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Abstract—We use a novel pricing model to imply time series of diffusive
volatility and jump intensity from S&P 500 index options. These two
measures capture the ex ante risk assessed by investors. Using a simple
general equilibrium model, we translate the implied measures of ex ante
risk into an ex ante risk premium. The average premium that compensates
the investor for the ex ante risks is 70% higher than the premium for
realized volatility. The equity premium implied from option prices is
shown to significantly predict subsequent stock market returns.

I. Introduction

THIS paper uses option prices to estimate the risk of the
stock market as it is perceived ex ante by investors. We

consider two types of risk in stock prices: diffusion risk and
jump risk.1 As Merton (1980) argued, diffusion risk can be
accurately measured from the quadratic variation of the
realized price process. In contrast, since even high-
probability jumps may fail to materialize in sample, the ex
ante jump risk perceived by investors may be quite different
from the ex post realized variation in prices. Therefore,
studying measures of realized volatility and realized jumps
from the time series of stock prices will give us a limited
picture of the risks investors fear. Fortunately, since options
are priced on the basis of ex ante risks, they give us a
privileged view of the risks perceived by investors. Using
option data solves the “peso problem” in measuring jump
risk from realized stock returns.

In our model, both the volatility of the diffusion shocks
and the intensity of the jumps vary over time following
separate stochastic processes.2 Our model is quadratic in the
state variables. This allows the covariance structure of the
shocks to the state variables to be unrestricted, which proves

to be important in the empirical analysis. We are still able to
solve for the European option prices in a manner similar to
the affine case of Duffie, Pan, and Singleton (2000). In the
empirical application, the model is shown to produce pric-
ing errors of the order of magnitude of the bid-ask spread in
option prices.

When we calibrate the model to S&P 500 index option
prices from the beginning of 1996 to the end of 2002, we
obtain time series of the implied diffusive volatility and
jump intensity. We find that the innovations to the two risk
processes are not very correlated with each other, although
both are negatively correlated with stock returns. The two
components of risk vary substantially over time and show a
high degree of persistence. The diffusive volatility process
varies between close to 0 and 36% per year, which is in line
with the level of ex post risk measured from the time series
of stock returns. The jump intensity process shows even
wider variation. Sometimes the probability of a jump is 0,
while at other times it is more than 99%.3 We estimate that
the expected jump size is �9.8%. Interestingly, we do not
observe any such large jumps in the time series of the S&P
500 index in our sample, not even around the times when
the implied jump intensity is very high. These were there-
fore cases in which the jumps that were feared did not
materialize. However, the perceived risks are still likely to
have affected the expected return in the stock market at
those times.

To investigate the impact of ex ante risk on expected
returns, we solve for the stock market risk premium in a
simple economy with a representative investor with power
utility for final wealth. We find that the equilibrium risk
premium is a function of both the stochastic volatility and
the jump intensity. Given the implied stochastic volatility
and jump intensity processes, together with the estimated
coefficient of risk aversion for the representative investor,
we estimate the time series of the ex ante equity premium.
This is the expected excess return demanded by the investor
to hold the entire wealth in the stock market when facing the
diffusion and jump risks implicit in option prices. We
decompose the ex ante equity premium into compensation
for diffusive risk and compensation for jump risk. We find
the ex ante equity premium to be quite variable over time.
In our sample, the equity premium demanded by the repre-
sentative investor varies from as low as 0.3% and as high as
54.9% per year! The compensation for jump risk is on
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1 There is ample empirical evidence for this kind of specification. See,
for example, Jorion (1988), Bakshi, Cao, and Chen (1997), and Bates
(2000).

2 In contrast, other jump-diffusion models impose a constant jump
intensity (Merton, 1976; Bates, 1996) or make it a deterministic function
of the diffusive volatility (Bates, 2000; Duffie, Pan, & Singleton, 2000;
Pan, 2002). The empirical analysis shows that the jump intensity varies a
lot and that although it is related to the diffusive volatility, it has its own
source of shocks.

3 We calculate this probability as 1 � e��, where � is the instantaneous
jump intensity. This calculation assumes that the jump intensity remains
constant for an entire year. Since the process we estimate for the jump
intensity is strongly mean reverting, this figure overstates the probability
of a jump during the year.

The Review of Economics and Statistics, May 2010, 92(2): 435–451
© 2010 The President and Fellows of Harvard College and the Massachusetts Institute of Technology



average more than half of the total premium. Moreover, in
times of crisis, the jump risk commands a premium of
45.4% per year and can be close to 100% of the total
premium.4

The ex ante premium evaluated at the average levels of
diffusive volatility and jump intensity implied from the
options in our sample is 11.8%. In contrast, the same
investor would require a premium of only 6.8% as compen-
sation for the realized volatility (i.e., the sample standard
deviation of returns) during the same sample period. There-
fore, the required compensation for the ex ante risks is more
than 70% higher than the compensation for the realized
risks! This finding supports the peso explanation of the
equity premium puzzle proposed by Rietz (1988), Brown,
Goetzmann, and Ross (1995), and Barro (2006).

According to this explanation, there is a risk of a sub-
stantial crash in the stock market that has not materialized in
the sample but justifies a larger risk premium than what has
traditionally been thought reasonable along the lines of
Mehra and Prescott (1985).

To show that the equity premium implied from the op-
tions market is indeed related to stock prices, we run
predictive regressions of stock returns on the lagged implied
equity premium. We find that the regression coefficient is
significant for different predictability horizons. For one-
month returns, the R2 is 4.1%, and it becomes 6.6% for
three-month returns. The regression coefficient is close to 1
for the three-month horizon as expected for an unbiased
forecast. Finally, we examine the relation between the
option implied equity premium and three variables related
to financial crises: the T-bill rate, the spread of bank com-
mercial paper over T-bills, and the spread of high-yield
bonds over Treasuries. Intuitively, the jump risk we uncover
in options should be related to large-scale financial crises in
which the Fed lowers interest rates, interbank loans dry up
and become more expensive, and corporations are more
likely to default. We find significant relations between these
variables and the implied equity premium, with an R2 as
high as 13.9% for the high-yield spread.

The paper closest to ours is Pan (2002).5 She estimates a
jump-diffusion model from both the time series of the S&P
500 index and its options from 1989 to 1996. She uses the
pricing model proposed by Bates (2000) which has a square
root process for the diffusive variance and jump intensity
proportional to the diffusive variance. The jump risk pre-
mium is specified to be linear in the variance. Pan finds a
significant jump premium of roughly 3.5%, which is of the
same order of magnitude of the volatility risk premium of

5.5%. The main difference between our paper and hers is
that in Pan’s framework, it is hard to disentangle the
diffusion and jump risks and risk premia since they are all
driven by a single state variable, the diffusive volatility.

Finally, a word of caution. Our analysis relies on option
prices, and, of course, options may be systematically mis-
priced. That would bias our ex ante risk measures. Coval
and Shumway (2001) and Driessen and Maenhout (2003)
report empirical evidence that some option strategies have
unusually high Sharpe ratios, which may indicate mispric-
ing. Santa-Clara and Saretto (2004) show that transaction
costs and margin requirements impose substantial limits to
arbitrage in option markets, which may allow mispricings to
persist.

The paper proceeds as follows. In section II, we present
the dynamics of the stock market index under the objective
and the risk-adjusted probability measures, and we derive an
option pricing formula. In section III, we discuss the data
and the econometric approach. The model estimates and its
performance in pricing the options in the sample are cov-
ered in section IV. Section V contains the main results of the
paper, the analysis of the risks implied from option prices
and what they imply for the equity premium. Section VI
concludes.

II. The Model

In this section we introduce a new model of the dynamics
of the stock market return that displays stochastic diffusive
volatility and jumps with stochastic intensity. We derive the
equilibrium stock market risk premium in a simple economy
with a representative investor with CRRA utility. This risk
premium compensates the investor for both volatility and
jump risks. We also obtain the risk-adjusted dynamics of the
stock, volatility, and jump intensity processes and use them
to price European options.

