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Crawling on Simple Models
of Web Graphs

Colin Cooper and Alan Frieze

Abstract. We consider the problem of searching a randomly growing graph by a random

walk. In particular we consider two simple models of “web-graphs.” Thus at each time

step a new vertex is added and it is connected to the current graph by randomly chosen

edges. At the same time a “spider” S makes a number of steps of a random walk on

the current graph. The parameter we consider is the expected proportion of vertices

that have been visited by S up to time t.

1. Introduction

At the present moment, there is considerable ongoing research into the structure

of large-scale real networks, and in modeling these networks as the outcomes of

discrete random processes. A general introduction to this topic can be found in

Hayes [Hoeffding 63] or Watts [Watts 99]. In particular, there is a strong interest

in the structure of the Internet and World Wide Web (WWW). Experimental

studies by, Albert, Barabasi, and Jeong [Albert et al. 99]; Broder et al. [Broder

et al. 00]; and Faloutsos, Faloutsos, and Faloutsos [Faloutsos et al. 99] of

the structure of the WWW have demonstrated an inverse power law for the

proportion of vertices with a given degree.

To model such structures, we require a graph process which (a) evolves ran-

domly by the addition of new vertices and/or edges at each time step t, and (b)
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whose proportional degree sequence follows a power law. Thus the proportion

dk of vertices of degree satisfies dk ∼ Ck−x, as k → ∞, where x is a constant.
Such random graph processes are often referred to as web graphs, or scale-free

graphs.

We can also define graph processes, which we refer to as random graph processes,

in which the proportional degree sequence is similar to the degree sequence of

the traditional models of random graphs introduced by Erdős and Rényi [Erdős

and Rényi 59], [Erdős and Rényi 60]. Thus, in a random graph process, the

proportion of vertices of a given degree is Poisson distributed, and the degree

sequence drops off exponentially fast in the upper tail.

There are many models of graph processes designed to capture various

aspects of the structure of the WWW found in the studies given above. See

for example [Achlioptas et al. 01], [Adler and Mitzenmacher 01], [Aiello et al.

01a], [Aiello et al. 01b], [Albert et al. 99], [Barabassi et al. 99], [Barabassi and

Albert 99], [Bollobás and Riordan 01], [Bollobás and Riordan to appear], [Bol-

lobas and Riordan 02], [Bollobás and Riordan 03], [Buckley and Osthus 01],

[Cooper and Frieze 01], [Chung and Lu to appear], [Chung and Lu 02], [Drinea

et al. 01], [Henzinger et al. 99], [Kumar et al. 00a], [Kumar et al. 00b], and [Lu

01]. A recent survey by Bollobás and Riordan [Bollobás and Riordan 02] gives

an excellent overview of the topic and many detailed structural results.

We consider a simple model of search, in which a particle (which we call a

spider) makes a random walk on the nodes of an undirected graph process. It

is presumed that the spider examines the data content of the nodes for some

specific topic. As the spider is walking, the graph is growing, and the spider

makes a random transition to whatever neighbours are available at the time.

For simplicity, we assume that the growth rate of the process and the transition

rate of the random walk are similar, so that the spider has at least a chance of

crawling a constant proportion of the process.

We study the success of the spider’s search on comparable graph processes of

two distinct types: a random graph process and a web graph process. In the

simple process we consider, each new vertex directs m edges toward existing

vertices, either choosing vertices randomly (giving a random graph process) or

copying according to vertex degree (giving a web graph process). Once a vertex

has been added, the direction of the edges is ignored.

Our results are given in Theorems 1.1 and 1.2 below. Our main result is the

following: For the random graph process, the expected proportion of unvisited

vertices tends to 0.57. For the comparable web graph process, the expected

proportion of unvisited vertices tends to 0.59.

There are several types of search which are appropriate to the WWW. Com-

plete searches of the web, usually in a breadth first manner, are carried out by
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search engines such as Google [Brin and Page 98]. Link and page data for visited

pages is stored, and from the link data an undirected model of the WWW can be

constructed. This model may be entirely replaced when a new search is made at

a future time period or may be continously updated by a continuously ongoing

search. Such processes require considerable online and offline memory.

Another possibility, using a single processor, is a search by an agent which

examines the semantic content of nodes for some specific topic. This type of

search can be made directly on the WWW or on the model of the WWW stored

by a search engine. Typical search strategies might include: moving to a random

neighbour (sampling pages for content), selecting a random neighbour of large

degree (locating the hub/authority vertices of the search topic), or selecting a

random neighbour of low degree (favouring the discovery of newer vertices during

the search).

Although the edges of a typical WWW graph are directed, the idea of evalu-

ating models of search on an undirected process has many attractions, not least

its simplicity. Examples which support the use of an undirected model are as

follows.

The Google search engine [Brin and Page 98] holds a partial model of the

WWW which it is continuously updating. Once a node is added to the search

engine database, a list is maintained of pages in the database which point to this

node. For a given node with url PageUrl, these links can be found by entering

the link:PageUrl query to Google. Thus the model of the WWW held by this

search engine is equivalent to an undirected web graph. This information is used

by Google to compute the page rank of a vertex. The page ranking is based on

a weighted union of all directed paths leading to the vertex.

Finally, we remark that unless the web graph is strongly connected, a random

walk on the directed edges soon becomes stuck at a vertex of out-degree zero.

Modifications of the random walk approach which do not suffer from this defect

have been studied by [Fagin et al. 00].

We then give a precise definition of the abstract scenario we consider in this

paper. We have a sequence (G(t), t = 1, 2, ...) of connected random graphs. The

graph G(t) is constructed from G(t− 1) by adding the vertex t, and m random

edges from vertex t to G(t− 1). We refer to such graphs as web graphs.
There is also a spider S walking randomly from vertex to vertex on the evolving

graph G(t). The parameter νt we estimate is the expected number of vertices

which have not been visited by the spider at step t, when t is large. This process

is intended to model the success of a search-engine spider which is randomly

crawling the World Wide Web looking for new web pages.

