
261

CRAUL: Compiler and run-time integration

for adaptation under load 1

Sotiris Ioannidis, Umit Rencuzogullari,
Robert Stets and Sandhya Dwarkadas ∗

Department of Computer Science, University of

Rochester, Rochester, NY 14627-0226, USA

Tel.: +1 716 275 5647; Fax: +1 716 461 2018;

E-mail: {si,umit,stets,sandhya}@cs.rochester.edu

Clusters of workstations provide a cost-effective, high per-

formance parallel computing environment. These environ-

ments, however, are often shared by multiple users, or may

consist of heterogeneous machines. As a result, parallel ap-

plications executing in these environments must operate de-

spite unequal computational resources. For maximum perfor-

mance, applications should automatically adapt execution to

maximize use of the available resources. Ideally, this adap-

tation should be transparent to the application programmer.

In this paper, we present CRAUL (Compiler and Run-Time

Integration for Adaptation Under Load), a system that dy-

namically balances computational load in a parallel applica-

tion. Our target run-time is software-based distributed shared

memory (SDSM). SDSM is a good target for parallelizing

compilers since it reduces compile-time complexity by pro-

viding data caching and other support for dynamic load bal-

ancing. CRAUL combines compile-time support to identify

data access patterns with a run-time system that uses the ac-

cess information to intelligently distribute the parallel work-

load in loop-based programs. The distribution is chosen ac-

cording to the relative power of the processors and so as

to minimize SDSM overhead and maximize locality. We

have evaluated the resulting load distribution in the presence

of different types of load – computational, computational

and memory intensive, and network load. CRAUL performs

within 5–23% of ideal in the presence of load, and is able to

improve on naive compiler-based work distribution that does

not take locality into account even in the absence of load.

Keywords: load balancing, software distributed shared mem-

ory, compiler, run-time, integration

1This work was supported in part by NSF grants CDA-9401142,

CCR-9702466, and CCR-9705594; and an external research grant

from Compaq.
*Corresponding author.

1. Introduction

Clusters of workstations, whether uniprocessors or

symmetric multiprocessors (SMPs), when connected

by a high-performance network, are an attractive plat-

form for parallel computing due to their low cost and

high availability. The default programming paradigm

that is supported in hardware is message passing across

the nodes, and shared memory among processes within
a node. Unfortunately, the message passing paradigm

requires explicit communication management by the

programmer or parallelizing compiler. In applications

with dynamic access patterns, this communication

management can be very complex. Since the latency

of communication across nodes is much larger than

within a node, careful work distribution is also required
in order to minimize communication overhead. Fur-

thermore, on multiprogrammed platforms or on plat-

forms with unequal resources, the most efficient work-

load and communication schedule can be impossible to

predict statically.

An alternative programming paradigm is software-
based distributed shared memory (SDSM). An SDSM

protocol (e.g., [3,17,26]) provides the illusion of shared

memory across a distributed collection of machines,

providing a uniform and perhaps a more intuitive pro-

gramming paradigm. A shared memory paradigm pro-

vides ease-of-use and additionally leverages an SMP

workstation’s available hardware coherence to handle
sharing within the SMP. SDSM has been shown to

be an effective target for a parallelizing compiler [6].

Since data caching and communication is implemented

by the run-time system, compile-time complexity is

reduced. To improve performance, previous work [7,

21] has integrated compile-time information within the

run-time system. Access patterns from the compiler
are used by the run-time system to optimize communi-

cation, providing a significant improvement in perfor-

mance.

Workstation clusters are typically shared by many

users and are often possibly heterogeneous. Hence,

balancing load to accommodate these variances is es-

Scientific Programming 7 (1999) 261–273

ISSN 1058-9244 / $8.00  1999, IOS Press. All rights reserved

262 S. Ioannidis et al. / CRAUL: Compiler and run-time integration for adaptation under load

sential to obtain good performance. A parallel appli-

cation should monitor the power of the computing re-

sources and distribute the workload according to the

observed power and the application’s computation and

communication demands. Ideally, this should be done

without increasing application programming complex-

ity.

In this paper, we present CRAUL (Compiler and

Run-time Integration for Adaptation Under Load), a

system that combines compile-time and run-time sup-

port to dynamically balance load in loop-based, SDSM

programs. Information from the compiler on future ac-

cesses is fed to the run-time system at the points in

the code that will be executed in parallel. Information

on past accesses as well as estimates of the available

computational and communication resources is avail-

able from the run-time. The run-time uses the past and

future access pattern information along with estimates

of the available computational and communication re-

sources to make an intelligent decision on workload

distribution. The decision balances the need not only

to distribute work evenly, but also to avoid high com-

munication costs in the underlying SDSM protocol.

Our techniques are applicable to any page-based

software DSM.2 In this paper, our target run-time sys-

tem is Cashmere [26]. We implemented the necessary

compiler extensions in the SUIF [2] compiler frame-

work. Our experimental environment consists of DEC

AlphaServer 2100 4/233 computers connected by a

low-latency Memory Channel [11] remote-memory-

write network.

We experiment with three different types of load –

pure computational load, computational and memory-

intensive load, and computational and network load.

Our load balancing strategy provides a 23–81% im-

provement in performance compared to the execution

time with a computational and memory-intensive load,

and is able to adjust work distribution in order to re-

duce SDSM overheads. Performance is improved re-

gardless of the type of load and is within 5–23% of

ideal in the presence of load.

The rest of this paper is organized as follows. Sec-

tion 2 describes the run-time system, the necessary

compiler support, and the algorithm used to make dy-

namic load balancing decisions. Section 3 presents an

evaluation of the load balancing support. Section 4 de-

scribes related work. Finally, we present our conclu-

sions and discuss on-going work in Section 5.