A. Stock Market Dynamics

We model the dynamics of the stock market index with
two sources of risk: diffusive risk, captured by a Brownian
motion, and jump risk, modeled as a Poisson process. The
diffusive volatility and the intensity of the jump arrivals are
stochastic and interdependent. We parameterize the pro-
cesses as:

dS � �r � � � ��Q�Sdt � YSdWS � QSdN (1)

dY � ��Y � �YY�dt � �YdWY (2)

dZ � ��Z � �ZZ�dt � �ZdWZ (3)

ln (1 � Q) � ��ln �1 � �Q��
1

2
�Q

2 , �Q
2 � (4)

Prob�dN � 1�� �dt, where �� Z2 (5)

4 This variation in the equity premium is extreme and may be due to
overfitting a particular equilibrium model. It also assumes that option
prices reflect accurately investors’ expectations. These potential limita-
tions are further discussed in section VB.

5 Other related work includes Ait-Sahalia, Wang, and Yared (2001),
Bates (2001), Bliss and Panigirtzoglou (2004), Chernov and Ghysels
(2000), Engle and Rosenberg (2002), Eraker (2004), and Jackwerth
(2000).
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	 � � 1 
SY 
SZ


SY 1 
YZ


SZ 
YZ 1
� . (6)

WS, WY, and WZ are Brownian motions with constant
correlation matrix 	, and N is a Poisson process with arrival
intensity �. Q is the percentage jump size and is assumed to
follow a displaced log-normal distribution independently
over time. This guarantees that the jump size cannot be less
than �1 and therefore that the stock price remains positive
at all times. We assume that N and Q are independent of
each other and that Q is independent of the Brownian
motions. The instantaneous variance of the stock return is
V � Y2. r is the risk-free interest rate, assumed constant for
convenience. We also assume that the stock pays no divi-
dends, although it would be trivial to accommodate them by
adding a term in the drift of the stock price. � is the risk
premium on the stock, which we show below to be a
function of Y and Z. Finally, the term ��Q adjusts the drift
for the average jump size.

In our model, the stock price, the stochastic volatility, and
the jump intensity follow a joint quadratic jump-diffusion
process where the stochastic processes of V and � are the
squares of linear (gaussian) processes of Y and Z, respec-
tively.6 Applying Ito’s lemma, we can write the processes
followed by V and �:

dV � ��Y
2 � 2�YY � 2�YY2�dt � 2�YYdWY (7)

d� � ��Z
2 � 2�ZZ � 2�ZZ2�dt � 2�ZZdWZ. (8)

The drift and diffusion terms in equations (7) and (8)
depend on the signs of the gaussian state variables Y and Z.
Note that the instantaneous correlation between dS and dV
is constant, 
SY, while the instantaneous correlation between
dS and dY is sgn (Y)
SY where sgn � is the sign function,
since �V � sgn (Y)Y and �� � sgn (Z) Z.7

Without the jump component, our model collapses to a
stochastic volatility model similar to that of Stein and Stein
(1991).8 It can easily be seen that the model does not belong
to the affine family of Duffie et al. (2000), in that the drifts

and the covariance terms in V and � are not linear in the
state variables. For instance, the covariance between dV and
d� is 
Y�Y�ZYZ.

Our model belongs to the family of linear-quadratic
jump-diffusion models. It is the first model in which the
jump intensity � follows explicitly its own stochastic pro-
cess. In contrast, existing jump diffusion models either
assume that the jump intensity is constant or make it a
deterministic function of other state variables such as sto-
chastic volatility.9 For instance, Pan (2002) assumes that �
is a linear function of V. It is of course an empirical issue
whether the jump intensity is completely driven by volatility
or whether it has its own separate source of uncertainty. The
empirical sections shed some light on this matter.

We do not include jumps in volatility as do Eraker,
Johannes, and Polson (2003) and Broadie, Chernov, and
Johannes (2007). After a large movement in stock prices,
other large movements are likely to follow. To capture this
feature of the data with stochastic volatility alone, in a
model with no jumps or with only independent and identi-
cally distributed (i.i.d.) jumps, volatility needs to jump up
(and stay up) following the large movement in the stock. In
our model, the clustering of large movements is captured by
an increase in jump intensity (instead of a jump in volatil-
ity), after which jumps tend to cluster together.10

We now turn our attention to finding the risk premium �.
Consider a representative investor who has wealth W and
allocates it entirely to the stock market.11 For simplicity, we
assume that there is no intermediate consumption, so the
investor chooses an optimal portfolio to maximize the utility
of terminal wealth:

max
w

Et
u�WT, T��, (9)

where Et� is the conditional expectation operator, w is the
fraction of wealth invested in the stock, T is the terminal
date, and u is the utility function. Define the value function
of the investor as

J�Wt, Yt, Zt, t� � max
w

Et
u�WT, T��.

Following Merton (1973) and using subscripts to denote the
partial derivative of J, a solution to equation (9) satisfies the
Bellman equation,

0 � max
w


Jt � ��J��, (10)

6 Cheng and Scaillet (2007) also study quadratic option pricing models.
Ahn, Dittmar, and Gallant (2002), Chen, Filipovic, and Poor (2004), and
Leippold and Wu (2002) present quadratic models of the term structure.

7 In our model, the correlation between dS and d�, as well as the
correlation between dV and d� can change signs, whereas the correlation
between dS and dV always has the sign of 
SY. The negative correlation
between dS and dV is well documented in the literature as the leverage
effect. This gives us a strong prior on the sign of 
SY. However, our
intuition about the signs of the other two correlations and whether they
should or should not change over time is much weaker. Our specification
allows the correlations to be freely estimated without having to make
assumptions about their signs and even allowing the signs to change over
time. In the empirical sections, we estimate this model and find that Y and
Z end up taking negative values (very close to 0 in all cases) in only 4 out
of the 366 weeks of our sample. Therefore, there is little evidence of
changing signs in the correlations between the state variables.

8 In Stein and Stein (1991),�V follows an Ornstein-Uhlenbeck process,
whereas in our model, V � Y2 with Y following an Ornstein-Uhlenbeck
process. Since the square root function is not globally invertible, the two

are not the same. See also Ball and Roma (1994) and Schobel and Zhu
(1999).

9 Some of these models can be transformed to allow the jump intensity
to evolve separately from the volatility. For example, the two-factor
jump-diffusion model in Bates (2000) admits such a transform for extreme
values of one of the state variables and for some model parameters.

10 Although we do not have a formal analysis, it does not seem easy to
identify a model with jumps in volatility and time-varying jump intensity.

11 Naik and Lee (1990) offer a related general equilibrium model for
pricing options.
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with

�� J� � WJW�r � w� � w��Q� � JY��Y � �YY�

�JZ��Z � �ZZ��
1

2
w2W 2JWWY 2

�
1

2
JYY�Y

2 �
1

2
JZZ�Z

2 � wWJWY
SY�YY

�wWJWZ
SZ�ZY � JYZ
YZ�Y�Z � Z2EQ
�J�,

where EQ� is the expectation with respect to the distribu-
tion of Q. The term �J � J(W(1 � wQ), Y, Z, t) � J(W,
Y, Z, t) captures jumps in the value function. In equilib-
rium, the risk-free asset is in zero net supply. Therefore, the
representative investor holds all the wealth in the stock
market, that is, w � 1. Differentiating equation (10) with
respect to w and substituting in w � 1, we obtain the risk
premium on the stock,

� � �
JWW

JW
WY2 � 
SY�Y

JWY

JW
Y � 
SZ�Z

JWZ

JW
Y

� E��JW

JW
Q�Z2,

(11)

where�JW� JW(W(1�Q), Y, Z, t)� JW(W, Y, Z, t). The stock
risk premium contains four components: the variance of the
marginal utility of wealth and the covariances of the marginal
utility of wealth with the diffusive volatility, the jump intensity,
and the jump size, respectively.

