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ABSTRACT
We describe our work in the collection and analysis of mas-
sive data describing the connections between participants
to online social networks. Alternative approaches to social
network data collection are defined and evaluated in prac-
tice, against the popular Facebook Web site. Thanks to
our ad-hoc, privacy-compliant crawlers, two large samples,
comprising millions of connections, have been collected; the
data is anonymous and organized as an undirected graph.
We describe a set of tools that we developed to analyze spe-
cific properties of such social-network graphs, i.e., among
others, degree distribution, centrality measures, scaling laws
and distribution of friendship.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
Data mining ; E.1 [Data Structures]: [Graphs and net-
works]; G.2.2 [Discrete Mathematics]: Graph Theory—
Network problems

General Terms
Web data, Design, Experimentation, Human Factor

1. INTRODUCTION
The increasing popularity of online Social Networks (OSNs)

is witnessed by the huge number of users acquired in a short
amount of time: some social networking services now have
gathered hundred of millions of users, e.g. Facebook, MyS-
pace, Twitter, etc. The growing accessibility of the Inter-
net, through several media, gives to most of the users a
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24/7 online presence and encourages them to build a solid
online interconnection of relationships. As OSNs become
the tools of choice for connecting people, sociologists expect
that their structure will increasingly mirror real-life society
and relationships. At the same time, with an extimate 13
millions transactions per seconds (at peak) Facebook is one
of the most challenging computer science artifacts, posing
several optimization and robustness challenges. The analu-
sis of OSN connection is of scientificic interest on multiple
levels. First of all, large scale studies of models reflecting a
real community structure and its behavior were impossible
before. Second, data is clearly defined by some structural
constraints, usually provided by the OSN structure itself,
with respect to real-life relations, often hardly identifiable.

Computer science covers a fundamental role in this per-
spective, as it provides tools and techniques to automatize
the process of gathering data from massive data sources and
their analysis, at several levels of granularity. To analyse
such a complex object, proper metrics need to be introduced,
in order to identify and evaluate properties of the considered
social network. We will highlight the role of the SNA as an
indispensable step to achieve a complete knowledge in this
area.

Identifying drawbacks is important in order to acquire a
correct methodology. Because of the complexity of this kind
of networks, investigating the scalability of the problem is
crucial: we do not have computational resources able to mine
and work with the whole Facebook graph, for several rea-
sons. First of all, it is not trivial to tackle large scale mining
issues: for example, last year Gjoka et al. [10] measured
the crawling overhead in order to collect the whole Face-
book graph in 44 Terabytes of data to be downloaded and
handled.

Moreover, even when such data can be be acquired and
stored locally, it is non-trivial to devise and implement func-
tions that traverse and visit the graph or even evaluating
simple metrics. For all these reasons it is common to work
with small but representative sample of the graph. In lit-
erature, extensive research has been conducted on sampling
techniques for large graphs but, only in the last few years,
some studies have sehd light on the partial bias that stan-
dard methodologies introduce, one way or another.

This paper is organized as follows: Section 2 presents the
summary of the most representative related work. Section



3 describes the methodology we used to conduct this work,
in particular identifying some points of interest to be in-
spected, establishing algorithms and techniques to be ex-
ploited and defining goals and achievements. Section 4 fo-
cuses on the data collection process and related issues: we
define the technical challenges underlying the process of in-
formation extraction from Facebook, and describe in detail
the design and implementation of our application, called
crawling agent. Once it is gathered, OSN data needs to
be analyzed and several experimentation details regarding
SNA aspects are discussed in Section 5. The most impor-
tant results are summarized in Section 6, where we intro-
duce some measures obtained when SNA metrics is applied
to our dataset. Finally, Section 7 summarizes our work and
discusses a blueprint for future work on Facebook analysis.