2Preliminary results on a different run-time system, Tread-

Marks [3], are presented in [13].

2. Design and implementation

We first provide some background on Cashmere [26],

the run-time system we used in our implementation.

We then describe the compiler support, followed by the

run-time support necessary for load balancing.

2.1. The base software DSM library

Our run-time system, Cashmere-2L (CSM) [26], is

a page-based software DSM system that has been de-

signed for SMP clusters connected via a low-latency

remote-write network. The system implements a multi-

ple-writer [4], “moderately” lazy release consistent

protocol [15], and requires applications to adhere to

the data-race-free, or properly-labeled, programming

model [1]. Effectively, the application is required to

use explicit synchronization to ensure that changes to

shared data are visible. The moderately lazy character-

istic of the consistency model is due to its implemen-

tation, which lies in between those of TreadMarks [3]

and Munin [4]. Invalidations in CSM are sent during a

release and take effect at the time of the next acquire,

regardless of whether they are causally related to the

acquired lock.

A unique point of the CSM design is that it targets

low-latency remote-write networks, such as DEC’s

Memory Channel [11]. These networks allow proces-

sors in one node to directly modify the memory of

another node safely from user space, with very low

(microsecond) latency. CSM utilizes the remote-write

capabilities to efficiently maintain internal protocol

data structures. As an example, CSM uses the Mem-

ory Channel’s remote-write, broadcast mechanism to

maintain a replicated directory of sharing information

for each page (i.e., each node maintains a complete

copy of the directory). The per-page directory entries

indicate who the current readers and writers of the page

are.

Under CSM, every page of shared data has a single,

distinguished home node that collects modifications at

each release, and maintains up-to-date information on

the page. Initially, shared pages are mapped only on

their associated home nodes. Other nodes obtain copies

of the pages through page faults, which trigger requests

for an up-to-date copy of the page from the home node.

Page faults due to write accesses are also used to keep

track of data modified by each node, for later invali-

dation of other copies at the time of a release. If the

home node is not actively writing the page, then the

home node is migrated to the current writer by sim-

S. Ioannidis et al. / CRAUL: Compiler and run-time integration for adaptation under load 263

ply modifying the directory to point to the new home

node. If there are readers or writers of a particular page

on a node other than the home node, the home node

downgrades its write permissions to allow future pos-

sible migrations. As an optimization, however, we also

move the page into exclusive mode if there are no other

sharers, and avoid any consistency actions on the page.

Writes on non-exclusive and non-home-node pages re-

sult in a twin (or pristine copy of the page) being cre-

ated. The twin is later used to determine local modifi-

cations.

As mentioned, CSM was also designed specifically

to take advantage of the features of clusters of SMPs.

The protocol uses the hardware within each SMP to

maintain coherence of data among processes within

each node. All processors in a node share the same

physical frame for a shared data page. The software

protocol is only invoked when sharing spans nodes.

The hardware coherence also allows software protocol

operations within a node to be coalesced, resulting in

reduced data communication, as well as reduced con-

sistency overhead.

2.2. Compile-time support for load balancing

For the source-to-source translation from a sequen-

tial program to a parallel program using Cashmere,

we use the Stanford University Intermediate Format

(SUIF) [2] compiler. The SUIF system is organized as

a set of compiler passes built on top of a kernel that

defines the intermediate format. The passes are imple-

mented as separate programs that typically perform a

single analysis or transformation and then write the re-

sults out to a file. The files always use the same format.

The input to the compiler is a sequential version of

the code. Standard SUIF can then generate a single-

program, multiple-data (SPMD) program. We have

added a SUIF pass that, among other things, transforms

this SPMD program to run on Cashmere. Alternatively,

the user can provide the SPMD program (instead of

having the SUIF compiler generate it) by identifying

the parallel loops in the program whose execution may

be divided among the processes.

Our SUIF pass also extracts the shared data access

patterns in each of the SPMD regions, and feeds this

information to the run-time system. The pass is respon-

sible for adding hooks in the parallelized code to allow

the run-time library to change the load distribution in

the parallel loops if necessary, given the information

on the data access patterns.

2.2.1. Access pattern extraction

In order to generate access pattern summaries, our

SUIF pass walks through the program looking for ac-

cesses to shared memory. A regular section [12] is then

created for each such shared access. Regular section

descriptors (RSDs) concisely represent the array ac-

cesses in a loop nest. The RSDs represent the accessed

data as linear expressions of the loop indices along

each dimension, and include stride information. This

information is combined with the corresponding loop

boundaries for that index, and the size of each dimen-

sion of the array, to determine the access pattern.

2.2.2. Load balancing interface and strategy

The run-time system needs a way of changing the

amount of work assigned to each parallel task. This

essentially means changing the number of (as well

as which) loop iterations are executed by each task.

To accomplish this, the compiler augments the code

with calls to the run-time library before the parallel

loops. These calls are responsible for changing the loop

bounds, and consequently, the amount of work per-

formed by each task.

The compiler can direct the run-time to choose

among partitioning strategies for distributing the par-

allel loops. Currently, a blocked distribution strategy is

implemented. Load redistribution is effected by shift-

ing the loop bounds of each processor, allowing us to

handle blocked distributions efficiently. We change the

upper and lower bounds of each parallel loop, so that

tasks on lightly loaded processors will end up with

more work than tasks on heavily loaded processors.

