2206) (0.1731, 0.2211)

θ 1.1680 θ
(0.9593, 1.4127)

hv
0 0.0038 0.0038 0.0133

(0.0033, 0.0040) (0.0033, 0.0040)

hv 0.0121 0.0121 hv

(0.0110, 0.0125) (0.0110, 0.0125)

h0 0.0012 0.0329u /0.0723d

(0.0001, 0.0020)

hr 0.1223 hr

(0.0634, 0.1491)

αiv 0.0109 0.0063 0.0089
(0.0063, 0.0155) (0.0009, 0.0109) (0.0039, 0.0137)

βiv 0.9905 0.9951 0.9940
(0.9855, 0.9955) (0.9905, 0.9996) (0.9895, 0.9985)

trade investor who borrows money in USD and invests in AUD. This investor

can lose money when the AUD depreciates against the USD. We estimate that ρ

is negative for this currency pair, so the volatility of this exchange rate tends to

increase during times when the AUD depreciates.

The preferred version of the full model is the one with all of the aforemen-

tioned restrictions imposed (θu =θd =θ , hu
0 =hd

0 =h0, and hu
r
= h̃d

r
=hr ). That is,

the size of the jumps in FX up and down are symmetric, and their intensities

have a numerically identical functional form (but they depend on different inter-

est rates). As a result, the overall structure of jump arrivals differs from the one

used in popular models of S&P 500 returns, where jumps in variance and the

index are simultaneous.

The probability of USD depreciation, hu
t
, depends positively on the U.S. in-

terest rate. This property implies that when the interest rate differential is positive,
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TABLE 5

JPY Parameter Estimates

In Table 5, the estimates correspond to daily excess currency returns, in percentages. The 95% credible intervals are
reported in parentheses. The preferred model is as follows:

yt+1 = µ0 +µr (rt − r̃t )+µv vt + v
1/2
t w s

t+1 + z u
t+1 − z d

t+1,

vt+1 = (1− ν)v + νvt + σv v
1/2
t w v

t+1 + z v
t+1,

hu
t = h0 +hr rt , hd

t = h0 +hr r̃t , hv
t = hv

0 +hv vt ,

z u
t |j ∼ Gamma(j ,θ), z d

t |j ∼ Gamma(j ,θ), z v
t |j ∼ Gamma(j ,θv ).

‘‘Risk-adjusted’’ is the preferred model calibrated to 1-month options (with parameters that are denoted by symbols fixed
at their time-series values).

Parameter SV (θ=0, θv =0) SVJ (θ=0) Preferred Risk-Adjusted

µ0 0.0253 0.0253 0.0203 −0.0717
(0.0064, 0.0441) (0.0062, 0.0443) (0.0018, 0.0389)

µr −3.1861 −3.2046 −3.4590 −0.5561u /0.5426d

(−4.4200, −1.9526) (−4.4540, −1.9531) (−4.6992, −2.2266)

µv 0.0151 0.0152 0.0152 −0.0050
(0.0054, 0.0248) (0.0055, 0.0249) (0.0054, 0.0248)

v 0.4816 0.3143 0.3012 0.2382
(0.2926, 0.8111) (0.2328, 0.4223) (0.2207, 0.4079)

ν 0.9896 0.9762 0.9771 0.7022
(0.9868, 0.9924) (0.9730, 0.9794) (0.9739, 0.9802)

σv 0.0496 0.0438 0.0436 σv
(0.0476, 0.0516) (0.0419, 0.0458) (0.0417, 0.0455)

ρ 0.3681 0.3505 0.3631 ρ
(0.3316, 0.4040) (0.3098, 0.3902) (0.3205, 0.4047)

θv 0.3917 0.3771 θv
(0.3313, 0.4622) (0.3198, 0.4447)

θ 1.2351 θ
(1.0847, 1.4071)

hv
0 0.0037 0.0037 0.0331

(0.0031, 0.0040) (0.0029, 0.0040)

hv 0.0077 0.0076 hv

(0.0068, 0.0080) (0.0067, 0.0080)

h0 0.0052 0.0774u /0.0206d

(0.0034, 0.0060)

hr 0.4447 hr

(0.3133, 0.4984)

αiv 0.0140 0.0116 0.0159
(0.0086, 0.0193) (0.0062, 0.0169) (0.0099, 0.0214)

βiv 1.0052 1.0083 1.0248
(0.9871, 1.0248) (0.9916, 1.0256) (1.0069, 1.0431)

TABLE 6

Log Odds Ratios

Table 6 presents a statistical model assessment. We compare the SV (θ=0, θv =0), SVJ (θ=0), and preferred models
pair-wise. In the first row, we consider the SV and SVJ models and quantify evidence against the SV model; in the second
row, we consider the SVJ and the preferred models and quantify evidence against the SVJ model. Focusing on the AUD,
the first number tells us the odds are 22.03 to 1 that the SVJ model (the alternative) is preferable to the SV model (the
null).

Model AUD CHF GBP JPY Index

SVJ/SV 22.03 52.05 44.50 34.89 24.12
Preferred/SVJ 26.36 18.77 13.43 61.22 10.13

the probability of a large depreciation in the USD (a jump up) is higher than the

probability of a large appreciation (a jump down). Another way to illustrate this

effect is to focus on the asymmetry of the conditional distribution of an exchange
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TABLE 7

Calibration of the Interest Rates

In Table 7, we calibrate processes for domestic (U.S.) interest rates as

rt+1 = (1−br )ar +br rt + σr r
1/2
t w r

t+1

and foreign interest rates as

r̃t+1 = (1− b̃r )ãr + b̃r r̃t + σ̃r r̃
1/2
t w̃ r

t+1.