We consider the following models for the graph process G(t). Let m ≥ 1

be a fixed integer. Let [t] = {1, ..., t} and let G(1) ⊂ G(2) ⊂ · · · ⊂ G(t).
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Initially, G(1) consists of a single vertex 1 plus m loops. For t ≥ 2, G(t) is

obtained from G(t − 1) by adding the vertex t and m randomly chosen edges

{t, vi}, i = 1, 2, . . . ,m, where
Model 1. The vertices v1, v2, . . . , vm are chosen independently and uniformly with

replacement from [t− 1].
Model 2. The vertices v1, v2, . . . , vm are chosen proportional to their degree after

step t − 1. Thus, if d(v, τ ) denotes the degree of vertex v in G(τ ), then for
v ∈ [t− 1] and i = 1, 2, . . . ,m,

Pr(vi = v) =
d(v, t− 1)
2m(t− 1) .

While vertex t is being added, the spider S is sitting at some vertex Xt−1 of
G(t−1). After the addition of vertex t, and before the beginning of step t+1, the
spider now makes a random walk of length , where is a fixed positive integer

independent of t.

It seems unlikely that at time t, S will have visited every vertex. Let ν ,m(t)

denote the expected number of vertices not visited by S at the end of step t.

We will prove the following theorem:

Theorem 1.1. In either model, if m is sufficiently large, then as t→∞,

ν ,m(t) ∼ E
t

s=1

t

τ=s

1− d(s, τ)
2mτ

1 +O 1
m

. (1.1)

We have said that m is fixed. We however have to accept errors of order 1/m

and so in our asympotics, we let t→∞ first and then take m large.

Let

η ,m = lim
t→∞

ν ,m(t)

t
.

We will show that this gives the following limiting results for the models we

consider.

Theorem 1.2. Let η = limm→∞ η ,m, then

(a) For Model 1,

η =
2
e( +2)

2/(4 )
∞

( +2)/
√
2

e−y
2/2 dy.
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In particular, η1 = 0.57 · · · , and η ∼ 2/ as →∞.
(b) For Model 2,

η = e 2 2
∞
y−3e−y dy.

In particular, η1 = 0.59 · · · , and η ∼ 2/ as →∞.

Thus, for large m, t and = 1, it is slightly more difficult for the spider to

crawl on a web graph whose edges are generated by a copying process (Model 2)

than on a uniform choice random graph (Model 1).

2. Proof of Theorem 1.1: The Main Ideas

We first consider the case where = 1 and then generalise this case. When = 1,

the spider makes a random move to an adjacent vertex after vertex t has been

added. The construction of G(t) is really the construction of a digraph D(t)

where the direction of the arcs (x, y) satisfies x > y. The space G(t) of graphs
G(t) induces its measure from this space of digraphs.

Let Ω(t) denote the set of pairs (G(t),W (t)) where G(t) ∈ G(t) and W (t) be-
longs to the setWG(t) of t-step walks taken by the spider S which are compatible

with the construction of G. Among other things, this means that the τ -th vertex

of G(t) visited by the walk must be in [τ ].

The main idea of the proof is as follows. We fix a vertex s and estimate the

probability that it is not visited by the end of step t. Thus, for s ≤ τ ≤ t, we
define the events

As(τ ) = {ω ∈ Ω(t) : Vertex s is not visited by S during the time interval [s, τ ]}.
Let

t0 = t− 100(ln t)3.
It is convenient to condition on the sequence d(s, τ ) for τ = s, s+ 1, . . . , t0. Let

θ = (θτ : 1 ≤ τ ≤ t0) be integers satisfying
θ1 = · · · = θs = m ≤ θτ ≤ θt ≤ ∆∗t = 10(ln t)5 and θτ+1 ≤ θτ + 5 for τ ≤ t0

(2.1)

and let Θ = {θ : (2.1) holds}.
Let

D(θ) = {(G(t),W (t)) ∈ Ω(t) : d(s, τ ) = θτ , s ≤ τ ≤ t},
and for some event C, let Prθ(C) = Pr(C | D(θ)) be the probability of the
corresponding conditional event.
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We will show

Lemma 2.1. In both Model 1 and Model 2,

Pr(
θ∈Θ

D(θ)) = 1−O(t−3)1.

Let

σ0 =
ln t

100 ln ln t

and let

Bt = {s ∈ [t/ ln t, t] : s is within distance σ0 of a cycle of length at most σ0}.

Let

G1(t) = {G(t) : |Bt| ≤ t7/8}.
We will prove that

Lemma 2.2. If θ ∈ Θ, then, in both Model 1 and Model 2,

Prθ(G(t) /∈ G1(t)) = o(t−3).

We then prove

Lemma 2.3. If s ∈ [t/ ln t, t), s /∈ Bt and θ ∈ Θ, then

(a) Prθ(As(t) | As(t− 1)) = θt0
2mt0

1 +O 1
m

+O(t−3)Prθ(As(t− 1))−1.

(b) Prθ(As(s)) = 1−O(s−1).

(We condition on θ in order to avoid some conditioning of the degree d(s, t0) due

to assuming As(t0).)
From this, we prove Theorem 1.1 as follows: If θ ∈ Θ and s ∈ [t/ ln t, t], s /∈ Bt,

then

Prθ(As(t)) = 1− θt0
2mt

1 +O 1
m

Prθ(As(t− 1)) +O(t−3).

1The O notation ignores polylog factors.
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We see then that if θ ∈ Θ and s ∈ [t/ ln t, t), s /∈ Bt and if τ0 = τ − 100(ln t)3,

Prθ(As(t)) =

t

τ=s+1

1− θτ0
2mτ

1 +O 1
m

(2.2)

=

t

τ=s+1

1− θτ

2mτ
1 +O 1

m
. (2.3)

Note that we can go from (2.2) to (2.3) because θτ = θτ0 except for at most

100(ln t)3∆∗t instances.
Thus, absorbing the cases where θ /∈ Θ into the error term, (see Lemma 2.1),

summing out the conditional probabilities over degree sequences, we get that for

s ∈ [t/ ln t, t), s /∈ Bt

Pr(As(t)) =

θ

Pr(D(θ))
t

τ=s+1

1− θτ

2mτ
1 +O 1

m

= E
t

τ=s+1

1− d(s, τ)
2mτ

1 +O 1
m

.