For tractability, we concentrate our attention on the case
of power utility: u � WT

1��/(1 � �), where � � 1 is the
constant relative risk aversion coefficient of the investor. In
the online appendix, we show that the risk premium on the
stock consistent with equilibrium in this economy is a
function of Y and Z:

��Y, Z, �� � �Y2 � 
SY�Y�BY � 2CYYY � 2CYZZ�Y

� 
SZ�Z�BZ � 2CYZY � 2CZZZ�Y (12)

� 
e�� ln �1��Q��
1
2
����1��Q

2

�1 � �Q � e��Q
2

�� �Q�Z
2

��Y2 � �
SY�Y 
SZ�Z�BY

�2�
SY�Y 
SZ�Z��CYY

CYZ
�Y2

(13)

�2�
SY�Y 
SZ�Z��CYZ

CZZ
�YZ

� 
e�� ln �1��Q��
1
2
����1��Q

2

�1 � �Q � e��Q
2

�� �Q�Z
2,

where we define � � T � t, B(�) � (BZ
BY) is a 2 � 1 matrix

function, and C(�) � (CYZ
CYY

CZZ
CYZ) is a 2 � 2 symmetric matrix

function. B and C solve the following system of ODEs with
the initial conditions B(0) � (0

0) and C(0) � (0
0

0
0):

B� � ��� � 2C��B � 2C� (14)

C� � � � C� � ��C � 2C�C, (15)

where � denotes the transpose of a matrix (or the complex
transpose in the case of a complex matrix), and the constant
matrices �, �, �, and � are defined as

���� 1
2
���� 1� 0

0 e�� ln �1��Q��
1
2
����1��Q

2


��1 � �Q�� ��� 1�e��Q
2

�� 1�
� � ��Y

�Z
�

� � ��Y 0
0 �Z

�
� � � �Y

2 
YZ�Y�Z


YZ�Y�Z �Z
2 � .

For a given value of the risk-aversion coefficient �, the
ODEs (14)–(15) can be quickly solved numerically. In the
special case where there is no stochastic volatility and
jumps, the equity premium (12) collapses to the first term,
�Y2 � �V, as shown by Merton (1973). In the special case
where there is no stochastic volatility and the jump intensity
is constant, equation (12) collapses to the first term and the
last term. The other two terms in equation (12) involving B
and C capture the effects of shifting investment opportuni-
ties when both Y and Z are stochastic. The first three terms
in equation (13) involve Y only and thus correspond to
compensation for stochastic volatility, and the last term
compensates the investor for jump risk as it involves Z only.
The interaction between the volatility and jump intensity
risks is captured by the cross term involving YZ.

In related work, Liu and Pan (2003) derive the optimal
portfolio of a CRRA investor who can hold the stock, an
option on the stock, and a risk-free asset. In their model, the
stock market has stochastic diffusive volatility and jumps of
deterministic size with the jump intensity driven by the
stochastic volatility. In contrast to our paper, theirs is a
partial equilibrium analysis that takes the price of risk as
given.

B. Option Pricing

We can price European options in this economy. In the
online appendix we show that the risk-adjusted dynamics of
the stock price can be written as:12

12 The stock price should be interpreted as being ex-dividend since we
are interested in pricing options that are not dividend protected.
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dS � �r � �*�*Q�Sdt � YSdW*S � Q*SdN* (16)

dY � ��*Y � �*YYY � �*YZZ*�dt � �YdW*Y (17)

dZ* � ��*Z � �*ZYY � �*ZZZ*�dt � �*ZdW*� (18)

ln �1 � Q*�� ��ln �1 � �*Q��
1

2
�Q

2 , �Q
2 � (19)

Prob�dN* � 1�� �*dt, where �* � Z*2 (20)

	 � � 1 
SY 
SZ


SY 1 
YZ


SZ 
YZ 1
� (21)

with the following simple relations between the model
parameters under the objective and risk-adjusted probability
measures:13

��*Y
�*Z

� � �1 0
0 b� �� � �B� (22)

��*YY �*YZ

�*ZY �*ZZ
� � �1 1/b

b 1 � � �� � �

� �
SY�Y 0

SZ�Z 0� � 2�C� (23)

�*Z � b�Z (24)

Z* � bZ (25)

�*Q � �1 � �Q�e
���Q

2

� 1 (26)

b � �1 � �Q�
�

1
2
�e

1
4
����1��Q

2

, (27)

where �, �, and � are defined as before, and � is the
element-by-element product of two matrices. The risk-
adjusted coefficients on the left-hand sides of the equations
above are related to the coefficients under the objective
probability measure by the risk-aversion coefficient �. Note
that the compensation for the jump risk is reflected in the
changed jump intensity as well as the changed distribution
of the jump size, whereas the compensation for the diffusive
risk requires only a change in the drift of the processes.14

In contrast to the complete market setting of Black and
Scholes (1973), the added random jump sizes make the
market incomplete with respect to the risk-free asset, the
underlying stock, and any finite number of option contracts.
Consequently the change of probability is not unique. We
use the equilibrium pricing condition from the endowment

economy with a CRRA representative investor to identify
the change of probability measure. It turns out that this
particular change of probability measure involves changing
the jump size and intensity.

Following the approach of Lewis (2000), we find the
price f of a European call option with strike price K and
maturity date T:15

f �S, Y, Z*, t; K, T�� S �
e�r�

2� �
i
2
��

i
2
�� Kik�1

k2 � ik

� e�ik�r�� ln S��A*����B*����U*�U*�C*���U*dk,

(28)

where i � ��1, k is the integration variable, U* � (Z*
Y ),

A*(�) is a scalar function, B*��� � �B*Z
B*Y � is a 2 � 1 matrix

function, and C*��� � �C*YZ

C*YY

C*ZZ

C*YZ� is a 2 � 2 symmetric matrix
function. A*, B*, and C* solve the following system of
ODEs with initial conditions A*(0) � 0, B*(0) � (0

0), and
C*(0) � (0

0
0
0):

A*� � �*�B* �
1

2
B*��*B* � tr ��*C*� (29)

B*� � ��*� � 2C*�*�B* � 2C*�* (30)

C*� � �* � C*�* � �*�C* � 2C*�*C*, (31)

where tr � is the trace of a matrix, and the matrices�*,�*,
�*, and �* are defined as

�* � �� 1
2
�k2 � ik� 0

0 ik�*Q � e�ik ln �1��*Q��
1
2
�k2�ik��Q

2

� 1
�

�* � ��*Y
�*Z

�
�* � ��*YY � ik
SY�Y �*YZ

�*ZY � ik
SZ�*Z �*ZZ
�

�* � � �Y
2 
YZ�Y�*Z


YZ�Y�*Z �*Z
2 � .

This formula involves the inverse Fourier transform of an
exponential of a quadratic form of the state variables, Y and
Z*. The ODEs that define A*, B*, and C* can be easily
solved numerically. Again, the online appendix presents the
gruesome algebra.

III. Estimation

In this section we discuss the data and the econometric
method used to estimate the model and imply the time series
of diffusive volatility and jump intensity.

13 Note that Y and Z* now appear in the drift terms of each other, while
Y and Z do not under the objective probability measure.

14 Note that in general, all the parameters governing the jump process
may change when the probability measure changes. However, in the case
of a representative investor with power utility function, the volatility of
jump size �Q does not change. 15 Although it contains a complex integral, the result is real.
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A. Data

For our econometric analysis, we use the European S&P
500 index options traded on the Chicago Board Options
Exchange (CBOE) for the period January 1996 to December
2002 obtained from OptionMetrics. The S&P 500 index and
its dividends are obtained from Datastream. The interest
rates are LIBOR (middle) rates also obtained from
Datastream.

Since the stocks within the S&P 500 index pay dividends,
whereas our model does not account for payouts, we adjust
the index level by the expected future dividends in order to
compute the option prices. Realized dividends are used as a
proxy for expected dividends. The dividend-adjusted stock
price corresponding to the maturity of a given option is
calculated by subtracting the present value of the future
realized dividends until the maturity of the option from the
current index level. Interest rates are interpolated to match
the maturities of the options.

We estimate our model at weekly frequency. We collect
the index level, interest rates, and option prices on Wednes-
day of each week.16 To ensure that the options we use are
liquid enough, we choose contracts with maturity shorter
than a year and moneyness between 0.85 and 1.15. We
exclude options with no trading volume and options with
open interest of fewer than 100 contracts. We use only put
options in our study as they are more liquid than call options
and since using both option types would be redundant given
put-call parity. For each contract, we use the average of the
bid and ask prices as the value of the option. We exclude
options with time to maturity fewer than 10 days and prices
less than $1/8 to mitigate market microstructure problems.
Finally, we check for no-arbitrage violations in option
prices. We end up with 366 trading days and 14,416 option
prices in our sample, or roughly 40 options per day.