2. RELATED WORK
The classic work on social networks is rooted in the field

of Sociometry ; in late sixties Milgram and Travers [32] in-
troduced the well-known theories of the six-degrees of sepa-
ration and the small world. Zachary [35], in his PhD thesis,
formalized the first model of a real-life social network. Then,
social networks started attracting the interest of different
sciences, including Computer Science; for example Klein-
berg [14] studied the algorithmic aspects of social networks
while Staab et al. [31] analyzed their range of applicability.

Nowadays, also thanks to the visibility of OSNs, the sci-
entific research in this field counts several hot topics. It is
possible to identify at least three distinct, not necessarily
disjoint, directions of research; they focus, respectively, on
i) data collection techniques, ii) characterization of online
social networks and iii) online social networks analysis.

First, Leskovec and Faloutsos [20] cover sampling tech-
niques applied to graphs, exploiting several algorithms for
efficiently visiting large graphs and avoiding bias of data.
Several work covers aspects regarding crawling techniques
for mining social networks: Ye et al. [34] provide an exhaus-
tive walk-through about this field.

With respect to data collection aspects, the work by Gjoka
et al. [10] on OSNs (in particular on Facebook) is closely
related to our work.

In this paper we describe in details several results, some of
them already presented in a preliminary work [7] based on a
significantly smaller sample acquired with a naive technique.

Chau et al. [8] focus on the parallel crawling of OSNs;
Gjoka et al. [10] refer they used a parallel crawler written
in Python and running on a cluster of 56 machines, but
avoiding technical details.

In the second category we find works whose main goal
is to discover properties of online social networks. Some-
times companies provide the complete OSN dataset, e.g.
Ahn et al. [1] studied the graph of a South Korean OSN,
named CyWorld, and its scalability properties, in order to
correctly estimate degree distribution and clustering coeffi-
cient in smaller samples. Leskovec [19], in his PhD thesis,
studied dynamics of large social networks analyzing data
provided by Microsoft about the usage of their instant mes-
saging platform, formerly called MSN. More frequently, so-
cial network services companies like Facebook are reluctant
to share their data for research purposes. The only viable
solution is to acquire this information crawling the front-end
of the social networks, wrapping and managing public acces-
sible data. Ferrara et al. [9] provided an exhaustive survey

of these approaches, commonly referred to as Web Infor-
mation Extraction techniques. Wilson et al. [33] defined
a region-constrained breadth-first-search sampling method-
ology applied to the Facebook social graph and formalized
some properties as assortativity and interaction, easily ver-
ifiable in small regions, but not generalizable to the whole
graph.

Work belonging to the last category usually present SNA
techniques applied to OSNs. Carrington et al. [6] formalized
a rigorous methodology to model OSNs, in particular to dis-
cover, if existing, aggregations of nodes covering particular
positions in the graph (e.g. centrality positions) and clus-
ters of particular relevance. Kumar et al. [15, 16] focused
on analyzing the structure of the giant component of the
graph, trying to define a generative model to describe the
evolution of the network; they also introduced techniques of
comparison of simulations against actual data to verify the
reliability of the model. Mislove et al. [26] illustrated several
aspects of the analysis of OSNs; they crawled large OSNs,
then analyzed several networks using methods formalized in
the SNA, e.g. inspecting link symmetry, power-law node
degrees, groups formation, etc.

Finally, literature on analysis of the behavior of OSNs
users is abundant: Golbeck and Hendler [12] described the
evolution of trust relationships among them. Liben-nowell
and Kleinberg [22] studied the link-prediction problem, for-
malizing the concept of proximity of networks users. Several
studies characterized OSNs users behaviors [11, 23, 4], thus
Schneider et al. [30] provided a starting point illustrating
how to analyze OSNs (in particular Facebook) from a net-
work perspective.

3. METHODOLOGY
OSNs can be represented as graphs, nodes represent users,

edges represent connections. Facebook, in particular, is
characterized by a simple friendship schema, so as it is pos-
sible to represent its structure through an unweighted, undi-
rected graph.

In order to understand if it is possible to study OSNs with-
out having access to their complete dataset (e.g. Facebook),
we adopted two different methodologies to gather partial
data (i.e. a sub-graph of the Facebook complete graph).