Parameters correspond to daily interest rates in percentages. There are five versions of the parameters corresponding
to the U.S. interest rate. This is because the foreign data have different starting dates, and we calibrated the U.S. rate in
the matching samples.

Parameter AUD CHF GBP JPY Index

ar 0.0181 0.0184 0.0184 0.0182 0.0185
ãr 0.0291 0.0121 0.0269 0.0077 0.0222

br 0.9999 0.9997 0.9997 0.9998 0.9998

b̃r 0.9992 0.9995 0.9998 0.9997 0.9998

σr 0.0012 0.0016 0.0016 0.0014 0.0015
σ̃r 0.0035 0.0030 0.0018 0.0027 0.0015

rate. Indeed, the third conditional cumulant can be obtained by taking the third

derivative of the cumulant-generating function of log currency returns. For exam-

ple, in the preferred model, κ3t (st+1 −st )=6θ 3hr (rt − r̃t ).

We see that the loadings of jump intensities on the different interest rates

translate into time-varying skewness controlled by the interest rate differential.

Parameters reflecting the average jump size have a different interpretation

compared with the jump in variance. The former is a jump in exchange rate ex-

pressed as a percentage of that exchange rate. The latter is an absolute magnitude

of a jump. Thus, on average, AUD returns increase (decline) by 1.69% when there

is a jump up (down). To put this number into perspective, the daily volatility of

AUD returns is 0.74% a day (Table 1). Thus, an average jump exceeds a “2-sigma”

event. The average intensities of down and up jumps are similar to each other and

to those of variances for a given currency: They range from 0.87 to 3.35 jumps

per year.

B. Jumps and Events

In this section we study the economic properties of the documented jumps.

We ask basic questions regarding the structure of the jump components, examine

whether jumps can be related to important economic events, and gauge their im-

pact on the overall risk of currency trades. Our discussion is based on Figures 1–4,

Table 8, and Tables 1–4 of the Internet Appendix.

For each exchange rate, the figures display the time series of data (excess

returns and implied volatilities) complemented by the estimated unobservable

model components: spot volatility v
1/2
t and jumps. Regarding the latter, the model

produces an estimate of a jump size and an ex post probability that a jump actually

took place on a specific day. However, all of this information is not easy to digest

because there are a lot of small jumps and jumps with a small ex post probability

of taking place. Thus, to simplify the reporting, we stratify the jump probabilities

by assigning them a value of 1 if their actual value is 0.5 or higher, and 0 other-

wise. Then we plot the estimated jump sizes on the days with the assigned value

of 1. Our strategy yields 219 jumps overall across all currencies. Approximately

25% of these jumps take place simultaneously in at least two currencies. We refer
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TABLE 8

Decomposition of the Total Risk

In Table 8, we report summary statistics of the percentage contribution of the different risks to the total risk of currency
returns (horizon n=21 and n=63 days).

Jump Up Jump Down Jump in Volatility Normal

Asset n=21 n=63 n=21 n=63 n=21 n=63 n=21 n=63

Panel A. AUD

Mean 6.90 6.37 9.17 8.40 4.12 10.18 79.81 75.05
Std. dev. 3.70 2.97 5.22 4.13 1.10 1.99 9.60 8.38
Minimum 0.31 0.38 0.60 0.74 1.58 4.45 55.17 56.33
Maximum 15.84 12.41 26.24 21.34 7.14 14.73 97.45 94.32

Panel B. CHF

Mean 6.82 6.66 5.48 5.37 3.76 8.94 83.94 79.04
Std. dev. 2.56 2.03 1.82 1.50 0.27 0.39 4.32 3.34
Minimum 1.02 1.31 0.98 1.26 3.13 8.01 66.78 69.49
Maximum 16.34 11.88 12.04 10.55 4.84 9.91 94.87 89.38

Panel C. GBP

Mean 2.98 2.78 3.68 3.45 4.37 11.48 88.96 82.29
Std. dev. 1.51 1.19 1.68 1.38 0.80 1.35 3.73 3.42
Minimum 0.18 0.23 0.25 0.32 2.64 7.79 74.21 72.60
Maximum 8.84 5.83 9.87 8.45 7.70 15.48 96.87 91.58

Panel D. JPY

Mean 9.10 8.57 5.80 5.43 4.83 11.19 80.27 74.82
Std. dev. 4.18 3.32 3.53 2.96 0.71 1.08 7.56 6.10
Minimum 0.93 1.23 0.69 0.91 3.05 7.96 54.70 57.34
Maximum 22.04 18.05 17.68 13.89 6.82 13.61 65.20 89.67

Panel E. Index

Mean 10.39 10.05 10.96 10.63 3.70 8.85 74.95 70.48
Std. dev. 3.96 3.28 4.01 3.38 0.57 0.98 8.05 6.78
Minimum 1.37 1.76 1.91 2.48 1.93 5.24 55.85 55.56
Maximum 19.44 17.65 21.65 19.11 5.18 10.87 94.58 90.12

to such jumps as common. There are 8 episodes when FX and variance jump at

the same time. We overlay the plots of the estimated jump sizes with the ex ante

jump probabilities hv
t
, hu

t
, and hd

t
.