Table 1 reports the average implied volatility of the
options in the sample. Rather than tabulating the option
prices, we show the Black-Scholes implied volatilities since

they are easier to interpret.17 We divide all options into nine
buckets according to moneyness (stock price divided by the
strike price) and time to maturity: moneyness less than 0.95,
between 0.95 and 1.05, and above 1.05; time to maturity
less than 45 days, between 45 and 90 days, and greater than
90 days. Note that when moneyness is greater than 1, the put
options are out of the money. The average implied volatility
across all options in our sample was 22.77%. The first panel
of figure 1 plots the time series of the implied volatility of
the short-term (maturity less than 45 days and as close as
possible to 30 days) option with moneyness closest to
S/K � 1 (at-the-money). We can see that the implied
volatility changes substantially over time. The spike in the
implied volatilities observed in fall 1998 corresponds to the
Russian default crisis and long-term capital management
debacle. For a fixed maturity, we can observe that the
implied volatilities decrease and then increase with the
strike price. This is the well-known “volatility smirk.” The
second panel plots the time series of the “smirk,” defined as

16 If Wednesday is not a trading day, we obtain prices from, in order of
preference, Tuesday, Thursday, Monday, or Friday.

17 Here, we use the Black-Scholes model to invert option prices for
implied volatilities. This does not mean that the options are priced in the
market according to that model and, indeed, we will use our model with
stochastic volatility and jumps to price the options in the empirical section
below. The Black-Scholes formula is used as a device to translate option
prices into volatilities, which are easier to interpret.

TABLE 1.—IMPLIED VOLATILITIES OF S&P 500 INDEX OPTIONS

Moneyness

Days to Expiration

T � 45 45 � T � 90 T � 90

S/K � 0.95 23.83 21.39 20.7
(4.67) (4.14) (3.88)
[193] [262] [466]

0.95 � S/K � 1.05 20.68 20.75 21.32
(4.95) (4.62) (4.26)

[3,155] [2,928] [2,211]
S/K � 1.05 27.43 25.54 24.3

(5.67) (5.22) (4.63)
[2,029] [1,924] [1,317]

Note: We report average implied volatility, the standard deviation of implied volatilities (in parenthe-
ses), and the number of options (in brackets) within each moneyness-maturity bucket.

FIGURE 1.—TIME SERIES OF IMPLIED VOLATILITIES
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the difference between the Black-Scholes implied volatili-
ties of two short-term put options with moneyness closest to
S/K � 1.025 (out-of-the-money) and S/K � 1 (at-the-
money), respectively. It shows that the smirk is positive all
the time and there are changes in the steepness of the smirk
over time. The third panel of figure 1 plots the time series of
the “term slope,” defined as the difference between the
Black-Scholes implied volatilities of the two at-the-money
put options with two maturities: short term (defined as
above) and long term (greater than 45 days and as close as
possible to 60 days), respectively. It shows that there is
some variation in the slope of the term structure through
time. During our sample period, the term slope was on
average close to flat.

B. Econometric Method

We adopt an implied-state quasi-maximum likelihood
(IS-QML) estimation method that is similar to the implied-
state generalized method of moments (IS-GMM) of Pan
(2002). Our approach combines information from stock and
option prices, taking advantage of the existence of an
analytical option pricing formula. In Pan (2002), volatility is
the only latent state variable that has to be implied. We
extend Pan’s method to our setting, where both volatility
and jump intensity are latent and have to be implied. We
estimate the model parameters by maximizing the joint
likelihood function of a discrete approximation of the con-
tinuous time transition densities of the state variables and
the density of the cross-sectional option pricing errors. One
advantage of the QML method is that we do not need to
choose the moment conditions, which is always a sensitive
choice in GMM.

Our modeling of the quasi-likelihood function is inspired
by Duffee (2002), who estimates a dynamic term structure
model. We assume that some options are observed without
error or imply the state variables, while others are observed
with error. Our quasi-likelihood function combines the time
series distribution of the implied state variables and the
cross-sectional distribution of the pricing errors. In contrast,
Pan (2002) uses only the time-series data of the implied
state variables to define her moment conditions.

For estimation, we use weekly data for the stock index
and four put option contracts {St, Pt

1, Pt
2, Pt

3, Pt
4}, where Pt

1

and Pt
2 have the shortest maturity and Pt

3 and Pt
4 have the

second shortest maturity. Pt
1 and Pt

3 are closest to at-the-
money; Pt

2 and Pt
4 are closest to moneyness (S/K) of 1.05.

The maturity of the first two options is greater than 15 days
and as close as possible to 30 days, while the maturity of the
last two options is greater than 45 days and as close as
possible to 60 days.18 All four contracts are actively traded.

We use Pt
1 and Pt

2 to imply the state variables Yt and Zt and
use Pt

3 and Pt
4 to compute the pricing errors.

Note that the ith put option price can be expressed as
Pt

i � f(St, Yt, Zt; Ki, Ti, � ), where f� is given by
equation (28) together with put-call parity, Ki and Ti are
the strike price and time to maturity of the ith option, and
� � (�Y, �Y, �Y, �Z, �Z, �Z, �Q, �Q, 
SY, 
SZ, 
YZ, �) is
the vector of model parameters under the objective prob-
ability measure. Given �, proxies Yt

� and Zt
� for the

unobserved Yt and Zt can be obtained by inverting
the system of equations Pt

1 � f(St, Yt
�, Zt

�; K1, T1, � ) and
Pt

2 � f(St, Yt
�, Zt

�; K2, T2, � ).19

Given Yt
� and Zt

�, the model-based option prices Pt
3,� and

Pt
4,� for the third and fourth options can be calculated using

the option pricing formula. We then compute the Black-
Scholes implied volatilities �t

3,� and �t
4,� for these two

options based on the model prices. The measurement errors
are defined as �t

i,� � �t
i,� � �t

i, where i � 3 and 4, and �t
i

is the Black-Scholes implied volatility of the ith option

based on the observed market price. Let �t
� � �

�t
4,�

�t
3,�

� denote

the vector of measurement errors.
For week t, the log likelihood under the objective prob-

ability measure is defined as

lt�� � � log fX�Xt
��Xt�1

� �� log f���t
��,

where fX� is the conditional density of the vector of state
variables Xt

� � (St, Yt
�, Zt

�)� and f�� is the density function
of the vector of pricing errors �t

�. This specification implic-
itly assumes that the pricing errors are independent of the
state variables.

Generalizing the approach of Ball and Torous (1983), we
use the truncated Poisson-normal mixture distribution to
approximate fX� for the jump-diffusion model in equations
(1) to (3). Let �t be the time interval of discretization,
which is 1/52 for our weekly frequency data. We approxi-
mate equations (1) to (3) by the following discrete system:

� ln St � �r � �t�1 � �t�1�Q��t � Yt�1	�t �S,t � QtBt

(32)

�Yt � ��Y � �YYt�1��t � �Y	�t �Y,t (33)

�Zt � ��Z � �ZZt�1��t � �Z	�t �Z,t, (34)

where (�S,t, �Y,t, �Z,t)  i.i.d. �(0, 	), Qt  i.i.d. �(�Q,
�Q

2 ), Qt and �t are independent, Bt  i.i.d. �̂(�t�1�t)
where �̂� is the truncated Poisson distribution with trun-
cation taken at M, the maximum number of jumps that may
occur during a time interval.20 We fix M to be 5 in our paper.

18 Using two maturities helps in identifying Y and Z since jumps and
stochastic volatility have different effects on short- and long-term options.
We are constrained in using options with longer maturities than a few
months since they are not liquid. The results are robust to choosing options
with moneyness 0.95, 0.975, or 1.025.

19 It is not always the case that Y and Z can be inverted for a given vector
of parameters �. The intuition is that bivariate quadratic equations do not
always have real solutions. We impose the constraint that the vector of
parameters � allows inversion of Y and Z.

20 The density function of �̂(��t) is proportional to f( x) �
e���t(��t)x/x! for x � 0, 1, 2, . . . , M.
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Our discrete model, equations (32) to (34), allows multiple
(up to M) jumps in a time interval, while Ball and Torous
(1983) consider at most only one jump during a time
interval. We approximate fX� by the likelihood function of
equations (32) to (34), which is a mixture of truncated
Poisson and normal distributions.21 We examine the preci-
sion of the approximation in the online appendix.