Our purpose is to acquire comparable samples of the Face-
book graph when applying different sampling methodolo-
gies. Once collected, information are analyzed using tools
and techniques provided by the SNA. We also investigate
the scalability of this problem, evaluating several properties
of different graphs and sub-graphs, collected with different
sampling approaches.

Then, we compare measures calculated applying SNA tech-
niques with statistical information provided by Facebook
itself in order to validate the reliability of collected data.
Moreover, highlighting similarities and differences between
results obtained through this study and similar ones, con-
ducted in past years, is helpful to understand the evolution
of the social network over the time.

Finally, this methodology starts from the assumption that,
to gain an insight into an OSN, we take a snapshot of (part
of) its structure. Processes of data collection require time,
during which its structure could slightly change, but, as-
suming the small amount of time, with respect to the whole
life of the social network, required for gathering informa-
tion, this evolution can be ignored. Even though, during



the data cleaning step we take care of possible information
discrepancies.

3.1 Breadth-first-search sampling
Breadth-first-search (BFS) is a well-known graph traversal

algorithm proved to be optimal and easy to be implemented,
in particular for visiting unweighted, undirected graphs. For
these reasons it has been adopted in several OSNs crawling
tasks [26, 8, 33, 10, 34, 7].

Starting from a seed node, the algorithm discovers first
neighbors of the seed, putting them in a FIFO queue. Nodes
in the queue are visited in order of appearance, so the cov-
erage of the graph could be represented as an expanding
wavefront. This algorithm, virtually, concludes its execu-
tion when all discovered nodes have been visited. For large
graphs, like OSNs, this stopping condition would imply huge
computational resources and time. In practice, we estab-
lished as termination criteria, a coverage of at least three
sub-levels of friendships and a running time of 240 hours, so
as resulting in an incomplete visit of the graph.

Kurant et al. [17] assert that an incomplete BFS sampling
leads to biased results, in particular towards high degree
nodes. Even though in our experimentation data acquired
through BFS sampling do not show a statistically significant
bias, we investigate this aspect in comparison with others,
obtained using a sampling technique which is proved to be
unbiased.

3.2 Uniform sampling
The Uniform sampling of Facebook has been introduced

by Gjoka et al. [10]; they provided proof of correctness of
this approach and implementation details, omitted here.

Briefly, Facebook relies on a well-designed system of user-
IDs assignment, spreading in the space of 32-bit range, so
as the commonly called rejection sampling methodology is
viable. This approach requires the generation of a queue of
random user-IDs to be requested to Facebook, querying for
their existence. If so, the user and his/her personal friend
list are extracted, otherwise the user-ID is discarded and the
polling proceeds with the next. Advantages of this approach
rely on the independence of the distribution of user-IDs with
respect to the distribution of friendships in the graph.

4. DATA COLLECTION
Regardless of the methodology implemented, our process

of data collection can be schematized as follows (see Figure
1):

1. Preparation for the execution of the agent.

2. Starting or resuming the process of data extraction.

3. The crawler execution extracts friend lists, cyclically.

4. Raw data are collected until the extraction process
concludes or it is stopped.

5. Data cleaning and de-duplication of information.

6. Eventually, data structured in GraphML format.

Figure 1: State diagram of the data mining process

4.1 Privacy policies
Companies providing social network services like Face-

book, build their fortune on behavioral and targeted adver-
tising, exploiting the huge amount of information they own
about users and their activity to show them thematized ads,
so as to increase visibility and earnings of advertised com-
panies. This is why they are reluctant to share information
about users and the usage of the network. Moreover, several
questions related to users privacy are adducted [13, 24].

For all these reasons, Facebook, like many other common
social network services, is implemented as a black box. Users
can modify their privacy setting and Facebook ensures sev-
eral levels of information hiding; by default, users can only
access private information of other users belonging to their
friendship network, while friend list pages are publicly ac-
cessible.