Applications with nearest neighbor sharing will ben-

efit from this scheme, since we avoid the creation of

new boundaries, thereby avoiding the introduction of

new communication due to increased sharing. Our goal

is to expand the types of work distribution possible in

the future in order to handle other initial distributions

efficiently, as well as to take care of different sharing

patterns.

2.3. Run-time load balancing support

As with any dynamic load balancing system, CRAUL

bases its distributions fundamentally on an estimate

of the available computational resources and com-

munication overheads. Specifically, CRAUL uses a

per-processor metric called Relative Processing Power

(RelativePower) that captures the load induced

by resource contention (processor, memory, network,

and connecting busses) in a single value. Relative-

264 S. Ioannidis et al. / CRAUL: Compiler and run-time integration for adaptation under load

Power is used to directly determine a proposed distri-

bution. However, the proposal is only accepted if atten-

dant SDSM overhead does not outweigh the distribu-

tion benefits. In the next two subsections, we describe

the RelativePower and SDSM overhead calcula-

tions in more detail. We then provide a pseudo-code

description of the entire run-time load balancing algo-

rithm.

2.3.1. Relative processing power

RelativePower is maintained for each proces-

sor and is inversely proportional to the time the proces-

sor spent in its most recent parallel regions. We refer

to the most recent parallel regions as the region win-

dow. Intuitively, a processor that completes its region

window quickly will have a larger power relative to

the other processors. Time is a good basis for Rel-

ativePower because it inherently captures the pro-

cessor’s perceived load, whether due to multiprogram-

ming or contention for memory and/or the network.

We track time over several parallel regions in order to

smooth out transient spikes in performance.

Fig. 1 shows the algorithm for calculating Rela-

tivePower. TaskTime holds the per-processor ex-

ecution time of the last region window. This array is

placed in shared memory and is updated as each pro-

cessor completes a parallel region. In the above al-

gorithm, TaskTime is first used to adjust the Rel-

ativePower and then the resulting values are nor-

malized. This algorithm is executed by each proces-

sor. The RelativePower calculation is only per-

formed at the end of a region window. This window is

system-specific and determined through experimenta-

tion. It corresponds to the period of time required in or-

der to avoid reacting to transient variations in resource

availability.

Our target class of applications are loop-based.

CRAUL uses the RelativePower to directly parti-

tion the loop into units of work.

2.3.2. SDSM overhead in load distribution

On hardware shared memory machines, the cost

of re-distributing load can sometimes negate the ben-

efits of load balancing [23]. Re-distribution on an

SDSM platform will be even more expensive, leading

to more overhead. Overhead on a page-based SDSM

platform is also increased by false sharing – the con-

current, but otherwise independent, access by two or

more processes to a single coherence unit. In Cash-

mere, the size of the coherence unit is a virtual mem-

ory page (8 KBytes on our experimental platform).

CRAUL necessarily addresses both of these factors.

First, CRAUL tailors its distributions to reduce false

sharing. (As described in Section 3, CRAUL even pro-

vides improvements for unloaded processors by re-

ducing false sharing.) Second, CRAUL accounts for

SDSM overhead when determining the potential bene-

fits of a redistribution.

False sharing that occurs at the boundaries of the

work partitions can be eliminated in the case of regu-

lar accesses. Moreover, on an SMP-aware system, false

sharing can only occur at partition boundaries that span

two SMP nodes. False sharing within a node occurs

only at the cache line level and the penalties are low

– hence, CRAUL does not attempt to eliminate cache

line level false sharing. CRAUL uses the above knowl-

edge of the underlying architecture to choose parti-

tion boundaries that do not introduce false sharing. If

a partition as determined directly from Relative-

Power creates false sharing at the page level across

SMP nodes, CRAUL will adjust the bound so that

false sharing is eliminated after weighing the computa-

float RelativePower[NumOfProcessors]; // Initialized to 1/NumOfProcessors

float TaskTime[NumOfProcessors]; // Execution time of paral-

lel region

float SumOfPowers=0;

// Calculate new RelativePower

for all Processors i

RelativePower[i] /= TaskTime[i];

SumOfPowers += RelativePower[i];

// Normalize based on sum of the RelativePowers

for all Processors i

RelativePower[i] /= SumOfPowers;

Fig. 1. Algorithm to determine relative processing power.

S. Ioannidis et al. / CRAUL: Compiler and run-time integration for adaptation under load 265

tional imbalance against the communication overhead

incurred. As an optimization, when all work is to be
performed by a single node, CRAUL assigns the work
to the node that is the home for the largest chunk of the
data, thereby respecting locality. Together, these steps
improve performance by reducing the amount of data

communicated.
In choosing a new distribution, CRAUL must ensure

that re-distribution overhead does not negate the bene-
fits of balancing the load. This is accomplished by in-

corporating an estimate of SDSM overhead with the
impact of the balanced distribution. The SDSM over-
head can be determined from the compiler-provided
access patterns and information on the shared data
cached at each node (available through the SDSM run-

time).
CRAUL counts the number of pages that need to be

transferred in the new distribution and multiplies the
number by the average page transfer cost provided by

the Cashmere run-time. The average is calculated over
several previous transfers in order to capture current
network load. This information is used to estimate the
execution time for the upcoming region window, as-
suming the new distribution:

EstTaskTimenew

=

∑
i=nproc−1
i=0 TaskTimei

nproc
+ SDSM (1)

where nproc is the number of processors and SDSM

is the SDSM overhead calculated as described above.

The first term on the right of the equation estimates

the perfectly balanced execution time based on the ex-

ecution time of the last region window. The second

term then adds the SDSM overhead associated with re-

distribution. Since the TaskTime is a sum over the last

several regions (the region window), the SDSM over-

head is effectively amortized.