To model f��, we assume that the option pricing error
vector �t

� has an i.i.d. bivariate normal distribution with
constant covariance matrix. Given the definition of the
log-likelihood function lt(� ), the QML parameter vector �
is obtained from the optimization program:

max
�

L���� max
�



t�1

T

lt���.

We employ an optimization algorithm similar to that of
Duffee (2002). In step 1, we generate starting values for the
parameter vector �. In step 2, we use the formula (28) and
option prices Pt

1, Pt
2 to derive the implied state variables Yt

�

and Zt
�. In step 3, we use the nonlinear Simplex algorithm to

obtain a new parameter vector that improves the QML
value. We then repeat the above steps until convergence is
achieved. The standard errors of the parameter estimates are
obtained from the last QML optimization step. The estima-
tion time for the SV-SJ model ranges from two to four hours
depending on the choice of the initial parameter values.

In addition to the general model (SV-SJ), we also esti-
mate two restricted cases: the stochastic volatility model
(SV) and the constant jump intensity model (SV-J). For the
restricted models, volatility is the only latent state variable
that needs to be implied. Therefore, in those cases, we invert
just the short-term at-the-money option Pt

1 to imply the state
variable Yt.

It is important to point out that the options are priced
under the risk-adjusted probability measure, while the tran-
sition densities of the state variables are specified under the
objective probability measure. The fact that the likelihood
function combines information from both the objective and
the risk-adjusted distribution of the state variables has a
crucial role in the estimation of the risk-aversion parameter
�. A necessary identification condition is that the transfor-
mation between the objective and the risk-adjusted proba-
bility measure be monotonic in terms of �. In our frame-
work, this transformation is given by equations (22) to (27),
which depends on �. For the SV model, the difference
between �*YY and �Y is ��
SY�Y, which is clearly mono-
tonic in �.22 For the SV-SJ model, the difference between

�*YY and �Y is more complex but can still be shown to be
monotonic in � using the parameter estimates reported in
table 2. Intuitively, the identification of � comes from the
mean reversion speed observed in the implied state vari-
ables, coupled with the mean reversion speed implicit in the
option prices. The mean reversion speeds of Y and Z under
the objective probability measure enter the likelihood func-
tion through the transition density fX(Xt

��Xt�1
� ), while the

same coefficients under the risk-neutral probability measure
enter the likelihood function through the density of the
pricing errors f�(�t

�). Since the transformation between the
mean reversion speeds under the two probability measures
is monotonic, the QML algorithm finds a unique value of �
that maximizes the combined likelihood function.23 The
precision of the estimate of � is remarkable and much
greater than could be achieved by estimating this parameter
from the drift of the stock market alone.

Another potential problem in our QML approach is that
the approximation of the conditional likelihood function
fX� by the truncated Poisson-normal mixture distribution
may bias the estimates of the model parameters. In the
online appendix, we conduct Monte Carlo simulations to
verify the precision of the approximation. We show that the
QML estimates are close to the true parameters (used for the
simulations) indicating no significant bias in our estimation
approach.

21 It is well known that the log-likelihood function for a mixture of
normal distributions is unbounded, but it is still possible to obtain
consistent and asymptotically normal distributed estimates by constraining
the maximum likelihood algorithm (see, for example, Hamilton, 1994).

22 In some studies of the SV models ��
SY�Y is called the market price
of risk. Using the parameter estimates reported in table 2, this market price
of risk is positive. 23 We thank an anonymous referee for this explanation.

TABLE 2.—ESTIMATED PARAMETERS

SV SV-J SV-SJ

�Y 1.929 1.756 2.841
(0.340) (0.314) (0.346)

�Y �9.201 �9.218 �18.079
(1.541) (1.545) (2.065)

�Y 0.306 0.315 0.334
(0.008) (0.009) (0.010)

�Z 7.745
(1.396)

�Z �9.436
(1.567)

�Z 1.529
(0.045)

�Q �0.070 �0.098
(0.012) (0.013)

�Q 0.283 0.160
(0.013) (0.013)


SY �0.731 �0.728 �0.495
(0.014) (0.014) (0.025)


SZ �0.597
(0.022)


YZ 0.168
(0.045)

� 1.977 1.984 1.917
(0.391) (0.369) (0.352)

RMSE(%) 3.348 2.730 2.131

Note: We report the standard errors in parentheses under the estimated parameters.
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IV. Empirical Results

In this section we discuss the empirical results. We
present the model estimates and discuss the performance of
the model in pricing options.

A. Model Estimates

The SV-SJ model of stochastic volatility and stochastic
jump intensity contains the pure stochastic volatility model
(SV) and the constant jump intensity model (SV-J) as
special cases. In the SV model, we restrict �Q � �Q �
�Z � �Z � 
SZ � 
YZ � 0. In the SV-J model, we restrict
�Z � �Z � 
SZ � 
YZ � 0, and �t � �� is a constant.24

Table 2 reports the estimated parameters for the three
models. We can compare to some extent the parameter
estimates for the SV model with the estimates reported by
Bakshi, Cao, and Chen (1997) and Pan (2002). However,
notice that their SV model is the square root model of
Heston (1993), whereas ours is similar to the model of Stein
and Stein (1991). Also, their sample periods are different
from ours. Bakshi et al. use S&P 500 index options data
from 1988 to 1991, and Pan uses S&P 500 index options
data from 1989 to 1996.

In Bakshi et al. (1997) and Pan (2002), the square root of the
estimated long-run mean of V is 18.7% and 11.7%, respec-
tively. Our estimate of the long-run mean of�V (� �Y �), given
by �Y/�Y, is a bit higher, at 21.0%. These differences are
mainly due to the difference in sample periods. The estimates
of mean-reversion speed are 1.15 and 7.10 in their papers,
whereas it is 9.20 in our paper, implying stronger mean
reversion.25 The volatility of volatility is 0.39 and 0.32 in their

papers, and it is 0.31 in our paper.26 The correlation between
the stock and volatility processes is estimated to be�0.64 and
�0.57 in their papers, and it is �0.73 in our paper.

Bakshi et al. (1997) and Pan (2002) also estimate an SV-J
model. In this case, the square root of their estimated
long-run mean of V is 18.7% and 11.6% in their papers,
whereas our estimate is 19.0%. The mean-reversion speed is
estimated as 0.98 and 7.10 in their papers and 9.22 in our
paper. The volatility of volatility is 0.42 and 0.28 in their
papers and 0.31 in our estimate. The correlation between
volatility and the stock is �0.76 and �0.52 in their papers
and �0.73 in ours. Finally, they estimate the mean jump
size to be �5 percent and �0.3 percent, respectively,
whereas we estimate it to be �7 percent. In summary, our
estimates for the restricted SV and SV-J models are com-
parable with the findings in other studies despite the differ-
ences in the data sets and models.

We next concentrate our attention on the SV-SJ model.
All the coefficients of the model are significant at any
conventional level of significance. Table 3 reports summary
statistics for the implied time series of �Vt and �t, which
are plotted in figure 2.

The average level of volatility is 15.6%, and the average
level of jump intensity—loosely speaking, the expected
number of jumps over the next year—is 0.80. The average
jump size is �9.8%, which is 40% higher than the average
jump size in the SV-J model.

Both the volatility and jump intensity series exhibit sub-
stantial variation through time. The diffusive volatility var-
ies between 1.9% and 35.6%. The jump intensity varies
from less than 0.01 to over 5 during the 1998 financial
crisis. Interestingly the two risk sources, although corre-
lated, can display very different behavior: from times of
high diffusive and jump risks, as in the second half of 2002;

24 Note that option pricing formula for the SV-J model cannot be
obtained from that of the SV-SJ model by restricting the corresponding
parameters. A similar option pricing formula can be derived using the
same approach as for the SV-SJ model.

25 Our estimate of mean reversion speed is much faster than those of
some early studies. One explanation is that previous studies generally use
an early sample period. As a check, we examined the at-the-money
nearest-to-maturity implied volatility for the period 1990–1995 (from
CBOE data since Option Metrics is not available for that period). The
first-order autocorrelation coefficients are 0.911 and 0.822 for the 1990–

1995 and 1996–2002 periods, respectively, indicating faster mean rever-
sion in the more recent period.