Note that the contribution of s ∈ [1, t/ ln t] ∪ Bt to the expectation ν ,m(t) can

only be o(t) and Theorem (1.1) follows. 2

3. Proof of Theorem 1.1: The Details

We emphasise that s ≥ t/ log t throughout and that m is a sufficiently large

constant.

3.1. Proof of Lemma 2.1: Model 1

The degree d(s, t) of vertex s in G(t) is distributed as

m+B(m, (s+ 1)−1) + · · ·+B(m, t−1) (3.1)

where the binomials B(m, ·) are independent.

Lemma 3.1.
(a) Pr(∆(G(t)) ≥ 2m ln t) = O(t−3) where ∆(G(t)) is the maximum degree

in G(t).

(b) Pr(∃τ : d(s, τ + 1)− d(s, τ) > 5) = O(t−4).
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Proof. E (d(s, t)) = m(1 +Ht −Hs) ≤ m(2 + ln t/s) where Hk = 1+ 1
2 + · · ·+ 1

k
.

(a) now follows from Theorem 1 of Hoeffding [Hoeffding 63]. (b) is easy, since

d(s, τ + 1)− d(s, τ ) = B(m, τ−1).

3.2. Proof of Lemma 2.1: Model 2

Lemma 3.2.
(a) Pr(d(s, t) ≥ 10(ln t)5) = O(t−3).
(b) Pr(∃τ : d(s, τ + 1)− d(s, τ) > 5) = O(t−3).

Proof. (a) In order to get a crude upper bound on d(s, t), we divide the inter-
val [s, t] into subintervals using the points (nearest to) s, se1/8, ...ser/8, ..., sek/8.

Here, se(k−1)/8 < t ≤ sek/8 , so that k ≤ 8 ln ln t, as s ≥ t/ ln t.
Suppose that, at the start of Ir = ( ser/8 , se(r+1)/8 ], we have an upper

bound d(r) on the degree of vertex s. We prove that if d(r) ≥ 10 ln t, then

d(r + 1) ≤ 2d(r) with probability 1− o(t−3).
Now as long as the degree of s is ≤ 2d(r), the number Xτ of edges acquired at

step τ ∈ Ir is dominated by B(m, d(r)/(m(τ − 1))), so that the number of edges
gained during this time has expected value

≤ 2d(r) ln e1/8 = d(r)

4
.

Thus, by Chernoff bounds, provided d(r) ≥ 10 ln t,

Pr(d(r + 1) ≥ 2d(r)) ≤ Pr
τ∈Ir

B(m, d(r)/(m(τ − 1))) ≥ d(r)

≤ e

4

d(r)

= o(t−3)

and thus, d(r + 1) < 2d(r) with probability 1− o(t−3). Choosing d(0) = 10 ln t,
we see that

d(s, t) < d(0)2k ≤ d(0)(ln t)4 = 10(ln t)5.
This proves (a). For (b), we use (a) and the fact that d(s, τ + 1) − d(s, τ ) can
then be dominated by B(10(ln t)5, (2mτ)−1).

3.3. Proof of Lemma 2.2: Model 1

Proof. Fix t/ ln t ≤ i1 < · · · < i5 ≤ t and let I = {i1, . . . , i5}. We estimate
Pr(I ⊆ Bt). For each partition P of I into parts A1, . . . , Ak, we consider the

event
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EP ={∃ small cycles C1, . . . , Ck and paths Pv, v ∈ I such that
(i) |Ci|, |Pv| ≤ σ0 for all i, v.

(ii) If v ∈ Ai, then Pv joins v to Ci ∪ w∈Ai,w<v Pw;

(iii) Pv is edge disjoint from and shares one (endpoint) vertex with

Ci ∪ w∈Ai,w<v Pw;

(iv) The k collections Ci, Pv, v ∈ Ai are pair-wise vertex disjoint. }

Thus, {I ⊆ Bt} ⊆ P EP and

Pr(EP) ≤
C1,...,Ck
Pv,v∈I

(x,y)∈F∗

m

max{x, y} (3.2)

where F ∗ denotes the edge set of Ci ∪ Pv. The term
m

max{x,y} is a bound on
the probability of the existence of edge (x, y) given the appearance or absence

of other edges, not incident with max{x, y}.
Thus ,

Pr(EP) ≤
5

r=1

m

ir
3≤|Ci|≤σ0
i=1,...,k

0≤|Pv|≤σ0
v∈I

v∈V ∗

m

v

where V ∗ denotes the vertex set of Ci ∪ Pv, less I,

≤ m ln t

t

5 10σ0

=1

t

v=1

m

v

= o(t−4).

Thus,

E
|Bt|
5

= o(t)

and

Pr(|Bt| ≥ t7/8) ≤
E |Bt|

5

t7/8

5

= o(t−3).

3.4. Proof of Lemma 2.2: Model 2

Proof. For this model, we replace 5 by 10 and let I = {i1, i2, . . . , i10}. Let

G2(t) = {G(t) : d(s, t) ≤ 2m t/s(ln t)2 for all 1 ≤ s ≤ t}.
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It is shown below, see Lemma 4.3(a), that

Pr(G(t) ∈ G2(t)) = 1− O(t−10).
Therefore, we replace (3.2) by

Pr(EP | G(t) ∈ G2(t)) ≤
C1,...,Ck
Pv,v∈I

(x,y)∈F∗

2m(ln t)2

max{x, y}
max{x, y}
min{x, y}

1

Pr(G(t) ∈ G2(t))

≤ 2

C1,...,Ck
Pv,v∈I

(x,y)∈F∗

2m(ln t)2

x1/2y1/2
.

≤ 2m(ln t)2

t1/2

10 20σ0

=1

t

v=1

2m(ln t)2

v

= O(t−23/5).

Thus, we have

E
|Bt|
10

= O(t−10) +O(t10−23/5) = O(t27/5)

and

Pr(|Bt| ≥ t7/8) ≤
E |Bt|

10

t7/8

10

= o(t−3).