The estimated task time of the current distribution

is simply taken to be the time of the slowest processor

through the last region window:

EstTaskTimecur = max
i=0...nproc−1

TaskTime, (2)

If EstTaskTimenew is less than EstTaskTimecur, then

CRAUL uses the new workload distribution.

2.3.3. Run-time load balancing algorithm

Fig. 2 describes the run-time algorithm for exe-

cuting a parallel loop. Steps 1–3 determine the load

distribution and are described in the above subsec-

tions. Steps 4–7 execute and time the loop (we use the

instruction cycle counter available on our platform).

Step 8 controls the calculation of RelativePower,

which drives the load distribution. The calculation is

only performed at the end of a region window and only

if CRAUL detects a load imbalance. Load imbalance

exists if the fastest TaskTime is less than a certain

threshold of the slowest TaskTime. The threshold is

determined empirically (currently set to 10%).

1. Calculate loop bounds based on RelativePower.

2. Minimize SDSM communication.

2a. Align partition boundaries to eliminate false sharing.

2b. If work is limited to a single node then

2c. assign computation to the data’s home node

3. if there are new RelativePower values then

3b. Verify that re-distribution costs do not negate balancing improvements.

4. Start timer.

5. Perform parallel loop computation.

6. Stop and store timer in TaskTime.

7. nRgn++ // increment region counter

8. if nRgn == Size of Region Window then

8a. if load imbalance exists then

8b. calculate new relative powers

8c. nRgn=0 // Reset region counter

Fig. 2. Pseudo-code description of a parallel loop execution.

266 S. Ioannidis et al. / CRAUL: Compiler and run-time integration for adaptation under load

int sh_dat1[N], sh_dat2[N];

for (i = lowerbound; i < upperbound; i += stride)

sh_dat1[a*i + b] += sh_dat2[c*i + d];

Fig. 3. Initial parallel loop. Shared data is indicated by sh_.

int sh_dat1[N], sh_dat2[N];

redistribute(

list of shared arrays, /* sh_dat1, sh_dat2 */

list of types of accesses, /* read/write */

list of lower bounds, /* lower_bound */

list of upper bounds, /* upper_bound */

list of strides, /* stride */

list of coefficients and

constants for indices /* a, c, b, d */

);

lowerbound = new lower bound for that range;

upperbound = new upper bound for that range;

for (i = lowerbound; i < upperbound; i += stride)

sh_dat1[a*i + b] += sh_dat2[c*i + d];

Fig. 4. Parallel loop with added code that serves as an interface with the run-time library. The run-time system can then change the amount of

work assigned to each parallel task.

2.3.4. Run-time load balancing summary

CRAUL bases its distribution strategy on a combina-

tion of available computational resources and expected

re-distribution overhead. The availability of computa-

tional resources is modeled by a per-processor Rela-

tivePower metric. This metric is inversely propor-

tional to loop execution time and captures load due

to contention for several different resources – proces-

sor, memory, and even network. Re-distribution over-

head is calculated by combining compiler-provided ac-

cess patterns and dynamic information on SDSM data

caching.

In choosing distributions, CRAUL also attempts to

minimize SDSM communication. The system assigns

work partitions to minimize false sharing and to locate

computation on home nodes. A proposed distribution

is based first on the RelativePower of processors

in the system and second on the reduction of SDSM

overhead.

A proposed distribution is accepted when the sum of

the expected execution time and the SDSM overhead is

less than the time for the slowest processor to complete

the last parallel region. CRAUL also handles the spe-

cial case where the expected computation time is less

than SDSM overhead – all work is then performed on

a single node.

2.4. Example

Consider the parallel loop in Fig. 3. Our compiler

pass transforms this loop into that in Fig. 4.

The new code makes a redistribute call to the run-

time library, providing it with all the necessary infor-

mation to compute the access patterns (the arrays, the

types of accesses, the upper and lower bounds of the

loops, as well as their stride, and the format of the ex-

pressions for the indices).

The redistribute computes the relative powers of

the processors (using the algorithm shown in Fig. 1),

and then uses the access pattern information to de-

cide how to distribute the workload. It then creates the

ranges of loop indices that each task has to access. Fi-

nally, the access pattern information can also be used

to prefetch data [7].3

3The results presented do not exploit this feature, however.

S. Ioannidis et al. / CRAUL: Compiler and run-time integration for adaptation under load 267

3. Experimental evaluation

3.1. Environment

Our experimental environment consists of four DEC

AlphaServer 2100 4/233 computers. Each AlphaServer

is equipped with four 21064A processors operating at

233 MHz and with 256 MB of shared memory, as well

as a Memory Channel network interface. The Mem-

ory Channel is a PCI-based network, with a point-

to-point bandwidth of approximately 33 MBytes/sec.

One-way latency for a 64-bit remote-write operation

is 4.3 µsecs. The 21064A’s primary data cache is

16 Kbytes, and the secondary cache size is 1 Mbyte.

Each AlphaServer runs Digital UNIX 4.0D with tru-

Cluster v. 1.5 extensions. The programs, the run-time

library, and Cashmere were compiled with gcc version

2.7.2.1 using the -O2 optimization flag. In Cashmere, a

page fetch operation takes 500 µs on an unloaded sys-

tem, twin operations require 200 µs, and a diff opera-

tion ranges from 485–760 µs, depending on the size.