26 According to Ito’s lemma, the volatility of volatility in Heston’s model
is half that in our model. So our estimate of volatility of volatility is about
twice of those in Bakshi et al. (1997) and Pan (2002). But this higher
volatility is offset by a much faster rate of mean reversion.

TABLE 3.—IMPLIED DIFFUSIVE VOLATILITY AND JUMP INTENSITY

Model Mean S.D. Skewness Kurtosis Maximum Minimum Autocorrelation Corr (�Vt, �t)

SV �Vt 0.207 0.075 1.013 4.531 0.540 0.067 0.822
�t

SV-J �Vt 0.188 0.077 0.943 4.416 0.520 0.034 0.821
�t 0.143

SV-SJ �Vt 0.156 0.061 0.446 3.174 0.356 0.019 0.656 0.583
�t 0.795 0.714 2.061 9.188 5.240 0.000 0.795

J-B Q1 Q5 Q10

�Y 13.298 12.061 34.530 56.227
(0.001) (0.001) (0.000) (0.000)

�Z 29.904 9.631 18.283 25.528
(0.000) (0.002) (0.003) (0.004)

Note: We use Qk to denote the Ljung-Box statistic of lag k. The p-values for the Jarque-Bera and Ljung-Box statistics are reported in parentheses.
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to times when jump risk is high but diffusive risk is low, as
in the fall of 1998; to times when both risks are low, as in
the beginning of 1996.

The implied time series of volatility from the SV-SJ
model is different from those of the other two models. The
average implied volatility, 15.6%, is much lower in the
SV-SJ model than in the SV model since the stochastic
volatility in the latter model needs to account for all the risk,
including the jump risk.

The estimated volatility process in the SV-SJ model is
mean reverting at about twice the speed as in the SV and
SV-J models. The implied time series of stochastic volatility
and jump intensity show autocorrelations of 0.66 and 0.79,
respectively.

The estimated correlation between the increments of the
diffusive volatility and jump intensity is quite low, at 0.17.
This is evidence that the two processes are largely uncor-
related and do not support models that make jump intensity
vary with the level of diffusive volatility. Increments of the
diffusive volatility are negatively correlated with stock
returns, �0.50, which is smaller than that in the SV and
SV-J models. Changes in jump intensity are also negatively
correlated with stock returns at a higher absolute value,
�0.60.

Overall, our results are also consistent with the recent
literature on multifactor variance models (Alizadeh, Brandt,
& Diebold, 2002; Chacko & Viceira, 2003; Chernov et al.,
2002; Engle & Lee, 1999; Ghysels, Santa-Clara, & Val-
kanov, 2005), which finds reliable support for the existence
of two factors driving the conditional variance. The first
factor is found to have high persistence and low volatility,

whereas the second factor is transitory and highly volatile.
The evidence from estimating jump diffusions with stochas-
tic volatility points in a similar direction (Jorion, 1988;
Anderson, Benzoni, & Lund, 2002; Chernov et al., 2002;
Eraker et al., 2003). For example, Chernov et al. (2002)
show that the diffusive component is highly persistent and
has low variance, whereas the jump component is by as-
sumption not persistent and is highly variable.

The second panel of table 3 reports Jarque-Bera and Ljung-
Box statistics for the innovations of the state variables Y and Z.
The Jarque-Bera statistics are significant, indicating nonnor-
mality of the innovations. The Ljung-Box statistics are also
significant, implying serial correlation in the innovations. Both
diagnostic tests indicate misspecification of the SV-SJ model.
Pan (2002) also finds that her jump-diffusion model is mis-
specified. Since her model is similar to the SV-J model in our
paper, the sources of misspecification are likely to be similar.
Pan argues that the misspecification shows evidence of jumps
in volatility, as modeled in Duffie et al. (2000) and empirically
studied in Eraker et al. (2003).

B. Option Pricing Performance

We evaluate the option pricing performance of the model
in terms of the root mean squared error (RMSE) of Black-
Scholes implied volatilities. The implied volatility error of a
given option is the difference between the implied volatili-
ties calculated from market price and model price. Allowing
the jump intensity to vary stochastically proves to be quite
important for options pricing. As reported in the last row of
table 2, the RMSE of the SV-SJ model for all options in our

FIGURE 2.—IMPLIED DIFFUSIVE VOLATILITY AND JUMP INTENSITY
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data set is 2.13%, measured in units of implied volatility.
This is smaller than the RMSEs of the SV and SV-J models,
which are 3.35% and 2.73%, respectively. Standard t-tests
show that the RMSEs are significantly different from each
other. For example, the t-statistic for a difference between
the SV-J and SV-SJ models is 14.75. Despite the improve-
ment in fitting the option prices, significant pricing errors
remain as the RMSE of the SV-SJ model is still about twice
the average bid-ask spread in our sample, which is 1.01%
(with a standard deviation of 0.66%), again in units of
Black-Scholes implied volatility.

Figure 3 plots the market-implied volatilities of options
with the shortest maturity, together with the fitted implied
volatilities of the three alternative pricing models in four
different dates of the sample. We find that the SV-SJ model
does a much better job at pricing the cross-section of
options than the other two models for these four days when
the implied volatilities are high.

Having established that our model can effectively capture
the time-series and cross-section properties of option prices,
we now try to improve our understanding of the model. In
particular, we want to understand the relative roles of the
diffusive volatility and jump intensity in pricing options.
Figure 4 shows the plots of implied volatility smiles at

different maturities produced by our model, using the esti-
mated parameters and different values of volatility and jump
intensity. In the first two cases, the diffusive volatility,�V,
is fixed at its sample average while the state variable for
jump intensity, Z, is either at its sample average or 1
standard deviation above or below it. In the next two
cases, the state variable for jump intensity, Z, is fixed at
its sample average, while the diffusive volatility, �V, is
either at its sample average or 1 standard deviation above
or below it. The time to maturity is either 30 days or 90
days. We find that both volatility and jump intensity have
an impact on the level of implied volatilities. Further-
more, the persistence in both risk components guarantees
that their effects are felt at long horizons. But the two
state variables have different impacts on the shape of the
implied volatility smile. Jump intensity has a large im-
pact on the prices of all short-term options but it affects
out-of-the-money puts (high S/K) more than in-
the-money puts (low S/K). The volatility has a larger
impact on the prices of near-the-money options than
those of away-from-the-money options. The longer the
maturity, the flatter the volatility smiles, reflecting mean
reversion in the volatility and jump intensity processes.
The differential impact of volatility and jump intensity on

FIGURE 3.—MARKET AND FITTED IMPLIED VOLATILITIES
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Note: We use the estimated parameters of the three models reported in table 2 to compute the fitted implied volatilities. The plus signs “�” represent the market implied volatilities. The fitted implied volatilities
of the SV, SV-J, and SV-SJ models are represented by the dotted, dashed, and solid lines, respectively. “F” is the implied volatility of the near-the-money option that is fitted exactly by all three models, and “Q”
is the implied volatility of the out-of-the-money option that is fitted exactly by the SV-SJ model.
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options of varying maturity and moneyness is what al-
lows us to identify the two state variables in the estima-
tion.

V. Option-Implied Risks and the Equity Premium

In this section we study the equilibrium equity premium
implied by the parameter estimates and the implied state
variables.

A. The Equity Premium

The estimate of � in table 2 for the SV-SJ model is 1.917,
which seems quite reasonable. In an economy without
jumps and with constant volatility, Merton (1973) shows
that the equity premium demanded by an investor who holds
the stock market is equal to � times the market’s variance.
Since the realized volatility in our sample was 18.8%, using
the estimated risk aversion coefficient, we obtain an uncon-
ditional equity premium of 6.8% (1.917 � 0.1882). This
premium approximately matches the historic average excess
stock market return of between 4% and 9% (depending on
the sample period) reported by Mehra and Prescott (2003).
Note that we are studying the portfolio choice of an investor
who derives utility from next period’s wealth, not utility
from lifetime consumption. In the latter case, it is well

known from Mehra and Prescott (1985) and much subse-
quent work that a much higher level of risk aversion is
needed to match the historic equity premium.