To enhance interpretation of the plots, we reference the jump magnitudes

against the summary statistics available in Table 1. Let us use JPY in Figure 4 as

an example. Table 1 tells us that the volatility of JPY is 0.7% per day and that the

mean is approximately 0. Thus, a “regular” excess return can be within the range

of ±2% (µ±3σ ). Graph A of Figure 4 shows that there are quite a few days when

excess returns are outside of this range. In practice, the volatility is time-varying

and unobserved. Therefore, the “regular” range is also time-varying and uncertain.

The estimation procedure takes this uncertainty into account by producing the ex

post probability of a jump taking place and estimated jump sizes. The magnitude

of estimated jumps ranges from 2% to 6% in absolute value. Interestingly, the

larger jumps coincide with spikes in the moving-window estimates of skewness

across all currencies.

However, not all of the big spikes in excess returns are attributable to jumps

in FX. For example, on Oct. 28, 2008, the plot of excess returns shows a big

drop of 5.5%. The model shows no jumps on that day. Such a big move is gener-

ated via a normal component because of the jump in variance. Volatility jumps

by (vt−1 + zv
t
)1/2 −v

1/2

t−1 =0.18% (2.9% annualized), on average, on each of the
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3 days between Oct. 22 and 24. Each day, the jump in variance is increasing

the probability of a jump the following day. Over these 3 days, volatility moves

from 1.35% (21.5% annualized) to 1.8% (28% annualized). To put this number

into perspective, the long-run volatility mean is v
1/2
J =0.66% (10.4% annualized).

Thus, the increase in volatility over these 3 days is roughly equal to the average

level of volatility. Moreover, there is no significant news associated with either

Oct. 22–24 or Oct. 28. Thus, we attribute these events to market uncertainty.

GBP generates large movements via jumps in variance in the most transpar-

ent way. The exchange rate itself exhibits only 11 jumps throughout the sample,

none of which takes place after 2000. In fact, even the famous “Black Wednes-

day,” the GBP devaluation on Sept. 16, 1992, is attributed primarily to a jump

in variance on Sept. 8. The volatility moves from 0.93% (14.7% annualized) to

1.13% (17.9% annualized), and then it drifts up to 1.15% (18.3% annualized) on

the day of the crash. These values of volatility are high; the average volatility

of GBP is v
1/2
J =0.55%. Nonetheless, this level of volatility is still insufficient to

generate the whole drop of −4.10%. Of course, these rough computations assume

that vt is known with certainty. It is not, and a small deviation in the estimate may

be able to attribute the whole return to a normal shock in FX. This is why the es-

timated probability of a jump in the exchange rate is only 26% (and the estimated

jump size is −0.42%).

As a next step, we check if the jumps we detect are related to economic, po-

litical, or financial events. For each day a currency experiences a jump, we check

if there is significant news. To this end, we search Factiva for articles that explic-

itly relate movements in currency markets to events rather than collect a com-

prehensive set of macro-economic releases on the days of jumps. This strategy is

complementary to the one employed in studies of the impact of news surprises on

financial assets because our approach does not require us taking a stand on mea-

suring a surprise. In addition, we are careful in distinguishing announcements, a

clear public release of a fact, from uncertainty: anticipation, comments on the cur-

rent economic situation, and the overall market anxiety that is sometimes evident

in the news. The Internet Appendix provides a jump-by-jump description of all

events.

Across all currency pairs, we find that 65% of jumps in FX are associated

with announcements of economic, political, or financial events. In stark contrast,

only 23% of jumps in variance across all currency pairs are associated with such

events.13 Perhaps the fact that many jumps in FX are associated with announce-

ments is not so surprising. After all, announcements take place on many days of

a year. What is surprising is that there are so few jumps in variance that coincide

with announcements. On such days, we see a lot of discussion and interpreta-

tion of past events and, perhaps, anticipation of the future ones. Thus, jumps in

variance appear to reflect economic uncertainty rather than the revelation of a spe-

cific fact. Thus, there is a critical difference between jumps in FX and variance.

Tables 1–4 of the Internet Appendix provide a summary of the types of announce-

ments associated with jumps.

13We avoid double counting by accounting for common jump events in different currency pairs

only once, and we do not count simultaneous jumps in FX and variance (only 8 incidents across all

currencies).
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We find that economically different types of announcements and uncertainty

matter for different currency pairs. Australia, a country with a large current ac-

count deficit, experiences a number of interest rate cuts and interventions. These,

together with the trade news, lead to a number of jumps in AUD in the 1980s

and 1990s. Later in the sample, AUD, as a high-yield commodity currency, is

vulnerable to events around the Asian crisis and credit crunch, which results in

numerous realizations of large negative returns. In contrast to all other currencies,

jumps in CHF are driven solely by foreign announcements and uncertainty about

the U.S. economy and third countries’ economies. The exceptions are an interest

rate reduction by the Swiss National Bank on Nov. 21, 2008, and news indicating

monetary policy uncertainty on Mar. 12, 2009. The British pound has the largest

number of jumps in variance; hence, most of the jump events (72%) are driven by

economic uncertainty, such as uncertainty about the monetary system in Europe

(exchange rate mechanism, euro launch) and spillovers from the U.S. financial

market and banking sector in Europe. Similar to AUD, JPY experiences many

jumps in prices caused by either trade news or central bank interventions in the

beginning of the sample, whereas more recent jump episodes are related to tur-

bulence in world financial markets associated with the credit crisis. In contrast to

AUD, however, Japan runs a huge trade surplus, and the realized jump returns on

the yen tend to be positive in the recent financial crisis.