3.2. Results

We evaluate our system on four applications: Ja-

cobi, Matrix Multiply (MM), Shallow, and Transitive-

Closure (TC). Jacobi is an iterative method for solving

partial differential equations, with nearest-neighbor av-

eraging as the main computation. MM is a basic pro-

gram that multiplies two matrices over several itera-

tions. Shallow is the shallow water benchmark from

the National Center for Atmospheric Research. The

code is used in weather prediction and solves differ-

ence equations on a two-dimensional grid. TC com-

putes the transitive closure of a directed graph. Table 1

provides the data set sizes and the uniprocessor execu-

tion times for each application.

The compiler passes transform each parallel loop in

each of the applications in a manner similar to that

shown in Fig. 4. As stated in Section 2.2.2, the com-

piler currently directs the run-time system to choose a

blocked distribution of the loops. The run-time system

then dynamically adjusts the block boundaries accord-

ing to perceived load while attempting to avoid any

false sharing and optimizing for locality.

Fig. 5 presents speedups for the four applications

in the absence of load. The first (Plain) bar in each

group is the performance of a compiler-based paral-

lelization strategy without any run-time support. The

second (Balance) shows speedups with the load bal-

ancing algorithm in place. The third bar (Loc+Bal)

Table 1

Data set sizes and sequential execution time of applications

Program Problem size Sequential time (sec.)

Jacobi 2048 × 2048 269.2

Matrix Multiply (MM) 256 × 256 398.6

Shallow 512 × 512 434.6

Transitive Closure (TC) 2048 × 2048 497.6

presents speedups using both the load balancing al-

gorithm as well as communication minimization opti-

mizations that avoid false sharing and attempt to per-

form computation on home nodes when beneficial. We

present speedups on 4 (one SMP), 8 (4 processors on

each of two SMPs), and 16 processors (4 processors on

each of four SMPs).

Since these experiments were performed in the ab-

sence of load, they provide a measure of the perceived

overhead of using our load-balancing scheme, as well

as any benefits from the elimination of false sharing

and scheduling based on locality. The benefits from

using our communication minimization optimizations

is most visible in Shallow. Shallow shows a 16% im-

provement in speedup with all CRAUL optimizations

(Loc+Bal) in the absence of load, when compared to

a direct parallelization by the compiler (Plain). The

application has 13 shared 2-dimensional arrays. All the

parallelized loops are partitioned in a blocked fashion.

The application consists of a series of loops that op-

erate either only on the interior elements of its matri-

ces or on the boundary rows and columns. Compiler

parallelized code or a naive implementation (Plain)

would have each process update a part of the bound-

ary rows and columns along each dimension in paral-

lel. In the case of the rows, this can result in multi-

ple processes writing the same pages since each row

fits in half a page for our benchmark data set. This re-

sults in false sharing when work is distributed across

nodes. Our run-time algorithm (Loc+Bal) is able to

detect this false sharing and limits the distribution of

the work in the parallel region to a single node. Further,

the work is performed on the processor that currently

owns and accesses the updated data. This effect can be

seen in the reduction in the number of page transfers,

and in the number of redistribution decisions (Comm.

Redists.) made due to SDSM communication opti-

mization in the noload Loc+Bal case (see Table 2).

Additionally, each loop iteration in Shallow accesses

half a page for our data set (each row of 512 dou-

bles spans half a page). While a balanced partition-

ing results in the data accessed by each processor be-

ing aligned on a page boundary, when load is redis-

268 S. Ioannidis et al. / CRAUL: Compiler and run-time integration for adaptation under load

Fig. 5. Speedups at 4, 8, and 16 processors in the absence of load.

tributed, there is a possibility of additional false shar-

ing if SDSM optimizations are not applied. This is seen

by the reduction in the number of page transfers from

the Balance to the Loc+Bal case (∼25 K pages to

∼13 K pages) in the presence of a computational load.

Fig. 6 presents speedups for the same four applica-

tions in the presence of three different types of load –

pure computation, memory and computation, and net-

work and computation. The pure computational load

consists of a program executing in a tight loop, and was

used to create contention for the processor on which it

executes. The memory and computational load consists

of a sequential matrix multiply of two 512 × 512 ma-

trices containing long integers. The program’s working

set is larger than our second-level cache and so intro-

duces memory bus contention in addition to processor

load. This load was used to determine the effect of con-

tention for processor, memory, and bus resources. The

network and computational load consists of a program

that attempts to consume 8 MB/s of the available band-

width communicating with its peer on another node, in

addition to contending for the processor on which it ex-

ecutes (note that this program will create some mem-

ory bus traffic as well in order to access the PCI bus).

In order to test the performance of our load balancing

library, we introduced one of the above processes on

one of the processors of each SMP. This load takes up

50% of the CPU time in each case, in addition to the

memory and network utilization in the second and third

load type.

Once again, for each type of load, the first (Plain)

bar in each group is the performance of a compiler-

based parallelization strategy without any run-time

support. The second (Balance) shows speedups with

the load balancing algorithm in place. The third bar

(Loc+Bal) presents speedups using both the load bal-

ancing algorithm as well as communication minimiza-

tion optimizations. Speedups are presented on 4 (one

SMP), 8 (4 processors on each of two SMPs), and 16

processors (4 processors on each of four SMPs). Ta-

ble 2 presents detailed statistics including total data

transferred, number of page transfers, and the number

of redistribution decisions made due to load and due to

excess communication for each type of load in the case

of Loc+Bal. The statistics for Plain in the absence

of load are also presented as a reference.

The introduction of load slows down the applica-

tion by as much as 92–188% in the case of 16 proces-

sors. Our load balancing strategy provides a 23–81%

improvement in speedup at 16 processors compared to

the Plain with load. In all cases, the loads that add

memory and network contention result in a higher toll

on performance in comparison to a pure computational

load.