3.5. Proof of Lemma 2.3

3.5.1. Rapidly mixing walks. We now consider the random walk made by the spider

S. A random walk on an fixed undirected graph G is a Markov chain (Xt), Xt ∈
V associated to a particle that moves from vertex to vertex according to the

following rule: The probability of a transition from vertex v, of degree d, to

vertex w is 1/d if v is adjacent to w, and 0 otherwise. Let π denote the steady

state distribution of the random walk. The steady state probability πG(v) of the

walk being at a vertex v is,

πG(v) =
d(v)

d(G)
, (3.3)

where d(v) is the degree of v and d(G) is the total degree (i.e., sum of the degrees)

of the graph G.

We will need a finite time approximation of the probability distribution πH

pertaining to a random walk on a subgraph H = G(t) − s of G(t). We obtain
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this by considering the mixing time of the walk based on a conductance bound

(3.7) of Jerrum and Sinclair [Sinclair and Jerrum 89].

Let s, t be fixed with s ∈ t
ln t , t \ Bt. Let P denote the transition matrix

of the random walk on H . Let P i,τ denote the distribution of the τ th step of

a random walk on H which starts at vertex i. For K ⊂ V (H) = [t] \ {s}, let
K = V (H) \K and

ΦK =
i∈K,j∈K πH(i)P (i, j)

πH(K)
.

It follows from (3.3) that

ΦK =
e(K : K)

d(K)

where e(K : K) is the number of edges from K to K, and d(K) is the total

degree of vertices in set K.

The conductance of the walk is defined by

Φ(s, t) = min
πH(K)≤1/2

ΦK .

Let

G3(t) = G(t) : Φ(s, t) >
1

ln t
∀s ∈ [t/ ln t, t] .

Lemma 3.3. If θ ∈ Θ, then, in both Model 1 and Model 2,

Prθ(G(t) /∈ G3(t)) = o(t−3).

2

3.5.2. Proof of Lemma 3.3: Model 1 Since d(K) ≤ 2m|K| + e(K : K) it suffices to

prove a high probability lower bound on e(K : K), in both models.

Lemma 3.4.
Prθ Φ(s, t) ≤ 1

200
= o(t−3).

Proof. For K ⊆ [t], let d(K, t) = s∈K d(s, t). Then

Pr(∃K ⊆ [t] : |K| ≥ 3t/4 and d(K, t) ≤ (1.1)mt) = o(e−cmt) (3.4)

for some absolute constant c > 0.
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To see this, let K ⊆ [t] with |K| = k = 3t/4. Then

E (d(K, t)) ≥ E (d([t− k + 1, t], t)) = mk +m
t

s=t−k+1

s− (t− k)
s

≥ 2mk −m(t− k) ln(t/(t− k)) = 3

2
− 1
4
ln 4 mt ≥ (1.15)mt.

Applying Theorem 1 of Hoeffding, we see that

Pr(∃K ⊆ [t] : |K| ≥ 3t/4 and d(K, t) ≤ (1.1)mt) ≤ t

3t/4
e−c mt

for some absolute constant c > 0. This completes the proof of Lemma 3.4.

Now for K,L ⊂ [t] \ {s}, let e(K : L) denote the number of edges of G(t)

which have one end in K and the other end in L (we only use this definition for

L = K = [t] \ (K ∪ {s}) and L = K).
It follows from (3.4) that with probability 1− o(t−3)

Φ(s, t) ≥ min
π(K)≤1/2

e(K : K)− 5|K|
m|K|+ e(K : K)

≥ min
|K|≤3t/4

e(K : K)− 5|K|
m|K|+ e(K : K)

. (3.5)

(e(K : K)− 5|K| bounds the number of K : K edges in Hs(t) and then observe

that the degree sum of K is at most m|K|+ e(K : K).)

We prove the following high probability lower bound on e(K : K). Together

with (3.5) this proves Lemma 3.3.

Prθ(∃K : e(K : K) ≤ m|K|/150) = o(t−3). (3.6)

Suppose K ⊂ [t], k = |K| and YK = e(K : K). Let κ = 1
2

√
kt and K− = K ∩ [κ]

and K+ = K \K−.
Case 1: |K−| ≥ 3k/7.

Eθ (YK) ≥
t−4k/7−1

τ=κ

3(m− 5)k/7
τ + 4k/7

≥ 3(m− 5)k
7

ln
t− 1

κ+ 4k/7
.

Explanation: Consider the ≥ t − κ − 4k/7 − 1 vertices of [t] − [κ] − {s} − K.
Each chooses at least m−5 random neighbours from lower numbered neighbours
(plus themselves) and the sum minimises the expected number of these choices

in K−. The 5 comes from θτ+1 − θt ≤ 5 for θ ∈ Θ.
Applying Theorem 1 of [Hoeffding 63], we obtain

Prθ(YK ≤ Eθ (YK) /2) ≤ exp −1
8

3mk

7
ln

t− 1
κ+ 4k/7

=
κ+ 4k/7

t− 1
3mk/56

.



Cooper and Frieze: Crawling on Simple Models of Web Graphs 69

So,

Prθ(∃K : |K−| ≥ 3k/7, |K| ≤ 3t/4 and YK ≤ E (YK) /2) ≤
3t/4

k=1

t

k

κ+ 4k/7

t− 1
3mk/56

≤
3t/4

k=1

te

k

κ+ 4k/7

t− 1
3m/56 k

≤
3t/4

k=1

3t
k

k

t

1

2
+
4

7

3

4

3m/56
k = o(t−3).

This yields (3.6) for this case.

Case 2: |K−| ≤ 3k/7. Assume first that k ≥ 1000. Now let ZK denote the

number of edges from the set W of k/15 lowest numbered vertices of K+

which have their lower numbered endpoints also in K. ZK is dominated by

B(m k/15 , k/t) since there are at most 3k/7 + k/15 ≤ k/2 vertices of K
below any vertex w of W and there are at least κ vertices in all below such a w.

We use YK = e(K : K) ≥M−ZK whereM = (m−5) k/15 . For |K| ≤ t/1000,
we write

Prθ(∃K : 1000 ≤ |K| ≤ t/1000, ZK ≥M/2) ≤
t/1000

k=1000

t

k
2M

k

t

M/2

≤
t/1000

k=1000

te

k

4k

t

(m−5)/30 k

= o(t−3).