C. Decomposing the Total Risk

Are these risks quantitatively important? Jumps in FX and variance should

affect the tail events the most. The properties of tails are captured by high-order

moments or cumulants. One could report each of these statistics separately and

measure how they are affected by the various shocks present in our model. We

choose to summarize all this information by one number and measure the total

risk corresponding to investment horizon n using the entropy of changes in FX:

(10) L t (St+n/St ) = lnEt (e
st+n−st ) − Et (st+n − st ).

Entropy is a loaded term. Our use of entropy is closest to the way it is used

by Martin (2013), who analyzes the entropy of equity index returns. Entropy’s

connection to the cumulants of log FX returns makes it attractive for our purposes.

Specifically, the definition in equation (10) implies that

L t (St+n/St ) = kt (1;st+n − st ) − κ1t (st+n − st )(11)

= κ2t (st+n − st )/2! + κ3t (st+n − st )/3!(12)

+κ4t (st+n − st )/4! + · · · ,

where kt (1;st+n −st ) is the conditional cumulant-generating function of st+n −st

evaluated at the argument equal to 1, κ j t (st+n −st ) is the j th conditional cumulant

of st+n −st , and we use the fact that kt (1;st+n −st ) is equal to the infinite sum

of scaled cumulants. The significance of the property in equation (12) is that if

currency changes are normally distributed, then entropy is equal to half of their

variance (the first term in the sum). All the higher-order terms arise from non-

normalities. Thus, entropy captures the tail behavior of returns in a compact form

and serves as a natural generalization of variance as a risk measure.
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FIGURE 5

Conditional Decomposition of the Total Risk for Quarterly Returns

Figure 5 displays the cumulative contribution of the different risks to the total risk of excess returns (left axis). We measure
the total amount of risk using entropy:

Lt (St+n/St ) = κ2t (st+n − st )/2! + κ3t (st+n − st )/3! + κ4t (st+n − st )/4! + · · · ,

where κjt (st+n −st ) is the j th cumulant of log FX returns. The investment horizon is n=63 days. The contributions of the
down jumps in FX, of the up jumps in FX, of the jumps in variance, and of the normal shocks are displayed in gray, from
darkest to lightest gray. The black line shows

√

2Lt /n in percentages (right axis). This quantity has an interpretation of
1-period volatility in the case of normally distributed returns.

Graph A. AUD Graph B. CHF

Graph C. GBP Graph D. JPY
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We decompose the total risk of currency returns into the contribution of the

jump and normal components. The Internet Appendix explains how we compute

the full entropy on the basis of equation (11). We can compute the individual

components by zeroing out the rest.14 Figure 5 displays the contributions of these

components for the investment horizon of 3 months (n =63). We overlay these

contributions with a time-series plot of entropy computed treating USD as the

domestic currency. We scale entropy to ensure that it is equal to variance in the

normal case and to adjust for the horizon. Finally, to make the number easily

interpretable, we take the square root and express it in percentages. Thus, we plot√
2L t/n. Finally, Table 8 reports summary statistics of the relative contributions

of the different components for horizons of 1 month and 3 months.

14If two variables xs and ys are conditionally independent, then L t (xs ys )= L t (xs )+ L t (ys ). There-

fore, our decomposition approach correctly separates the contributions of the two jumps in currencies.

Because the probability of a jump in variance depends on the variance itself, the normal shock to

variance and the jump are conditionally independent only over one period, n =1. When n >1, our

procedure attributes all the covariance terms, which are positive because of the estimated functional

form of jump probabilities, to the jump in variance. We think that this approach is sensible because

the presence of these covariance terms is due to jumps.
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The regular, or normal, risk is the most prominent regardless of the horizon.

The average total contribution of jumps at a 1-month horizon ranges from 11.03%

for GBP to 20.19% for AUD. The contribution of a jump in FX (up or down) [the

range, 6.82%–9.17%] is higher than that of a jump in variance [the range, 3.76%–

4.83%] and has higher time variation at a 1-month horizon (GBP is the exception

because jumps in variance contribute 4.37% compared with 2.98% for jumps up

and 3.68% for jumps down). Therefore, in the short term, the risk of a jump in

variance has the smallest contribution to the overall currency risk. However, this

conclusion changes as we extend the investment horizon to 3 months. The average

total contribution of jumps at this horizon increases; the range is from 17.71%

for GBP to 25.19% for JPY. In this case, the individual contribution of jumps

in variance [the range, 8.94%–11.48%] is higher than that of jumps in FX [the

range, 2.78%–8.57%]. (In the case of GBP, the contribution of a jump in variance

is greater than the sum of jumps up and down.)

The contribution of jumps in FX declines toward the end of our sample,

thereby making the contribution of jumps in variance more important. We con-

nect this result to the secular decline in the probability of FX jumps. This effect

diminishes the expected contribution of such jumps to the overall risk. In contrast,

the probability of jumps in variance is less persistent and, therefore, exhibits mean

reversion in our sample.