To maintain this status quo, Facebook implements several
rules, some behavioral (e.g. terms of use prohibits data
mining, regardless of the usage of data extracted) and some
technicals (e.g the friend list is dispatched through a script
which asynchronously fills the Web page, preventing naive
techniques of data extraction).

4.2 Sampling sessions of Facebook

4.2.1 BFS crawler
The architecture of this crawler includes an agent that

executes data extraction tasks and a FIFO queue, named
ToBeVisited, in which are stored, in order of appearance,
profiles of users to be visited.

The flow of HTTP requests sent by the BFS crawler is
described as follows: first, the agent contacts the Facebook
server, providing credentials required for the authentication
through cookies. Once logged in, the agent starts crawling
pages, visiting the friend list page of the seed profile (the
logged in user) and extracts her friend list; friends user-IDs
are enqueued in a to be visited FIFO queue and, cyclically,
they are visited in order to retrieve their friend list (see Table
1).

We started this process from a single seed, and stopped its
execution after 10 days of crawling, obtaining a partial sam-
ple of the Facebook graph and contains information down
to the third sub-level of friendships (friend lists of friends
of friends have been acquired). Datasets are described in a
following specific section.

4.2.2 Uniform crawler
The Uniform crawler reflects an architecture identical to

the BFS crawler (refer to 1 for details). The only difference
is the queue generation and management.

The most important aspect for ensuring the efficiency of



N. Action Protocol Method URI KBytes

1 open the Facebook page
HTTP GET www.facebook.com/ 242

2 login providing credentials
HTTPS POST login.facebook.com/login.php?login attempt=1 234
HTTP GET /home.php 87

3 open seed profile friend list
HTTP GET /friends/?filter=afp -
HTTP GET /friends/ajax/friends.php?filter=afp 224

4 extract the friend list through regular expressions, put profiles in the queue to be visited
5 visit the next profile in the queue to be visited

HTTP GET /friends/?id=XXX &filter=afp -
HTTP GET /friends/ajax/friends.php?id=XXX &filter=afp 224

6 cycle the process going to step 4

Table 1: HTTP requests flow of the BFS crawler for connecting to Facebook and retrieving information.

this crawler is related to the comparability of all the pos-
sible assigned users-IDs with the actual assigned user-IDs.
As of August 2010, when we crawled the graph, Facebook
declared more than half a billion users; so that the num-
ber of users with a 32-bit user-ID assigned is approximately
229 ' 5.37e9. Subsequently, this approach ensures that
the crawler finds an existing user profile, statistically ev-

ery 232

229
= 23 = 8 attempts, a result even better than the

situation reported by [10].
Our purpose is to extract a uniform sample whose di-

mensions are comparable with the BFS sample extracted,
which contains 63.4K unique visited users. Statistically, ev-
ery eight attempts one existing user is matched, so we gen-
erated eight queues of 216 ' 65.5K user-IDs, randomly ex-
tracted in the interval [0, 232 − 1]. These queues fed eight
different agents which crawled Facebook for 10 days. The
total expected number of users was 216 ' 65.5K.

Any discrepancies between the total number of users ac-
quired and the theoretic number of possible acquirable users
is due to the privacy policy setting preventing friend lists to
be visited anonymously. We investigated also this aspect.

4.2.3 Limitations
One notable limitation we met during the data mining

process is due to the technical precautionary adopted by
Facebook to avoid an high traffic through their platform. In
details, once the agent requests for a friend-list Web page,
the server responds with a list of at most 400 friends. If the
list should contain more than 400 friends, it is shortened to
400 instead.

This limitation can be avoided adopting different tech-
niques of data mining, for example exploiting platforms of
Web data extraction which scrape information directly from
the Web page, simulating the behavior of a human user,
through the interface of the browser itself. Even though,
the computational overhead of a similar process is too high
to be adopted for a large-scale crawling task, unless a com-
mercial platform for Web data extraction is employed.

On a smaller scale, we already faced the problem of sam-
pling Facebook adopting this approach [7].