For |K| > t/1000, we use Chernoff bounds and write, for some absolute positive
constant c > 0

Prθ(∃K : t/1000 ≤ |K| ≤ 3t/4, ZK ≥ 9M/10) ≤
3t/4

k=t/1000

t

k
e−cM = o(t−3).

For |K| ≤ 1000, we can write

Prθ(∃K : e(K,K) ≥ 3mk/4) ≤
1000

k=1

t

k

mk

3mk/28

1000

t1/2

3mk/28

= o(t−3).

Note that if e(K,K) ≥ 3mk/4 then at least 3mk/4− 3mk/7 of these edges must
have one end in K+.

This completes the proof of (3.6). 2
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3.5.3. Proof of Lemma 3.3: Model 2.

Lemma 3.5. There is an absolute constant ξ > 0 such that

Prθ(∃K ⊆ [t]− {s}, |K| ≥ (1− ξ)t : d(K, t) ≤ (1 + ξ)mt) = o(t−3).

Proof. Let ζ be a small positive constant and divide [t] into approximately 1/ζ
consecutive intervals I1, I2, . . . of size ζt plus an interval of t− 1/ζ ζt . We

put a high probability bound on the total degree d(I1, t). Now consider the

random variables βk, k = 1, 2, . . . where βk = d(I1, k ζt )/(m ζt ). Now β1 = 2

and conditional on the value of βk,

(βk+1 − βk)m ζt is dominated by B m ζt ,
βk + 1

2k
.

It follows that we can find an absolute constant c > 0 such that

Prθ βk+1 ≤ βk 1 +
3

4k
≤ e−cmζt.

So, with probability 1−O(e−cmζt), we find that

d(I1, t) ≤ 2m ζt

1/ζ

k=1

1 +
3

4k
≤ 2m ζt × e3/4 1/ζ 3/4 ≤ 6mζ1/4t,

for small enough ζ.

Now d([ ζt ], t) dominates d(L, t) for any set L of size ζt . So, if m > 1/(cζ),

then the probability there is a set of size ζt which has degree exceeding 6mζ1/4

is exponentially small (≤ t

ζt e−t)). In this case, every set K of size at least

t − ζt has total degree d(K, t) ≥ 2mt − 6mζ1/4t and the lemma follows by
taking ζ sufficiently small.

Lemma 3.6. If m is sufficiently large, then

Prθ Φ(t) <
1

ln t
= O(t−3).

Proof. For K ⊆ [t], |K| = k, we say K is small if ln t ≤ k ≤ ct and K is large

otherwise, where c = e−8.
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3.5.4. Case of K small. Let K− = K ∩ [
√
kt] and let K+ = K \K−.

Case of |K−| ≥ k/2: Let Xt = Xt(K−) be the number of those edges directed
into K− from vertices created after time

√
kt. The number of such edges gen-

erated at step τ ≥ √kt dominates B(m − 5,mq/(2mτ )), independently of any
previous step. (Here q = |K−|). Thus,

E (Xt) ≥
t

τ>
√
kt

(m− 5)q
2τ

=
(m− 5)q

4
ln
t

k
(1 + o(1)).

Hence,

Pr Xt ≤ mq
6
ln
t

k
≤ exp −mq

73
ln
t

k
.

Thus,

Pr ∃K− : Xt(K−) ≤ mq
6
ln
t

k
≤

√
kt

q
exp −mq

73
ln
t

k

≤ exp −q m

73
ln
t

k
− ln 2e

t

k

≤ t−4

provided m is sufficiently large. Thus, whp the set K− has at least mk
12 ln t/k

edges directed into it, of which at most mk/2 are incident with K+. This com-

pletes the analysis of this case.

Case of |K+| ≥ k/2: We consider the evolution of the set K+ = {u1, u2, . . . , ur}
from step T =

√
kt onward. Assume that at the final step t, there are δk edges

directed into K from K. We can assume w.l.o.g. that δ ≤ m/10, for otherwise
there is nothing to prove.

The number Yj+1 of K : K edges generated by vertex uj+1 is a binomial

random variable with expectation at most

µj+1 = m
2mk + δk

2mtj+1
.

The numerator in the above fraction is a bound on the total degree of K.

If Z = Z(K+) =
r

j=1 Yj , then

E (Z) ≤ 2mk + δk

2

1

t1
+ · · ·+ 1

tr

≤ 2mk + δk

2

r√
kt

≤ 1.05
mkr√
kt
.
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Thus, for α > 0,

Pr (∃K+ : Z(K+) ≥ αk) ≤
k

r=k/2

t

r

e× 1.05× kmr√
kt× αk

αk

≤ k
3mk1/2

αt1/2

α
te

k

k

≤ t−4

if α = m/4, k ≤ ct and m is sufficiently large. We have therefore proved that for

small values of k, there are at least mk/2 − mk/4 out-edges generated by K+

not incident with K on the condition that δ ≤ m/10, completing the analysis of
this case.

3.5.5. Case of K large. Let T = t/2 and let ct ≤ |K|, |K| ≤ (1− ξ)t where ξ is as
in Lemma 3.5. LetM = [T ] and N = [T +1, t]. Let K− = K∩M , K+ = K∩N ,
q = |K−|, and r = |K+|. We calculate the expected number of edges µ(K−,K+)

of L = (K+ × (M \K−)) ∪ ((N \K+)×K−) generated at steps τ, T ≤ τ ≤ t
which are directed into K. At step τ the number of such edges falling in L is an

independent random variable with distribution dominating

1τ∈N\K+
B m− 5, mq

2mτ
+ 1τ∈K+B m− 5, (T − q)m

2mτ
.

Thus,

µ(K−,K+) ≥ (m− 5)q
2

τ∈N\K+

1

τ
+
(m− 5)(T − q)

2
τ∈K+

1

τ

=
m− 5
2

(k − r)
τ∈N\K+

1

τ
+ (T − (k − r))

τ∈K+

1

τ

 .
Let µ(k) = minK−,K+

µ(K−,K+). Then “somewhat crudely,”

τ∈N\K+

1

τ
≥ ln

t

T + r

τ∈K+

1

τ
≥ ln

t

t− r .