VI. Importance of Crash Risk for Valuation

The large amount of jump risk in bilateral exchange rates prompts a natural

question of whether this risk is priced. Answering this question has important

implications for the literature that establishes high returns to currency speculation.

In particular, one should be able to attribute a specific fraction of documented risk

premiums to compensation for bearing crash risk. The full answer to this question

requires an explicit model of the pricing kernel and the use of assets that are

sensitive to jump risk for estimation of risk premiums. We offer initial thoughts

on this topic, leaving an in-depth analysis for future research.

One might argue that portfolios of exchange rates could diversify crash risks,

and therefore, their importance for pricing is less relevant than it may seem on

the basis of bilateral rates. There are two cases in which it could be useful to

study a portfolio in order to establish whether a particular risk is priced. First, a

portfolio could be systematic or diversified in an equilibrium sense, and therefore,

economic theory would suggest that all of the risk that it is exposed to should

be priced. A value-weighted portfolio of all traded assets is an example of such

a portfolio in the capital asset pricing model (CAPM) world. Second, it can be

fruitful to construct a portfolio that is exposed to a single risk and nothing else.

If that portfolio has a significant excess return, then it can be taken as empirical

evidence that the risk must be priced.

It is difficult to examine the first type of portfolio because currencies are

not claims on tangible assets. Therefore, we are not aware of an existing theory

that would deliver a systematic currency portfolio. Nevertheless, we study the

empirical properties of the dollar index introduced by Lustig et al. (2014). With

some stretch of the imagination, one could relate this portfolio to a systematic
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portfolio in a CAPM world where the only traded assets are sovereign bonds of

different countries. If we treat the U.S. bond as risk-free (and not just default-

free), then a portfolio of bonds in other currencies, weighted by the supply of these

bonds, could be considered as systematic. In practice, the equal-weighted dollar

index should be close to such an idealized value-weighted portfolio. Although we

readily admit that this argument is quick and dirty, this is the best motivation we

could have come up with for a proxy for a systematic portfolio. All other currency

portfolios considered in the literature seem further away from being systematic.

Given the complexity of the risks identified in the bilateral exchange rates,

one cannot construct portfolios of the second type using currencies alone. In this

situation, a more direct way to assess the valuation of crash risk is to use a model

to estimate the magnitude of risk premiums using prices of assets that are sensitive

to jump risk. In this regard, out-of-the-money options are particularly informative

about the price of jump risks (i.e., the covariance of the pricing kernel with jumps).

A thorough analysis along these lines is outside of the scope of this article. Instead,

we provide a calibration of jump risk premiums on the basis of average implied

volatility smiles.

A. Crash Risk of the Dollar Index

We closely follow Lustig et al. (2014) in constructing the dollar index. We

use daily exchange rates on the same 21 currency pairs against USD from Jan. 1,

1986, to Dec. 31, 2010. We replace 11 European currencies with the euro starting

from Jan. 1, 1999. We construct an equally weighted index of currencies against

USD: An investor buys a $1 equivalent of each foreign currency in the basket.

The summary statistics in Table 1 indicate that, consistent with the notion of risk

diversification, the excess returns of the index are less volatile, skewed, and lep-

tokurtic than those of bilateral exchange rates. Graph A of Figure 6 reveals that

skewness is time-varying within a range similar to that of individual FX rates.

Options on the index are not traded, so we do not have an option-implied

variance to use in equation (9) as a noisy observation of the variance of the log

return on the currency index. Instead, we use the first principal component of vari-

ances implied from at-the-money 1-month options on the bilateral exchange rates.

Specifically, we collect implied variances for AUD, CAD, CHF, DKK, EUR, GBP,

JPY, NOK, NZD, and SEK from Feb. 1, 2001, to Dec. 31, 2010. The choice of cur-

rencies and data span is limited by the availability of Bloomberg data. To be clear,

there is no obvious theoretical link between the principal component and the in-

dex volatility. The principal component is a rescaled version of implied variances,

so its units do not correspond to the variance level. The values of αiv and βiv from

equation (9) may not be in the neighborhood of 0 and 1, respectively. Moreover,

the noise term could be reasonably large. Given the absence of option-implied

volatility on the currency index, our empirical approach is simply our best ef-

fort, within the scope of this article, to measure the first-order effect of jumps on

currency indices.
We use the 1-month LIBOR or the 1-month Eurocurrency rate as a proxy

for the 1-period interest rate. If these are unavailable, we use their overnight or
3-month counterparts. The foreign interest rate is an equal-weighted index of the
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FIGURE 6

Index and Estimated States

In Graph A of Figure 6, the thin gray line displays observed log currency returns (right scale); the solid black line displays
the conditional 6-month skewness of the log currency returns (left scale); the dashed black line displays the conditional
6-month skewness of the log currency returns of the dollar carry trade. In Graph B, the thin black line shows the estimated
spot volatility

√
v t . The bottom graphs display estimated jump sizes in returns (Graph C) and volatility (Graph D) with

jump intensities. In Graph C, the gray solid line is the intensity of the jump down, the gray dashed line is the intensity of
the jump up, the black bars are the jumps themselves, and the gray bars are jumps that change the direction if there is
rebalancing based on the interest rate differential. In Graph D, the gray line is the intensity of the jump in volatility; the
black bars are jumps. We say that there was a jump at time t if the estimated probability of a jump on that day was above
50%. Vertical bars with a thin solid border indicate recessions in the United States.
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respective individual rates. We calibrate the same model as for the individual in-
terest rates. See Table 7.