In what follows, we keep the horizon of the representative
investor at 1 month, T � 1/12.27 The choice of a short
horizon abstracts away from hedging demands, making the
interpretation of the results simpler.28 Given the relatively
strong mean reversion in the risk processes, it is unlikely
that horizons longer than one month would generate hedg-
ing demands strong enough to change the results.29

27 The results are robust to this choice of time horizon. We tried T for up
to ten years, and the main results do not change quantitatively. All the
coefficients of B and C converge quickly to a limit as T increases, and
after one month, they are virtually constant. Moreover, these coefficients
are small in magnitude. Their impact on the equity premium is corre-
spondingly small. The component of the equity premium that involves B
and C is generally negative with small magnitude (bounded by 2% and on
average less than 0.5%) in comparison to the average size of the equity
premium, which is over 10%. It is reasonable to say that B and C are not
critical in determining the size and variation of the implied equity
premium that we find.

28 Note that we are considering preferences for terminal consumption. A
given horizon in our model should be compared with the “duration” of
utility in a model with intermediate consumption (which is necessarily less
than the terminal date).

29 Chacko and Viceira (2005) find that the hedging demands induced by
stochastic volatility are tiny due to the strong mean reversion.

FIGURE 4.—VOLATILITY SMILE OF THE SV-SJ MODEL
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Note: The four panels show the plots of the Black-Scholes implied volatility smiles at different maturities produced by the SV-SJ model, using the estimated parameters reported in table 2 and for different values
of volatility (�V) and jump intensity (�). In the top two panels, �V is fixed at its sample average (0.156) while � (� Z2) is chosen so that Z is at its sample average and that value plus or minus one standard
deviation. In the bottom two panels, � is fixed so that Z is at its sample average (0.812) while �V is at its sample average and that value plus or minus one standard deviation. The maturities are 30 and 90 days
for the left and right panels, respectively.
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Equation (13) gives us the equity premium as a function
of the diffusive volatility and jump intensity. With the
estimated parameters of the model, we can evaluate the
coefficients of that function:

� � 1.917Y2 � 0.008Y � 0.009Y2

(35)
�0.022YZ� 0.087Z2.

Given the implied series of the diffusive volatility Y and
jump intensity Z, we can compute the average of the equity
premium in our sample. This gives us an estimate of the
unconditional equity premium of 11.8%. Note that this is
different from putting the average level of the implied series
of the diffusive and jump risks in the above equation
because of the nonlinearity of the equity premium in Y and
Z. Note also that this calculation does not match the average
excess return of the S&P 500 index in our sample, which is
only 2%. The reason is that we did not use stock returns in
the calculation, only the measures of risk implied from
option prices together with the estimated level of risk
aversion.

Remember that the premium demanded by an investor
with the same preferences in an economy without jumps and
with constant volatility was 6.8%. Therefore, the uncondi-
tional equity premium we computed with the risk inferred
from option prices is more than 70% higher than the
premium for realized risk.30

These findings have some bearing on the discussion of
the equity premium puzzle first investigated by Mehra and
Prescott (1985) and recently surveyed in Mehra and Prescott
(2003). The equity premium puzzle is typically stated as the
historic average stock market return far exceeding the com-
pensation for its risk that would be required by an investor
with a reasonable level of risk aversion. It should be noted
that the literature on the equity premium puzzle usually
measures risk by the covariance of stock market returns
with aggregate consumption growth. However, none of our
calculations involves consumption, and there is no way we
can obtain the implied covariances between stock market
returns and consumption growth from option prices. What
we do show is that the risk premium demanded by an
investor with utility for wealth living in an economy with
the realized level of market volatility is only slightly more
than half the premium demanded by the same investor when
taking into account the risks assessed by option markets.

The puzzle is that the historic stock market premium of,
say, 6%, is much higher than the approximately 1% excess
return warranted by the covariance of the stock market
returns with consumption growth (for reasonable levels of

risk aversion). Our point is that the realized covariance of
the stock market returns with consumption growth is likely
to understate the true risk of the market by as much as the
realized volatility understates the risk implicit in option
prices. In our simple calculation above, we found that the ex
ante risk premium almost doubles when we use the option
implied risks instead of the realized volatility. If the same
factor were to apply to the consumption-based risk measure,
the equity premium puzzle would be considerably less-
ened.31

These results confirm a substantial peso problem when
measuring the riskiness of the stock market with realized
volatility. The risks investors perceive ex ante and that are
therefore embedded in option prices far exceed the realized
variation in stock market returns.

If investors price the stock market to deliver returns that
compensate them for the perceived level of risk, the equity
premium can easily be twice what is justifiable from the
level of realized risk. This is the fundamental idea of Brown
et al. (1995): ex post measured returns include a premium
for some bad states of the world that investors deemed
probable but did not materialize in the sample. Similarly,
Rietz (1988) proposed a solution for the equity premium
puzzle based on a very small probability (about 1%) of a
very large drop in consumption (25%). That is not far from
the risks perceived by investors in the option market. Barro
(2006) extended the analysis of Rietz to show that rare
events can explain a variety of asset pricing regularities.
Goetzmann and Jorion (1999) provide empirical evidence
that large jumps have occurred in a variety of countries in
the twentieth century and that the United States was an
outlier, with both few crashes and the highest realized
average return.

Of course, this discussion only shifts the equity premium
puzzle to a puzzlingly large difference between the level of
perceived risk and the level of realized risk: the option
market predicted a lot more market crashes than the number
that actually occurred. For example, given the average jump
size and average intensity estimated in tables 2 and 3, the
stock market should experience market crashes with a
magnitude of �9.8% once every 1.26 years. This is obvi-
ously very different from the observed frequency and mag-
nitude of stock market jumps. The interesting finding is that
the puzzlingly high risks implicit in option markets match
the puzzlingly high equity premium for very reasonable
preferences.

B. Time Variation in the Equity Premium

The previous section discussed the unconditional equity
premium. We now discuss the time variation in the equity
premium. Figure 5 plots the time series of the risk premium30 The high equity premium obtained here may be caused by our choice

of the sample period, which was much more volatile than other periods
(1990–1996). It may also be partially driven by our specific option pricing
model. As options may contain high premia, they can be translated into
high premia in the stock returns. We thank an anonymous referee for
pointing this out.

31 Especially if we consider the estimates of the equity premium of
around 3% instead of 6% that have been provided by Claus and Thomas
(2001), Fama and French (2002), and Welch (2001).
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demanded by the investor in our economy, shown in equa-
tion (35).

We decompose the premium in equation (35) into the
compensation for the diffusive volatility, which encom-
passes the first three terms that depend only on Y, and the
compensation for the jump risk involving the last term that
depends only on Z. There is a small term that depends on
the product of Y and Z, which shows up in the total
premium but that we do not assign to the components.

The plot of the time series of the equity premium shows
high variability. Its standard deviation in our sample is
8.9%, roughly three-quarters the unconditional premium of
11.8%. The premium ranges from 0.3% to 54.9%. Further-
more, the first-order serial correlation (at monthly fre-
quency) of the premium is 0.82, which shows persistence
but is far from a unit root. However, we should note that all
the first ten serial correlations are positive and add up to
5.044. There is therefore memory in the equity premium
that is not easily captured by a simple autoregression.

The jump component is on average 6.9%, or a bit more
than half of the total equity premium. Its standard deviation
is of the same order of magnitude: 6.2%. The jump premium
varies between 0 and 45.4% and represents at times nearly
the entire equity premium. The jump component of the
equity premium is also more persistent than the volatility
component, with first-order serial correlations of 0.80 and
0.63, respectively. The sum of the first 10 serial correlations
is also higher, 4.88 versus 4.37.

These numbers obtain under very strong assumptions. A
conditional equity premium that is as strongly time varying
as the one reported here implies an economy in which the
investors have significant ability to time the market. Our
model likely overstates the variability of the equity pre-
mium due to in-sample overfitting and the very specific
nature of our parametric model.