In order to determine how good the results of our

load balancing algorithm are, we compare the execu-

tion times obtained using 16 processors with load and

S. Ioannidis et al. / CRAUL: Compiler and run-time integration for adaptation under load 269

Fig. 6. Speedups at 4, 8, and 16 processors with computational, memory, and network load.

our load balance scheme, with that using 14 proces-
sors without any load. This 14-processor run serves as
a bound on how well we can perform with load bal-
ancing, since that is the best we can hope to achieve
(four of our sixteen processors are loaded, and oper-
ate at only 50% of their power, giving us the rough
equivalent of fourteen processors). The results are pre-
sented in Fig. 7. The 16-processor load balanced Shal-
low and Jacobi executions are respectively 10% and
18% slower than the 14-processor run. This difference
is partly due to the fact that while computation can be
redistributed, in both applications the communication

per processor remains the same, which favors the 14-
processor runs.

In Fig. 8, we present a breakdown of the normal-
ized execution time when adding a computational load
with and without using CRAUL, relative to that on
16 processors with no load. Task and synchronization
time represent application computation and time spent
at synchronization points, respectively. Stall time mea-
sures the time required to obtain up-to-date data from
remote nodes. Message time indicates the time spent
handling protocol messages from remote nodes. Load
balance time indicates the time spent in the code that

270 S. Ioannidis et al. / CRAUL: Compiler and run-time integration for adaptation under load

Fig. 7. Comparison of the speedups of the applications using our

load balancing algorithm on 16 loaded processors, compared to their

performance on 14 load-free processors.

implements the load redistribution. Protocol time cov-

ers the remaining time spent in the Cashmere library,

consisting mainly of the time to propagate modifica-

tions.

Our load balancing algorithm reduces the time spent

waiting at synchronization points relative to the exe-

cution time with load and no load balance because we

have better distribution of work, and therefore improve

overall performance. Task time also drops when load

balancing is applied, although, as expected, not to the

same level as the unloaded base case because of the

computational load that adds to overall execution time

(since we measure wall clock time). The drop in task

time can be attributed to a reduction in the impact of

the computational load on the execution time of the

parallel application due to better load distribution. The

time spent executing our load redistribution algorithm

is between 1.3 and 16%. Shallow and TC spend a larger

proportion of time in the load balancing code because

of the smaller granularity of each parallel region. Load

balancing almost always increases the amount of data

transferred (see Table 2 – except for Shallow, where

the communication optimizations help reduce the num-

Fig. 8. Normalized breakdown of execution time for the base system with no load, with computational load, and the full CRAUL system running

under computational load. Time is broken down into application computation (Task), wait at synchronization points (Synchronization), stall

while waiting for up-to-date data to be obtained (Stall), handling of incoming messages (Messages), miscellaneous protocol functions such as

the issuing of write notices (Protocol), and CRAUL load balancing overhead (Loc+Bal).

S. Ioannidis et al. / CRAUL: Compiler and run-time integration for adaptation under load 271

Table 2

Application statistics covering number of barrier synchronizations, the amount of data transferred, the number of page

transfers, number of work redistributions due to load, number of redistributions due to communication optimization, at 16

processors – in the absence of load for Plain and Loc+Bal, and in the presence of computational, memory, and network

load for Loc+Bal

Program Barriers Data (MBytes) Page transfers Load redists. Comm. redists.

Jacobi no load Plain 204 22.0 2662 0 0

no load Loc+Bal 204 34.2 4125 6 0

comp. load Loc+Bal 204 34.8 4209 12 0

mem. load Loc+Bal 204 32.6 3938 6 0

net. load Loc+Bal 204 37.2 4487 20 0

MM no load Plain 104 2.4 288 0 0

no load Loc+Bal 104 6.5 768 0 0

comp. load Loc+Bal 104 6.5 777 10 0

mem. load Loc+Bal 104 6.5 778 10 0

net. load Loc+Bal 104 6.5 781 10 0

Shallow no load Plain 904 112.1 13370 0 0

no load Loc+Bal 904 103.5 12337 49 396

comp. load Loc+Bal 904 109.7 13109 12 440

mem. load Loc+Bal 904 106.6 12720 49 396

net. load Loc+Bal 904 122.5 14673 12 440

TC no load Plain 2052 64.1 7645 0 0

no load Loc+Bal 2052 75.5 8869 5 0

comp. load Loc+Bal 2052 78.1 9178 9 0

mem. load Loc+Bal 2052 78.0 9166 10 0

net. load Loc+Bal 2052 77.8 9138 7 0

ber of page transfers due to reduction in false sharing).

However, overall performance is improved due to the

reduction in synchronization and task time.

4. Related work

There have been several approaches to the prob-

lems of locality management and load balancing, es-

pecially in the context of loop scheduling. Perhaps the

most common approach is the task queue model. In

this scheme, there is a central queue of loop iterations.

Once a processor has finished its assigned portion,

more work is obtained from this queue. There are sev-

eral variations, including self-scheduling [27], fixed-

size chunking [16], guided self-scheduling [25], and

adaptive guided self-scheduling [8]. These approaches

tend to work well only for tightly coupled environ-

ments, and in general do not take locality and commu-

nication into account.