Table 9 reports the parameter estimates (the corresponding model diagnostics
are in the Internet Appendix). Table 6 displays the results of specification tests on
the basis of Bayes odds ratios. All the diagnostics show that the (restricted) largest
model is strongly preferred.

The currency index has a smaller long-run variance and a smaller average
jump in variance than bilateral exchange rates. In relative terms, jumps in vari-
ance matter as much for the index as they do for individual currency pairs. When
current variance is at its long-run mean and jumps by the average jump size θv,
volatility increases by 35%, from 0.44% to 0.60% per day (6.93% to 9.52% per
year). The average jump intensity is equal to hv

0 +hv
v
vJ =0.0050 jumps per day or

1.25 jumps per year, which is less frequent than that of individual exchange rates.
The average jump size in FX for the index is θ =1.64. It is only slightly

smaller than the average jump size for AUD (1.69) and is larger than those for
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TABLE 9

Index Parameter Estimates

In Table 9, the estimates correspond to daily excess returns on the currency index, in percentages. The 95% credible
intervals are reported in parentheses. The preferred model is as follows:

yt+1 = µ0 +µr (rt − r̃t )+µv vt + v
1/2
t w s

t+1 + z u
t+1 − z d

t+1,

vt+1 = (1− ν)v + νvt + σv v
1/2
t w v

t+1 + z v
t+1,

hu
t = h0 +hr rt , hd

t = h0 +hr r̃t , hv
t = hv

0 +hv vt ,

z u
t |j ∼ Gamma(j ,θ), z d

t |j ∼ Gamma(j ,θ), z v
t |j ∼ Gamma(j ,θv ).

Parameter SV (θ=0, θv =0) SVJ (θ=0) Preferred

µ0 0.0062 0.0059 0.0050
(−0.0042, 0.0166) (−0.0045, 0.0163) (−0.0055, 0.0154)

µr −2.3987 −2.5243 −2.6140
(−3.4799, −1.3162) (−3.6003, −1.4557) (−3.6949, −1.5336)

µv −0.0208 −0.0209 −0.0209
(−0.0345, −0.0072) (−0.0345, −0.0073) (−0.0346, −0.0073)

v 0.1935 0.1357 0.1335
(0.0854, 0.4543) (0.0911, 0.1994) (0.0991, 0.1783)

ν 0.9941 0.9832 0.9801
(0.9916, 0.9965) (0.9801, 0.9859) (0.9775, 0.9826)

σv 0.0199 0.0168 0.0168
(0.0192, 0.0206) (0.0162, 0.0174) (0.0161, 0.0174)

ρ −0.0552 −0.0530 −0.0508
(−0.0944, −0.0159) (−0.0944, −0.0115) (−0.0932, −0.0083)

θv 0.1687 0.1714
(0.1521, 0.1870) (0.1546, 0.1902)

θ 1.6385
(1.4635, 1.8334)

hv
0 0.0037 0.0037

(0.0030, 0.0040) (0.0031, 0.0040)

hv 0.0092 0.0093
(0.0073, 0.0100) (0.0075, 0.0100)

h0 0.0020
(0.0001, 0.0052)

hr 0.1141
(0.0113, 0.2542)

other currencies. The average intensities of up and down jumps are 1.03 and 1.14
per year, respectively. This is on the low end of jump intensities of individual
currency pairs.

Figure 6 displays estimated jumps, ex ante jump probabilities, and volatility
states. We estimate 5 jumps down, 10 jumps up, and 38 jumps in volatility. All
jumps up and down take place before 1998 with the exception of the one on Aug.
8, 2008. In contrast, jumps in variance dominate after 2000 and especially cluster
in 2008. There is only one episode when a jump in return and a jump in variance
coincide: Aug. 8, 2008.

Table 5 of the Internet Appendix reports how many jumps in our original
four bilateral exchange rates are common with the index. Among the jumps in
FX, 12 jumps are common (they coincide mainly with jump events in CHF and
JPY). Among the jumps in variance, 31 jumps are common. This suggests that
many of the common jumps do not get diversified away in an index.

The findings are consistent with the notion of diversification in that the nor-
mal risks are smaller, and the jump risks are less frequent. In order to establish the
relative importance of the different risks, we decompose the entropy of exchange
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rate changes. Table 8 shows that normal risk is the main component of risks across
different investment horizons. Still, jumps contribute jointly on average 30% and
25% of variation at monthly and quarterly horizons, correspondingly. The role of
jumps in FX is in fact higher for the currency index than for individual currencies.
This is because the mean jump size is on the high end, and the jump intensity is
about the same for the index as for currency pairs. In addition, the overall varia-
tion of the index returns is smaller than for individual currency returns. These two
effects create a more prominent role for the jump risk compared with individual
FX rates. The role of jumps in variance increases with the investment horizon,
similarly to individual currency pairs.

Thus, combining different currencies into a portfolio does not necessarily re-
duce the prominence of crash risk. This is not the end of the analysis, however.
Lustig et al. (2014) argue that investing in the basket of foreign currencies when
the corresponding average foreign interest rate exceeds the U.S. rate and in the
USD otherwise is i) more profitable than a conventional carry portfolio (high mi-
nus low) and ii) uncorrelated with it. Whereas a high-minus-low strategy is well
known to suffer at times of turbulence in financial markets, and hence many au-
thors conjecture that it is subject to crash risk, it is less clear what happens with
the dollar carry portfolio.