However, note that the recent literature on stock market
predictability implies that all the variation in market valu-

ation multiples corresponds to changes in expected excess
returns, that is, the equity premium, and none corresponds to
news about future dividend growth. Cochrane (2008) esti-
mates that the standard deviation of market expected returns
is about 5 percentage points (the same magnitude as the
premium itself) using only the dividend yield as a predicting
variable. When more variables are used (and many have
been identified in the literature), the volatility of the equity
premium increases. This is still an order of magnitude less
than the equity premium variability we estimate, but it is
remarkable that such volatility is found from regressions
with ex post returns. Using ex ante information as we do
should lead to an equity premium that is even more variable.

C. Forecasting Stock Returns with the Implied Equity
Premium

As discussed above, the model implied equity premium
varies over time. We next investigate if this variation is
reflected in the realized stock returns. In particular, we
conduct the following predictive regression analysis:32

Rt,t�k � ! � "Xt � �t,t�k,

where Rt,t�k is the annualized average stock returns from
week t to week t � k, and Xt is the predictive variable
observed at t. We consider values of k to be one, four, eight,
and thirteen, corresponding to horizons of one week, one
month, two months, and three months. We choose the
predictor, Xt, to be the SV-SJ model implied state variables
Yt and Zt, and the equity premium �t. If our model is right,
then when using �t to forecast stock returns, a significant
positive coefficient estimate of " is expected. In fact, this
coefficient should be close to 1. To increase statistical

32 Note that we have used the full sample to obtain the model-implied
state variables and equity premium. This introduces some forward-looking
bias in our predictive regressions.

FIGURE 5.—EQUITY PREMIUM
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power, we use overlapping samples for multiperiod regres-
sions. To adjust for heteroskedasticity and serial correlation
in the regression residuals, the standard errors are calculated
using the Newey-West method.

Table 4 reports the results of the predictive regression.33

From the first column, Y, the implied state variable for the
diffusive volatility is positively related to future stock re-
turns but is not significant. From the second column, Z, the
implied state variable for the jump intensity is also posi-
tively related to future stock returns. More interesting, the
t-statistics for Z are much higher than those for Y. The R2s
are also much larger. When both Y and Z are used in column
3, Y remains insignificant, while Z is significant for horizons
of two and three months. As seen in the fourth column, the
estimated regression coefficient on � decreases from 2.139
for one-week returns to 1.001 for three-month returns, and
it is always significant at the 90% confidence level. The

t-statistic is highest for two-month returns. The R2 initially
increases from 0.020 for one-week returns to 0.076 for
two-month returns, and then decreases to 0.066 for three-
month returns. These results suggest that the model-implied
equity premium has significant predictive power of future
stock returns for horizon up to three months. The predictive
power seems to be coming from stochastic jump intensity.

Of course, this analysis has several limitations. First, we
have a limited sample to run the predictive regressions. It is
remarkable that we obtain significant estimates at all. Sec-
ond, the problem of relating the equity premium from option
prices to the realized equity returns is precisely the peso
problem. We argue that options capture a risk that is per-
ceived as likely by the investors even if it does not materi-
alize in the realized returns. This should bias the estimates
of our regressions.

D. Relation between the Implied Equity Premium and
Financial Crisis Variables

We have argued that the implied equity premium may
capture the stock market crash risk, which may be caused by
liquidity shocks and crisis in the financial system. It is
therefore interesting to examine the relation between the
implied equity premium with financial variables that are
often regarded as correlated with financial crisis. We con-
sider three such variables for the period of 1996–2002: the
three-month T-bill rate (Tbill); the commercial paper spread
(CPS), which is the difference between the rates of three-
month financial commercial paper and the three-month
T-bill; and the high-yield spread (HYS), which is the dif-
ference between the average yield of the Merrill Lynch
high-yield corporate bond index and the yield of the ten-
year Treasury bond.34 The CPS is only available since 1997.
All data are obtained from Datastream.

The top panel of table 5 reports summary statistics for the
three variables. We examine the relation between our model
implied equity premium (and state variables) and the finan-
cial crisis variables by considering the following regression:

�Yt � ! � "�Xt � �t,

where the dependent variable Yt is the Tbill, CPS, or HYS,
and Xt is Vt, �t, or �t.

The second panel of table 5 reports the results of the
above regressions. The change in Tbill is negatively related
to changes in V, �, and � but only significantly so for � and
�. In contrast, the changes in CPS and HYS are positively
and significantly related to changes in V, �, and �. This
implies that when diffusive volatility and jump intensity
increase (decrease) the commercial paper spread and the

33 Related evidence is provided by Doran, Peterson, and Tarrant (2006),
who show that the put volatility skew has strong predictive power in
forecasting short-term market declines. This is consistent with our model,
where the volatility skew is strongly correlated with jump risk and its
corresponding risk premium.

34 The Fed cut interest rates after the stock market crash of October
1987, the Russian financial crisis of 1998, the collapse of technology
stocks in 2000, and the 2007 subprime mortgage debacle. During credit
crisis, investors refuse to roll over commercial papers and instead turn to
other short-term safe havens, such as the T-bills.

TABLE 4.—PREDICTING STOCK RETURNS USING THE OPTION

IMPLIED EQUITY PREMIUM

1 Week

Y 1.438 0.008
(1.026) (0.006)

Z 0.386 0.386
(1.566) (1.483)

� 2.139
(1.863)

R2 0.004 0.011 0.011 0.020

1 Month

Y 0.850 �0.300
(0.965) (�0.333)

Z 0.279 0.310
(1.746) (1.791)

� 1.456
(2.126)

R2 0.007 0.026 0.026 0.041

2 Months

Y 0.789 �0.547
(1.197) (�0.722)

Z 0.305 0.360
(2.387) (2.434)

� 1.360
(2.655)

R2 0.012 0.065 0.068 0.076

3 Months

Y 0.158 �1.154
(0.251) (�1.689)

Z 0.250 0.362
(1.941) (2.676)

� 1.001
(1.868)

R2 0.001 0.074 0.101 0.066

Note: We use the Newey-West method to compute standard errors. t-statistics are reported in
parentheses.
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high-yield spread tend to widen (narrow). The R2 for the
CPS and HYS regressions are generally higher than those
for the Tbill regressions. These results indirectly suggest
that our implied equity premium captures a risk perceived
by investors that financial markets may collapse.

More informally, we can look at the largest crisis in our
sample. In the fall of 1998, following the Asian crisis, at the
time of the Russian default and the LTCM blowup, the
option-implied equity premium rose from 2% to 55% per
year within a couple of months. With such a dramatic
increase in the equity premium, we should expect a sharp
drop in stock prices. The stock market decline during that
period was on the order of 20%. The sign of this change is
consistent with a large increase of the equity premium but
perhaps quantitatively smaller than what the actual change
in the equity premium would justify. Note that here the peso
problem becomes very apparent. In fall 1998, fear was
widespread of a financial crisis that might lead to bank
defaults. Had that occurred, the stock market would likely
have fallen much more. As it turned out, the Fed was able to
engineer a bailout of LTCM, the banking crisis was avoided,
and the stock market did not crash.

VI. Conclusion

We imply the time series of diffusive volatility and jump
intensity from S&P 500 index options. These are the ex ante
risks in the stock market assessed by option investors. We
find that both components of risk vary substantially over
time, are quite persistent, and correlate with each other and
with the stock index. Using a simple general equilibrium
model with a representative investor, we translate the im-
plied measures of ex ante risk into an ex ante risk premium.

We find that the average premium that compensates the
investor for the risks implicit in option prices, 11.8%, is
about 40% higher than the premium required to compensate
the same investor for the realized volatility in stock market
returns, 6.8%. These results support the peso explanation
advanced by Rietz (1988), Brown et al. (1995), and Barro
(2006) for the equity premium puzzle of Mehra and Prescott
(1985). We also find that the ex ante equity premium is
highly volatile, taking values between 0.3% and 54.9%,
with the component of the premium that corresponds to the
jump risk varying between 0.% and 45.4%. The option-
implied equity premium is shown to forecast subsequent
stock returns.

In summary, we are able to partially explain the equity
premium puzzle by using measures of risk implied from
option prices that far exceed measures of realized risk. We
are still left with a puzzle: like Aesop’s boy, the option
markets cry wolf a lot more often than the wolf actually
shows up. However, it is interesting that we can link, using
reasonable levels of risk aversion, the puzzlingly high eq-
uity premium observed historically with puzzlingly high
risks implicit in option markets.
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