Thus,

µ(k) ≥ m− 5
2

(k − r) ln 2t

t+ 2r
+

t

2
− (k − r) ln

t

t− r .
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Putting k = κt and r = ρt, we see that

µ(k) ≥ (m− 5)t
2

g(κ, ρ)

where

g(κ, ρ) = (κ− ρ) ln 2

1 + 2ρ
+ 1

2 − κ+ ρ ln
1

1− ρ .

We put a lower bound on g:

ρ ≤ ξ

2
implies κ− ρ ≥ ξ

2
and so g(κ, ρ) ≥ ξ

2
ln

2

1 + ξ
.

So we can assume that ρ ≥ ξ/2. Then

κ− ρ ≤ 1− ξ
2

implies g(κ, ρ) ≥ ξ

2
ln

2

2− ξ .

κ− ρ > 1− ξ
2

and ρ ≤ 1− ξ
2

implies g(κ, ρ) ≥ 1− ξ
2

ln
2

2− ξ .

κ− ρ > 1− ξ
2

and ρ >
1− ξ
2

implies κ > 1− ξ.

We deduce that within our range of interest,

µ(k) ≥ ηmt

for some absolute constant η.

Let Z be the number of edges generated within L, so that Z counts a subset

of the edges between K and K. Then

Pr ∃K−,K+ ⊆ N : Z ≤ 1
2
ηmt ≤ 2te−ηmt/8

≤ e−ηmt/10.

Recall that m is sufficiently large. This completes the proof of the lemma, except

for very small sets K.

For sets K of size s ≤ ln t, we note that, as G(t) is connected, the conductance
ΦK is always Ω(1/|K|).

3.6. Proof of Lemma 2.3: Continued

Define

G(t) = G1(t) ∩ G3(t) Model 1

G1(t) ∩ G2(t) ∩ G3(t) Model 2.
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We apply the main result of [Sinclair and Jerrum 89].

|P i,τ (v)− πH(v)| ≤ 1− Φ
2

2

τ
πH(v)

πmin
(3.7)

where πmin = minv πH(v).

Using (3.7) and Lemma 3.3, we see that with µ0 = 10(ln t)
3, whp

|P i,µ0(v)− πH(v)| = O(t−4) ∀v ∈ [t] \ {s}. (3.8)

We are glossing over one technical point here. Strictly speaking, (3.7) only

holds for Markov chains in which P (x, x) ≥ 1/2 for all states x. To get around
this, one usually makes the walk flip a fair coin and stay put if the coin comes

up heads. In our case, we also omit to add a new vertex if the coin is heads.

So what we have been describing is the outcome, ignoring those times when the

coin flip is heads.

For the moment, we fix some θ ∈ Θ and assume that t/ ln t ≤ s < t.
Now, by definition, t0 = t− 10µ0 and we define

I = [t0 + 1, t− 1]
J = {σ ∈ I : ∃τ ∈ I such that Xτ = σ}
E0 = {Xτ = s, τ ∈ I}
E1 = {∃i ∈ I, j ∈ J : Xi = j and j has a neighbour in {Xσ : σ ∈ [t0, i− 2]}}
Fk = {|J | = k} k ≥ 0
F≥k = {|J | ≥ k} k ≥ 0

and write

Prθ(Xt = s | As(t− 1)) =

G∈G(t0)
w∈[t0]\{s}

Prθ(Xt = s | Xt0 = w,G(t0) = G, E0,As(t0))

·Prθ(Xt0 = w,G(t0) = G | As(t− 1))
+Prθ(Xt = s,G(t0) /∈ G(t0) | As(t− 1)). (3.9)

It follows from Lemma 3.3 that

Prθ(Xt = s,G(t0) /∈ G(t0) | As(t− 1)) = o(t−3Prθ(As(t− 1))−1). (3.10)
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To deal with the rest of (3.9), we write

Prθ(Xt = s | Xt0 = w,G(t0) = G, E0,As(t0))
= Prθ(Xt = s | Xt0 = w,G(t0) = G, E0)

=

1

k=0

Prθ(Xt = s | Xt0 = w,G(t0) = G, E0,Fk)

·Prθ(Fk | Xt0 = w,G(t0) = G, E0)
+Prθ(Xt = s | Xt0 = w,G(t0) = G, E0,F≥2)

·Prθ(F≥2 | Xt0 = w,G(t0) = G, E0). (3.11)

Given w,G(t0), conditioning on B def
= E0 ∩ F0 is “almost” equivalent to S doing

a random walk on G(t0)− {s} starting at w. In fact, we get Lemma 3.7.

Lemma 3.7.

Prθ(Xt = s | Xt0 = w,G(t0) = G,B) =
θt0
2mt0

1 + 1

θt0 y∈N(s,t0)
Eθ

d(y, t0)− d(y, t)
d(y, t)

 1 +O
1

m
. (3.12)

where N(s, t0) denotes the set of neighbours of s in G(t0).

Proof. We emphasize that throughout the proof of this lemma, a graph G ∈ G(t0)
is fixed as well as Xt0 = w. All probabilities are conditional on this, even if not

stated explicitly. The only randomness in the graph G(t) itself is due to new

vertices.

Let

M = { ∃v ∈ [t0], v = s : v has more than five neighbours in I}.
Then in both models

Prθ(M | G(t0) = G) ≤ |I|6 2mt
1/2
0 (ln t0)

2

mt0

6

= O(t−3). (3.13)

Fix y ∈ N(s, t0) and let Wk(y) denote the set of walks in H = G(t0)−s which
start at w, finish at y, are of length λ0 = t− t0 = 100(ln t)3, and which leave N∗
exactly k times where N∗ is the (random) set of neighbours of I ∪ {s} in G(t0).
Let Wk = yWk(y) and let W = (w0, w1, . . . , wλ0) ∈Wk(y). Let

ρW =
Prθ(XG(i) = wi, i = 0, 1, . . . ,λ0 | M)

Prθ(XH(i) = wi, i = 0, 1, . . . ,λ0)
. (3.14)
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Here, XG(i), i = 0, 1, . . . ,λ0 is the sequence of vertices visited by S at times

t0, t0+1, . . . , t and we will useWG =Ww,G to denote this walk. We letXH(i), i =

0, 1, . . . ,λ0 is the set of vertices of H visited by a random walk WH =Ww,H on

H with start vertex w.