Consider the relative profitability of the original currency index (long-only
portfolio) vis-à-vis the dollar carry portfolio. If one uses the realized Sharpe ra-
tio as a measure of performance, the dollar carry portfolio yields a resounding
success: Its annualized Sharpe ratio is 0.81, compared to 0.33 for the long-only
currency index.15 The Sharpe ratio does not reflect the departures from normality,
however.

To evaluate the crash risk of the dollar carry strategy, we ask whether neg-
ative jump risk disappears as a result of flipping position in the USD. We focus
our interest on the downward jumps because upward jumps work in favor of the
investor, and jumps in variance do not disappear because of rebalancing. The dol-
lar carry portfolio experiences 9 jumps down and 6 jumps up, versus the orig-
inal currency index that has 5 jumps down and 10 jumps up (the jumps in FX
that switch signs as a result of rebalancing are marked with gray in Graph C of
Figure 6). So the realized Sharpe ratio increases at the cost of making returns neg-
atively skewed; the skewness of the rebalanced index is −0.10, whereas that of
the long-only index is 0.03. The plot of the time-varying skewness of the dollar
carry portfolio in Graph A shows a higher incidence of negative values compared
with the long-only index.

To summarize, indexation of currencies does reduce the occurrences of

crashes. Indexation diversifies regular risks as well. As a result, the relative con-

tribution of crash risk to the overall riskiness of the dollar index is similar to

that of individual exchange rates. Conditioning on the interest rate differential in

the dollar carry portfolio appears to align normal shocks in favor of a speculator.

However, jumps in currencies end up going against the speculator, at least in our

sample. Conditioning on interest rates has no effect on jumps in variance.

15Our numbers are somewhat higher than reported previously in the literature. We can poten-

tially improve the performance of the dollar carry portfolio because we are considering daily data and

ignoring transaction costs.
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B. Crash Risk Premiums Implicit in Options

The large amount of jump risk prompts a natural question of whether this

risk is priced. A qualitative answer to this question is borderline obvious. Given

that diversification does not remove jumps, one needs an infinite number of finan-

cial instruments to hedge the jump risk perfectly (e.g., Jarrow and Madan (1995)).

Thus, one would anticipate jump risk premiums in the currency markets. Answer-

ing this question quantitatively has important implications for the carry trade lit-

erature. In particular, one should be able to attribute a specific fraction of the carry

risk premium to compensation for bearing crash risk.

The full answer to this question requires an explicit model of the pricing

kernel and the use of assets that are sensitive to jump risk for estimation of risk

premiums. In this regard, out-of-the-money options are particularly informative

about the price of jump risks (i.e., the covariance of the pricing kernel with jumps).

However, such analysis is outside of the scope of this article. Instead, we provide

a back-of-the-envelope computation, which we view as preliminary evidence of

priced jump risk.

We check what kind of assumptions about risk premiums are needed to fit a

“representative” implied volatility smile. We use option data for our original three

bilateral exchange rates (AUD, GBP, and JPY) from Oct. 16, 2003, to Dec. 31,

2010, and for CHF from Jan. 5, 2006, to Dec. 31, 2010; we start as early as data

on five strikes become available (0.25 and 0.10 risk reversals and butterflies, at-

the-money (ATM) options). We compute the average smiles for 1-month options

on each exchange rate. Then for each currency, we find a specific day such that

implied volatility on this day closely resembles the average smile for the respec-

tive currency. We do so because we can use the state variables from that day (the

observed domestic and foreign interest rates and the estimated variance). Figure 7

depicts the resulting data points with asterisks.

Next, we construct theoretical options prices and the respective implied

volatilities using different assumptions about risk premiums. In our reduced-

form framework, the simplest way to specify risk premiums is to assume that

parameters under the risk-adjusted probability are different from the parameters

estimated from the time-series of returns. We distinguish risk-adjusted parame-

ters with an asterisk ∗. The “volatility of volatility” σv and the “leverage” pa-

rameter ρ are the same under both probabilities by convention, a by-product of

the model’s continuous-time origins. The risk-adjusted drift µ∗
t

of returns (rather

than excess returns) is constrained by the law of one price. Specifically, we have

q̃1
t
=q1

t
E∗

t
(St+1/St ), where q1

t
and q̃1

t
are prices of domestic and foreign 1-period

risk-free bonds, respectively. Dividing by q1
t

and taking logs, we obtain the

following:

rt − r̃t = lnE∗
t
(est+1−st )

= µ∗
t
+ vt/2 + hu∗

t
(E∗

t
exp(zu

t+1) − 1)

+ hd∗
t

(E∗
t
exp(zd

t+1) − 1)

= µ∗
t
+ vt/2 + hu∗

t
((1 − θ ∗

u
)−1 − 1) + hd∗

t
((1 + θ ∗

d
)−1 − 1).