4.3 Data cleaning
Data cleaning and post-processing aspects represent an

important step in a sampling task. During the process of
data collection it is possible, in our specific case, that mul-

tiple instances of the same edge and/or parallel edges could
be stored (this because the Facebook graph is undirected,
so one edge connecting two nodes is sufficient to correctly
represent the structure of the network). This information is
redundant and unnecessary.

We adopted hash functions to efficiently remove duplicate
edges from our datasets, in a linear time O(n), with respect
to the dimension of the datasets. Moreover, because Face-
book allows users to substitute their numerical ID with an
alphanumerical one, we obtained datasets containing both
these two formats of IDs.

We decided to conform all the user-IDs to a same numer-
ical format, and, in order to avoid collisions with the 32-bit
coding system adopted by Facebook, we chose the 48-bit hy-
brid additive-rotative hashing algorithm by Partow [28], to
convert all the user-IDs. Thus, we consequently obtained
also anonymized datasets: user-IDs are “encrypted” adopt-
ing the 48-bit hashing to obtain data with no references to
the users. Moreover, to comply with the Facebook end-user
licence, we never memorize users’ sensible data.

In conclusion, we verified the integrity and the consistency
of data. Some particular sub-graphs (namely, ego-networks)
of interest, have been converted in the GraphML format [5],
for additional experimentation, adopting tools which require
this standard for data management.

4.4 Datasets
A quantitative description of datasets follows in Table 2.

BFS Uniform

Queue length 11.59M 8 · 216 = 524K
N. of unique visited users 63.4K 48.1K
N. of unique disc. neighbors 8.21M 7.69M
N. of unique edges 12.58M 7.84M
Avg. degree 396.8 326.0
Median degree 400 400
Largest eigenvector value 68.93 23.63
Effective diameter 8.75 16.32
Largest component has 99.98% 94.96%
Avg. clustering coefficient 0.0789 0.0471

Crawling period 08/01-10 08/11-20

Table 2: Datasets acquired and analyzed.



4.4.1 BFS dataset
For the first sampling task we adopted the BFS algorithm,

during the first ten days of August 2010. The collected
sample contained 12.58 millions edges connecting 8.21 mil-
lions users (i.e. the 29.2% of the nodes was duplicates);
the complete 2.0-degree ego-networks (i.e. all the complete
sub-graphs in which we visited the whole neighborhood of
a specific node) were 63.4 thousands, and we adopted this
measure as yardstick for the Uniform sampling task.

Some of the most interesting properties of this sample are
the following: the average degree of this BFS sample is 396.8,
a values conform to the average depicted by similar studies
[10, 33]. The median value, as already discussed, is affected
by the technical limitation imposed by Facebook. The ef-
fective diameter of this graph is small; although this is com-
pletely compatible with theories like “the small world phe-
nomenon”, we suppose that the measure could be affected
by the particular behavior of the incomplete BFS traver-
sal, which radially covers the graph. The largest connected
component includes almost all the nodes, while the cluster-
ing coefficient of the network (0.0789) is perfectly alligned to
the interval already evaluated by the previously mentioned
studies ([0.05 - 0.18]).

4.4.2 Uniform dataset
Our purpose for the Uniform sampling was to acquire a

dataset whose dimensions may be comparable with the BFS
dataset.

We considered the following criteria to define how to pro-
ceed: first of all, we would like to exploit the intrinsic na-
ture of this parallelizable problem, adopting several differ-
ent crawlers working at the same time. Following the past
considerations that the probability of matching an existing
user with this technique is 1

8
, we generated eight different

queues, feeding eight crawlers. Each queue was composed of
216 ' 65.5K ∼= 63.4K, our yardstick.

During the second ten days of August 2010, these crawlers
collected a sample of 7.69 millions users connected each oth-
ers through 7.84 millions edges. The following statistics
highlights the quality of the sample: the average degree is
smaller with respect to the BFS sample and it probably bet-
ter reflect the expected value. Once again the clustering co-
efficient, although smaller with respect to the BFS sample,
is acceptable.