Then

1 ≥ ρW ≥ m− 5
m

k

.

This is because a vertex can have at most five edges joining it to s and then

Prθ(XG(i) = wi | XG(i− 1) = wi−1,M)

Prθ(XH(i) = wi | XH(i− 1) = wi−1)
≥ dG(wi−1)−5

dG(wi−1)
wi−1 ∈ N∗.

= 1 wi−1 /∈ N∗.

Furthermore,

Prθ(B | M) =

k≥0W∈Wk

Prθ(Ww,G(λ0) =W | M)

=

k≥0W∈Wk

ρWPrθ(Ww,H(λ0) = W )

≥
k≥0

pk
m− 5
m

k

where

pk =

W∈Wk

Prθ(WH(λ0) =W ) = Prθ(WH(λ0) ∈Wk).

We will show later that

p0 + p1 + p2 ≥ 1−O(m−1) (3.15)

which immediately implies that

Prθ(B | M) ≥ p0 + p1 1− 5

m
+ p2 1− 5

m

2

≥ 1−O(m−1). (3.16)

Now write

Prθ(XG(λ0) = y | B,M) =

k≥0W∈Wk(y)

Prθ(WG(λ0) = W | M)Prθ(B | M)−1

=

k≥0W∈Wk(y)

ρWPrθ(WH(λ0) =W )Prθ(B | M)−1.
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Now if

pk,y =
Prθ(WH ∈Wk(y))

Prθ(XH(λ0) = y)

= Prθ(WH(λ0) leaves N
∗ exactly k times | XH(λ0) = y),

then we have

k≥0
pk,y

m− 5
m

k

≤ Prθ(XG(λ0) = y | B,M)

Prθ(XH(λ0) = y)
≤ Prθ(B | M)−1. (3.17)

We need to be careful about probability spaces here. Let N# denote the the set

of neighbours of I in G(t0). In our conditional probability space, the pk,y are

now to be thought of as random variables dependent on N#.

We will show later that

Prθ,#(p0,y + p1,y + p2,y ≥ 1−O(m−1)) = 1−O(t−1/2) (3.18)

where Prθ,# stresses that N
# is randomly chosen.

So, from (3.17), we obtain

Prθ(XH(λ0) = y) 1− 5

m

2

Prθ,#(p0,y + p1,y + p2,y ≥ 1−O(m−1))

≤ Prθ,#(XG(λ0) = y | B,M)

≤ Prθ(XH(λ0) = y)(1 +O(m−1))

or using (3.13)

Prθ(XG(λ0) = y | B,M)

Prθ(XH(λ0) = y)
− 1 = O 1

m
.

Therefore,

Prθ(XG(λ0) = y | B,M) = (1 +O(m−1))Prθ(XH(λ0) = y)

Prθ(XG(λ0) = y,B,M) = (1 +O(m−1))Prθ(XH(λ0) = y)Prθ(B,M)

or

Prθ(XG(λ0) = y,B) + Õ(t−3) = (1 +O(m−1))Prθ(XH(λ0) = y)

·(Prθ(B) + Õ(t−3)) (3.19)

Now we will show later that

Prθ(B) ≥ 1
2

(3.20)
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and (3.7) implies

Prθ(XH(λ0) = y) =
d(y, t0)− δy

2mt0
+O(t−3) = Ω(t−1)

where 1 ≤ δy ≤ 5 is the number of (s, y) edges in G(t0). So from (3.19), we have

Prθ(XG(λ0) = y | Xt0 = w,G(t0) = G,B) = (1 +O(m−1))
d(y, t0)

2mt0
.

Thus,

Prθ(Xt = s | Xt0 = w,G(t0) = G,B) =

(1 +O(m−1))Eθ


y∈N(s,t0)

d(y, t0)

2mt0

1

d(y, t)


+O(m−1)Prθ(Xt−1 ∈ N(s, t− 1) \N(s, t0)).

Then Lemma 3.7 follows from

Prθ(Xt−1 ∈ N(s, t− 1) \N(s, t0)) = O(t−2). (3.21)

To verify this, we observe that

Prθ(|N(s, t− 1) \N(s, t0)| ≥ 2) = O(t−2)

and so we only need to consider the case N(s, t − 1) \ N(s, t0) = {y1} where
y1 ∈ I.
If y1 − t0 ≤ 5µ0, then we can prove Prθ(Xt−1 = y1 | Xy1 = w , . . .) = O(t−1)

essentially by replacing t0 by y1. If y1 − t0 > 5µ0 then either (i) there exists

u ∈ I such that Xu = y1, or (ii) we can condition on Xu = y1, u ∈ I and proceed
as for (3.12). Finally, note that the probability of (i) is O(t−1) by the argument
for (3.12). This completes the proof of (3.21) and hence Lemma 3.7 (modulo the

proofs below).

3.6.1. Proof of (3.15) and (3.18). Clearly (3.18) implies (3.15). We therefore start
with (3.18). Observe first that N# the set of neighbours of I in G(t0) satisfies

Pr(WH(λ0) ∩N# = ∅) = O(t−1/2). (3.22)

To see this, we use the fact that the walk is defined on H and N# is independent

of H . We also need an upper bound of O(t1/2) for maximum degree in G(t0)

and this follows from Lemmas 3.1(a) and 4.3(a).
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Since N∗ = N#∪N(s, t0), we only have to show now that the probability that
WH leaves a vertex of N(s, t0) three times or more is O(m

−1). Furthermore, this
event depends on G(t0), which is fixed and not on G(t).