Markatos and LeBlanc [23] show that locality man-

agement is more important than load balancing for

thread assignment in a thread-based scheduling sys-

tem. They introduce a policy they call Memory-Con-

scious Scheduling that assigns threads to processors

whose local memory holds most of the data the thread

will access. Their results are simulation-based, and

show that the looser the interconnection network, the

more important the locality management. This work

led to the introduction of Affinity scheduling [22],

where loop iterations are scheduled over all the pro-

cessors equally in local queues in a manner that max-

imizes the use of local memory. When a processor is

idle, it removes 1/k of the iterations in its local work

queue and executes them. k is a parameter of their al-

gorithm, which they define as P in most of their ex-

periments, where P is the number of processors. If

a processor’s work queue is empty, it finds the most

loaded processor and steals 1/k of the iterations in that

processor’s work queue and executes them. Yan et al.

[28] builds on affinity scheduling, by using adaptive

affinity scheduling. Their algorithm is similar to affin-

ity scheduling, but their run-time system can modify k
during the execution of the program in order to change

the chunks of work grabbed from loaded processors

based on the relative processor load.

Cierniak et al. [5] study loop scheduling in heteroge-

neous environments with imbalances in the task time,

272 S. Ioannidis et al. / CRAUL: Compiler and run-time integration for adaptation under load

processing power, and network bandwidth. While they

do handle variations in the task time per loop that are

statically determinable, they do not, however, address

how dynamic changes in the underlying system are

handled. Their results are also based on message-based

applications. Moon and Saltz [24] examined applica-

tions with irregular access patterns. To compensate for

load imbalance, they either re-map data periodically

during pre-determined points in the execution, or at ev-

ery time step.

In the context of dynamically changing environ-

ments, Edjlali et al. [9] and Kaddoura [14] present a

run-time approach that checks to see if there is a need

to redistribute work prior to each parallel section, and

attempt to minimize communication. This is similar

to our approach in CRAUL. However, their approach

deals with message passing programs.

Zaki et al. [29] present an evaluation of global vs.

local and distributed vs. centralized strategies for load

balancing on distributed memory message-based sys-

tems. The strategies are labeled local or global based

on the information they use to make load balancing de-

cisions. Distributed and centralized refers to whether

the decision-making is centralized at one master pro-

cessor, or distributed among the processors. The au-

thors argue that depending on the application and sys-

tem parameters, different schemes can be the most suit-

able for best performance. Our approach assumes a dis-

tributed strategy with global information.

The system that seems most related to CRAUL is

Adapt [20]. Adapt is implemented in concert with

the Distributed Filaments [10] software DSM system.

Adapt uses run-time information to extract access pat-

terns by inspecting page faults. It can recognize and

optimize for two access patterns: nearest-neighbor and

broadcast. A cyclic distribution is used in the case of

broadcast sharing with varying execution times, and a

blocked distribution is used otherwise. In other work

[19], Adapt is also used to optimize not only the cur-

rent (local) parallel region, but also to attempt to ensure

optimal distributions globally for other parallel regions

as well. CRAUL uses both compile-time information

on access patterns in the parallel region to be executed,

as well as current run-time information on cached data,

in order to balance load as well as to minimize commu-

nication due to false sharing and to maintain locality

when beneficial.

Finally, systems like Condor [18] support transpar-

ent migration of processes from one workstation to an-

other. However, they do not address load distribution

in a single parallel application.

CRAUL deals with software distributed shared mem-

ory programs, in contrast to closely coupled shared

memory or message passing. The load balancing mech-

anism targets both heterogeneous processors and pro-

cessor, memory, or network load caused by competing

programs. Furthermore, CRAUL minimizes communi-

cation and page sharing by taking the coherence gran-

ularity and current caching information into account.

5. Conclusions

In this paper, we address the problem of load bal-

ancing in SDSM systems to balance load in loop-based

applications. SDSM has unique characteristics that are

attractive: it offers the ease of programming of a shared

memory model in a widely available workstation-

based message passing environment, and allows dy-

namic caching of accessed data. However, multiple

users and loosely connected processors challenge the

performance of SDSM programs on such systems due

to load imbalances and high communication latencies.

Our load-balancing system, CRAUL, combines in-

formation from the compiler and the run-time. It uses

future access information available at compile-time,

along with run-time information on cached data, to dy-

namically adjust load based on the available relative

processing power and communication speeds. Perfor-

mance tests on four applications and different types of

load (which consume either memory, processor, or net-

work resources) indicate that the performance with our

load balancing strategy is within 5–23% of the ideal.

CRAUL is also able to optimize work partitioning

even in the absence of load by taking advantage of

caching information to avoid excess communication

due to false sharing. The run-time system identifies

regions where false sharing exists and determines if

the resulting communication overhead would be larger

than the computational imbalance from eliminating the

false sharing. It then changes the work distribution by

adjusting the loop boundaries to avoid the false shar-

ing if beneficial, while respecting locality. Future work

will examine extensions to the system in order to han-

dle different types of work distributions and sharing

patterns.

References

[1] S.V. Adve and K. Gharachorloo, Shared memory consistency

models: A tutorial, IEEE Computer 29(12) (Dec. 1996), 67–76.

S. Ioannidis et al. / CRAUL: Compiler and run-time integration for adaptation under load 273

[2] S.P. Amarasinghe, J.M. Anderson, M.S. Lam and C.W. Tseng,

The SUIF compiler for scalable parallel machines, in: Proceed-

ings of the 7th SIAM Conference on Parallel Processing for

Scientific Computing, Febr. 1995.

[3] C. Amza, A.L. Cox, S. Dwarkadas, P. Keleher, H. Lu, R. Raja-

mony and W. Zwaenepoel, TreadMarks: Shared memory com-

puting on networks of workstations, IEEE Computer 29(2)

(Febr. 1996), 18–28.