Different considerations hold about the effective diameter
and the largest connected component: the first is still too
high, but this measure is probably affected by the small na-
ture of the sample. This possible explanation is supported
by the evidence that the largest connected components do
not include about the 5% of nodes, which remain discon-
nected (because of the randomness of the sampling process).

5. RESULTS
The discussion of experimental results follows. The anal-

ysis of collected datasets has been conducted exploiting the
functionalities of the Stanford Network Analysis Platform li-
brary (SNAP) [18], which provides general purpose network
analysis functions.

5.1 Overall metrics
Metrics previously presented in the analysis of datasets

are part of the methodology defined, e.g. by Carrington et
al. [6], for social network analysis tasks. Another interesting

perspective, for the same purpose, is the list of metrics to
be analyzed, provided by Perer and Shneiderman [29].

The following measures have been investigated.

5.1.1 Degree distribution
The first interesting property we analyzed is the degree

distribution, which is reflected by the topology of the net-
work. The literature refers that social networks are usually
described by power-law degree distributions, P (k) ∼ k−γ ,
where k is the node degree and γ ≤ 3. Networks which
reflect this law share a common structure with a relatively
small amount of nodes connected through a big number of
relationships.

The degree distribution can be represented through sev-
eral distribution function, one of the most commonly used
being the Complementary Cumulative Distribution Func-

tion (CCDF), ℘(k) =

∫ ∞
k

P (k′)dk′ ∼ k−α ∼ k−(γ−1), as re-

ported by Leskovec [19].
In Figure 2 we show the degree distribution based on the

BFS and Uniform (UNI) sampling techniques. The limita-
tions due to the dimensions of the cache which contains the
friend-lists, upper bounded to 400, are evident. The BFS
sample introduces an overestimate of the degree distribu-
tion in the left and the right part of the curves.

The Complementary Cumulative Distribution Function
(CCDF) is shown in Figure 3.

Figure 2: BFS vs. UNI: degree distribution

Figure 3: BFS vs. UNI: CCDF degree distribution



5.1.2 Diameter and hops
Most real-world graphs exhibit relatively small diameter

(the “small-world” phenomenon [25], or “six degrees of sepa-
ration”): a graph has diameter D if every pair of nodes can
be connected by a path of length of at most D edges. The
diameter D is susceptible to outliers. Thus, a more robust
measure of the pairwise distances between nodes in a graph
is the effective diameter, which is the minimum number of
links (steps/hops) in which some fraction (or quantile q, say
q = 0.9) of all connected pairs of nodes can reach each other.
The effective diameter has been found to be small for large
real-world graphs, like Internet and the Web [2], real-life and
Online Social Networks [3, 21].

Hop-plot extends the notion of diameter by plotting the
number of reachable pairs g(h) within h hops, as a function
of the number of hops h [27]. It gives us a sense of how
quickly nodes’ neighborhoods expand with the number of
hops.

In Figure 4 the number of hops necessary to connect any
pair of nodes is plotted as a function of the number of pairs
of nodes. As a consequence of the more “compact” structure
of the graph, the BFS sample shows a faster convergence to
the asymptotic value listed in Table 2.

Figure 4: BFS vs UNI: hops and diameter

5.1.3 Clustering Coefficient
The clustering coefficient of a node is the ratio of the

number of existing links over the number of possible links
between its neighbors. Given a network G = (V,E), a clus-
tering coefficient, Ci, of node i ∈ V is:

Ci = 2|{(v, w)|(i, v), (i, w), (v, w) ∈ E}|/ki(ki − 1)

where ki is the degree of node i. It can be interpreted as the
probability that any two randomly chosen nodes that share a
common neighbor have a link between them. For any node in
a tightly-connected mesh network, the clustering coefficient
is 1. The clustering coefficient of a node represents how well
connected its neighbors are.

Moreover, the overall clustering coefficient of a network is
the mean value of clustering coefficient of all nodes. It is
often interesting to examine not only the mean clustering
coefficient, but its distribution.

In Figure 5 is shown the average clustering coefficient plot-
ted as a function of the node degree for the two sampling
techniques. Due to the more ”systematic”approach, the BFS
sample shows less violent fluctuations.