Thus,

(13) µ∗
t

= rt − r̃t − vt/2 − hu∗
t

θ ∗
u
/(1 − θ ∗

u
) + hd∗

t
θ ∗

d
/(1 + θ ∗

d
).
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FIGURE 7

Implied Volatility

In Figure 7, we check the ability of the model to generate the implied volatility (IV) smiles. The smiles on selected days
are the closest to the sample average. The asterisks indicate observed implied volatilities. The dashed gray lines display
theoretical smiles when only compensation for normal risks is allowed (we optimize over v ∗ and ν∗ only). The solid black
lines depict theoretical implied volatilities when jump risk premiums are allowed as well (we optimize over v ∗, ν∗, hv∗

0 ,
hu∗
0 , and hd∗

0 ).
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In our first exercise, we do not allow for any jump risk premiums. That is,

we try to fit the smiles in Figure 7 by minimizing the sum of squared implied

volatility errors and by allowing for deviation between v and v∗, and ν and ν∗

only. Our best fit is depicted with dashed gray lines. It is evident that without

jump risk premiums, we cannot get anywhere close to the observed smiles. The

theoretical risk-adjusted probabilities of extreme outcomes are too low relative to

those in the data.

In our second exercise, we allow jump risk to be priced as well. However,

we have too much flexibility in selecting the risk-adjusted jump parameters. First,

the jump mean and jump intensity are not identified separately in practice because

they approximately enter option pricing formulas as a product (e.g., Broadie et al.

(2007)). Therefore, we constrain the jump means to be the same under both prob-

abilities. Second, jump intensities could be time-varying, but we are looking at

only 1 day per currency. Therefore, we cannot separate differences between risk-

adjusted parameters that control the constant and the time-varying parts of jump

intensities. Therefore, we only allow for hv∗
0 6=hv

0 and h∗
0 6=h0. Although we find

the constant components of hu
t

and hd
t

to be the same under the actual probability,

this does not have to be the case under the risk-adjusted probability. Thus, instead

of calibrating just h∗
0, we distinguish hu∗

0 and hd∗
0 .
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Figure 7 depicts the results of the second exercise with solid lines. The smiles

can be fitted perfectly. Although our calibration is limited in its scope, it clearly

suggests that jump risks are priced. In what follows, we provide some discussion

to help our readers with interpretation of the jump risk premium parameters. Be-

fore we do so, we wish to emphasize that the key conclusion is that without jump

risk premiums, one cannot fit options even in the simplest case of 1 representative

day with only one maturity. The flip side of the simplicity of this setting is that

the calibrated jump risk premiums may be unreliable.

Tables 2–5 report the calibrated values of the risk-adjusted parameters. Pa-

rameters µ∗
0, µ∗

r
, and µ∗

v
are not calibrated: They are determined by the law of

one price via equation (13).16 To interpret these parameters, consider GBP as an

example. The smile is skewed to the left, which indicates that, relatively speaking,

out-of-the-money calls are less expensive than out-of-the-money puts. Therefore,

extreme negative outcomes (GBP depreciation) are more likely than extreme posi-

tive outcomes. The risk-adjusted jump intensities of hu∗
0 =0.0329 and hd∗

0 =0.0723

reflect this asymmetry. The effect of a jump in variance is more subtle. As jump in-

tensity increases, so does the overall level of variance (see the Internet Appendix).

As a result, the relative contribution of jumps in currencies declines, resulting

in fewer extreme negative outcomes and thereby skewing the smile to the right.

Therefore, the risk-adjusted intensity of a jump in variance cannot be too high to

match the observed smile.

It is customary to measure risk premiums as the difference between risk-

adjusted and actual parameters. To see why, consider a hypothetical security that

pays $1 if there are no jumps in the next period. The price of this security is

P k

t
= e−rt E∗

t
(I jk

t+1=0) = e−rt P∗
t

( j k

t+1 =0) = e−rt e−hk∗
t ,

where k =u,d,v, Ix is the indicator function of event x , and P∗
t

is the risk-adjusted

conditional cumulative distribution function. The excess log expected return on

this security (a.k.a. the risk premium) is r pzk
t
≡ ln[Et (I jk

t+1=0)/P k
t
]−rt =hk∗

t
−hk

t
.

The risk premiums range (in percentages per day) from 0.02 (JPY) to 0.07 (GBP)

for k =d, from 0.01 (AUD) to 0.07 (JPY) for k =u, and from 0.01 (AUD) to 0.03

(JPY) for k =v. All risk premiums are positive, reflecting the higher risk-adjusted

probability of jumps. The variance jump premiums are smaller than those of cur-

rency jumps, but they are of the same order of magnitude. Whether the magni-

tudes of these risk premiums are reliable and sensible is hard to establish without

more elaborate empirical work and a reference equilibrium model, respectively.

We leave this endeavor for future research.

VII. Conclusion

We explore sources of risk affecting currency returns. We find a large time-

varying component that is attributable to jump risk. The most interesting part of

this finding is that jumps in currency variance play an important role, especially at

16Readers may wonder why the loading of −0.5 on vt in equation (13) is replaced by −0.005 in the

tables. The adjustment of −0.5 corresponds to all quantities being expressed in decimals. We express

v
1/2
t in percentages. Thus, in order to get a sensible result for log returns expressed in percentages, the

easiest solution is to use −0.005 and keep other quantities as they are.
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long (quarterly) investment horizons, yet there is no obvious link between macro-

economic fundamentals and these jumps. We interpret this evidence as a manifes-

tation of economic uncertainty.

We see two important extensions of our analysis. First, currency options can

be used to estimate the pricing kernel. This would allow one to characterize how

the risks documented in this article are valued in the marketplace. Second, our

evidence suggests informally that common jump risks are shared across different

currencies. It would be useful to establish a model that explicitly incorporates

common and country-specific jump components.
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