[4] J.B. Carter, J.K. Bennett and W. Zwaenepoel, Implementa-

tion and performance of Munin, in: Proceedings of the 13th

ACM Symposium on Operating Systems Principles, Oct. 1991,

pp. 152–164.

[5] M. Cierniak, W. Li and M.J. Zaki, Loop scheduling for hetero-

geneity, in: Fourth International Symposium on High Perfor-

mance Distributed Computing, Aug. 1995.

[6] A.L. Cox, S. Dwarkadas, H. Lu and W. Zwaenepoel, Evalu-

ating the performance of software distributed shared memory

as a target for parallelizing compilers, in: Proceedings of the

11th International Parallel Processing Symposium, April 1997,

pp. 474–482.

[7] S. Dwarkadas, A.L. Cox and W. Zwaenepoel, An integrated

compile-time/run-time software distributed shared memory

system, in: Proceedings of the 7th Symposium on Architectural

Support for Programming Languages and Operating Systems,

Oct. 1996.

[8] D.L. Eage and J. Zahorjan, Adaptive guided self-scheduling,

Technical Report 92-01-01, Department of Computer Science,

University of Washington, Jan. 1992.

[9] G. Edjlali, G. Agrawal, A. Sussman and J. Saltz, Data paral-

lel programming in an adaptive environment, in: International

Parallel Processing Symposium, April 1995.

[10] V.W. Freeh, D.K. Lowenthal and G.R. Andrews, Distributed

filaments: Efficient fine-grain parallelism on a cluster of work-

stations, in: Proceedings of the First USENIX Symposium on

Operating System Design and Implementation, Nov. 1994,

pp. 201–213.

[11] R. Gillett, Memory channel: An optimized cluster interconnect,

IEEE Micro 16(2) (Feb 1996), 12–18.

[12] P. Havlak and K. Kennedy, An implementation of interproce-

dural bounded regular section analysis, IEEE Trans. Parallel

Distributed Syst. 2(3) (July 1991), 350–360.

[13] S. Ioannidis and S. Dwarkadas, Compiler and run-time sup-

port for adaptive load balancing in software distributed shared

memory systems, in: Fourth Workshop on Languages, Compil-

ers, and Run-time Systems for Scalable Computers, May 1998.

[14] M. Kaddoura, Load balancing for regular data-parallel applica-

tions on workstation network, in: Communication and Archi-

tectural Support for Network-Based Parallel Computing, Febr.

1997, pp. 173–183.

[15] P. Keleher, A.L. Cox and W. Zwaenepoel, Lazy release con-

sistency for software distributed shared memory, in: Proceed-

ings of the 19th Annual International Symposium on Computer

Architecture, May 1992, pp. 13–21.

[16] C. Kruskal and A. Weiss, Allocating independent subtasks on

parallel processors, ACM Trans. Computer Syst. (Oct. 1985).

[17] K. Li and P. Hudak, Memory coherence in shared virtual mem-

ory systems, ACM Trans. Computer Syst. 7(4) (Nov. 1989),

321–359.

[18] M. Litzkow and M. Solomon, Supporting checkpointing and

process migration outside the unix kernel, in: Usenix Winter

Conference, 1992.

[19] D.K. Lowenthal, Local and global data distribution in the

filaments package, in: International Conference on Parallel

and Distributed Processing Techniques and Applications, July

1998.

[20] D.K. Lowenthal and G.R. Andrews, An adaptive approach

to data placement, in: 10th International Parallel Processing

Symposium, April 1996.

[21] H. Lu, A.L. Cox, S. Dwarkadas, R. Rajamony and W. Zwae-

nepoel, Software distributed shared memory support for irreg-

ular applications, in: Proceedings of the 6th Symposium on the

Principles and Practice of Parallel Programming, June 1996,

pp. 48–56.

[22] E.P. Markatos and T.J. LeBlanc, Using processor affinity in

loop scheduling on shared-memory multiprocessors, IEEE

Transact. Parallel Distributed Syst. 5(4) (April 1994), 379–

400.

[23] E.P. Markatos and T.J. LeBlanc, Load balancing versus local-

ity management in shared-memory multiprocessors, in: 1992

International Conference on Parallel Processing, Aug. 1992,

pp. I:258–267.

[24] B. Moon and J. Saltz, Adaptive runtime support for direct sim-

ulation monte carlo methods on distributed memory architec-

tures, in: Scalable High Performance Computing Conference,

May 1994.

[25] C.D. Polychronopoulos and D.J. Kuck, Guided self-sched-

uling: a practical scheduling scheme for parallel supercomput-

ers, IEEE Transactions on Computers (Sept. 1992).

[26] R. Stets, S. Dwarkadas, N. Hardavellas, G. Hunt, L. Kon-

tothanassis, S. Parthasarathy and M.L. Scott, Cashmere-2L:

Software coherent shared memory on a clustered remote-write

network, in: Proceedings of the 16th ACM Symposium on Op-

erating Systems Principles, Oct. 1997, pp. 170–183.

[27] P. Tang and P.C. Yew, Processor self-scheduling: A practical

scheduling scheme for parallel computers, in: 1986 Interna-

tional Conference on Parallel Processing, Aug. 1986.

[28] Y. Yan, C. Jin and X. Zhang, Adaptively scheduling parallel

loops in distributed shared-memory systems, IEEE Transact.

Parallel Distributed Syst. 8 (Jan. 1997).

[29] M.J. Zaki, W. Li and S. Parthasarathy, Customized dynamic

load balancing for a network of workstations, J. Parallel Dis-

trib. Computing (June 1997).

Submit your manuscripts at

http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable

Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in

Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