Figure 5: BFS vs. UNI: clustering coefficient

5.1.4 Futher Considerations
The following considerations hold for the diameter and

hops: data reflected by the BFS sample could be affected by
the“wavefront expansion”behavior of the visiting algorithm,
while the UNI sample could still be too small to represent
the correct measure of the diameter (this hypothesis is sup-
ported by the dimension of the largest connected component
which does not cover the whole graph, as discussed in the
next paragraph). Different conclusions can be discussed for
the clustering coefficient property. The average values of
the two samples fluctuate in the same interval reported by
similar studies on Facebook (i.e. [0.05, 0.18] by [33], [0.05,
0.35] by [10]), confirming that this property is preserved by
both the adopted sampling techniques.

5.1.5 Connected component
A connected component or just a component is a maxi-

mal set of nodes where for every pair of the nodes in the
set there exist a path connecting them. Analogously, for di-
rected graphs we have weakly and strongly connected com-
ponents.

As shown in Table 2, the largest connected components
cover the 99.98% of the BFS graph and the 94.96% of the
UNI graph. This reflects in Figure 6. The scattered points in
the left part of the plot have a different meaning for the two
sampling techniques. In the UNI case, the sampling picked
up disconnected nodes. In the BFS case disconnected nodes
are meaningless, so they are probably due to some collisions
of the hashing function during the de-duplication phase of
the data cleaning step. This motivation is supported by their
small number (29 collisions over 12.58 millions of hashed
edges) involving only the 0.02% of the total edges. However,
the quality of the sample is not affected.

5.1.6 Eigenvector
The eigenvector centrality is a more sophisticated view

of centrality: a person with few connections could have a
very high eigenvector centrality if those few connections were
themselves very well connected. The eigenector centrality
allows for connections to have a variable value, so that con-
necting to some vertices has more benefit than connecting
to others. The Pagerank algorithm used by Google search
engine is a variant of eigenvector Centrality.

Figure 7 shows the eigenvalues (singular values) of the
two graphs adjancency matrices as a function of their rank.
In Figure 8 is plotted the Right Singular Vector of the two



Figure 6: BFS vs. UNI: connected component

graphs adjacency matrices as a function of their rank using
the logarithmic scale. The curves relative to the BFS sample
show a more regular behavior, probably a consequence of the
richness of the sampling.

Figure 7: BFS vs. UNI: singular values

Figure 8: BFS vs. UNI: right singular vector

5.2 Privacy Settings
We investigated the adoption of restrictive privacy poli-

cies by users: our statistical expectation using the Uniform

crawler was to acquire 8 · 216

23
' 65.5K users. Instead, the

actual number of collected users was 48.1K. Because of pri-
vacy settings chosen by users, the discrepancy between the

expected number of acquired users and the actual number
was about 26.6%. This means that, roughly speaking, only
a quarter of Facebook users adopt privacy policies which
prevent other users (except for those in their friendship net-
work) from visiting their friend-list.

6. CONCLUSIONS
OSNs are among the most intriguing phenomena of the

last few years. In this work we analyzed Facebook, a very
popular OSN which gathers more than 500 millions users.
Data relative to users and relationships among users are not
publicly accessible, so we resorted to exploit some techniques
derived from Web Data Extraction in order to extract a sig-
nificant sample of users and relations. As usual, this prob-
lem was tackled using concepts typical of the graph theory,
namely users were represented by nodes of a graph and re-
lations among users were represented by edges. Two dif-
ferent sampling techniques, namely BFS and Uniform, were
adopted in order to explore the graph of friendships of Face-
book, since BFS visiting algorithm is known to introduce a
bias in case of an incomplete visit. Even if incomplete for
practical limitations, our samples confirm those results re-
lated to degree distribution, diameter, clustering coefficient
and eigenvalues distribution. Future developments involve
the implementation of parallel codes in order to speed-up
the data extraction process and the evaluation of network
metrics.
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