Given G ∈ G(t0) and W = WH(λ0), the total degree of the vertices of W is

O(t1/2) in Model 2. In Model 1, we would have O(t−1) for the RHS of (3.22).
Now letW(a, b, γ) denote the set of walks in H from a to b of length γ and for

W ∈W(a, b, γ), let Pr(W ) = Pr(Wa,H(γ) = W ). Then for x ∈ V (H), we have
Pr(Xw,H(λ0/2) = x | Xw,H(λ0) = y)

=

W1∈W(w,x,λ0/2)
W2∈W(x,y,λ0/2)

Pr(W1)Pr(W2)

Pr(W(w, y,λ0))

= π−1x,H
W1∈W(w,x,λ0/2)
W2∈W(x,y,λ0/2)

Pr(W1)πx,HPr(W2)

Pr(W(w, y,λ0))

and with W3 equal to the reversal of W2,

= π−1x,Hπy,H
W1∈W(w,x,λ0/2)
W3∈W(y,x,λ0/2)

Pr(W1)Pr(W3)

Pr(W(w, y,λ0))

=
π−1x,Hπy,H

Pr(W(w, y,λ0))Pr(W(w, x,λ0/2))Pr(W(y, x,λ0/2))

=
π−1x,Hπy,H

Pr(W(w, y,λ0)) (πx,H −O(t
−24))2

= πx,H −O(t−23).
It follows that the variation distance between the distribution of a random walk

of length λ0 from w to y and that of W1,W
reversed
3 is O(t−22) where W1,W3

are obtained by (i) choosing x from the steady state distribution, and then (ii)

choosing a random walk W1 from w to x and a random walk W3 from y to x.

Furthermore, the variation distance between distribution of W1 and a random

walk of length λ0/2 from w is O(t−24). Similarly, the variation distance between
distribution of W3 and a random walk of length λ0 from y is O(t−24).
Now consider W1 and let Zi be the distance of XH(i) from s. We observe that

since s /∈ Bt0 ⊆ Bt, while the walk is within σ0 of s, the distance to s must go
up or down in one step and that

Pr (Zi+1 = Zi + 1 | Zi < σ0) ≥ 1− 1

m− 5 .
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We will deduce from this that, where NH(s) is the set of G(t0) neighbours of s,

Pr(W1 or W3 make a return to NH(s)) = O(1/m) (3.23)

and this together with (3.22) implies (3.18).

To verify (3.23), we first see that

Prθ(∃1 ≤ i ≤ λ0/2 : Zi = 1 | Z0 = σ0) ≤ λ0

λ0/2

k=0

σ0 + 2k

σ0 + k

1

m− 5
σ0+k

≤ λ0

λ0/2

k=0

(σ0 + 2k)e

(m− 5)(σ0 + k)
σ0+k

≤ λ20(2e/(m− 5))σ0 . (3.24)

Then we have

Prθ(∃i > 0 : Z2i = 1, 1 < Z1, Z2, . . . , Z2i−1 ≤ σ0 | Z0 = 1) ≤

i>0

2i

i

1

m− 5
i

<

i>0

2

m− 5
i

=
2

m− 7 . (3.25)

Equation (3.23) follows from (3.24) and (3.25).

3.6.2. Proof of (3.20). This follows from Pr(E0 | Xt0 = w,G(t0) = G,F0) =
1−O(m−1), much as in the proof of (3.18). In particular, we see that if a walk
in G starts at w = s /∈ Bt, then the probability it visits s in λ0 steps is O(m−1).
Then we will see that Prθ(F0 | Xt0 = w,G(t0) = G) = 1 − o(1) (see (3.26)
below). In the proof below, we condition on E0 but the proof is valid without
this conditioning.

This completes the proof of Lemma 3.7.

We will next argue that

Prθ(F≥k | Xt0 = w,G(t0) = G, E0) = O(t−k) k = 1, 2. (3.26)

Prθ(Xt = s | Xt0 = w,G(t0) = G, E0,F1) = O(t−1/2). (3.27)

Eθ (d(y, t)− d(y, t0)) = O(t−1/2). (3.28)

It follows from (3.9)—(3.12) and (3.26)—(3.28) that

Prθ(Xt = s | Xt0 = w,G(t0) = G, E0) =
θt0
2mt

1 +O
1

m
+O(t−3Prθ(As(t− 1))−1). (3.29)

and removing the conditioning on Xt0 = w,G(t0) = G yields Lemma 2.3(a).
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For part (b), we see that Xs = s if and only if [i] s chooses Xs−1 as one of
its m neighbours and then [ii] S moves to s. If we condition on Xs−1 = x and
d(x, s− 1) = d, then Prθ([i]) ≤ md

2m(s−1) and Prθ([ii] | [i]) ≤ 2
d
(we write ≤ 2

d
in

place of the more natural 1
d+1 to account for x being chosen more than once).

This proves part (b).

3.6.3. Proof of (3.26). Let us generate Xi, i ∈ I using as little information about
the edges incident with I as possible. Thus, at step i we first establish whether

any of t0 + 1, . . . , i are neighbours of Xi−1. If the answer is no, we do not

determine these neighbours. Thus, up to the first time we get the answer yes, the

conditional distribution of the neighbours of t0, t0+1, . . . , i is that they are chosen

from a set of size t− o(t) either randomly (Model 1) or from the same set with

probabilities proportional to degree (Model 2). Let Yi = {YES at i and Xi ∈
{t0 + 1, . . . , i}}. If d(Xi−1, i) = d, then

Pr(Yi | d) = O |I| · d
t
· 1
d

= O
|I|
t

. (3.30)

Since F≥1 ⊆ i∈I Yi, we have (3.26) for k = 1.
Now assume that i1 is the first i for which Yi occurs and that Xi1−1 = j1.

Arguing as in the first paragraph of this subsection, we see that the conditional

probability that Yi occurs for i2 > i1, with Xi2−1 = j2 = j1 is also O(t
−1|I|)

and this completes the proof of (3.26). 2

3.6.4. Proof of (3.27). Let J = {j1} and let j1 be visited for the first at time t1
and let i1 = Xt1−1. We condition now on i1, j1, t1 a well. We write

Prθ(Xt = s | Xt0 = w,G(t0) = G,E0,F1) =
Prθ(Xt = s | Xt0 = w,G(t0) = G, E0, E1,F1)Pr(E1 | Xt0 = w,G(t0) = G, E0,F1)
+Prθ(Xt = s | Xt0 = w,G(t0) = G, E0, E1,F1)Pr(E1 | Xt0 = w,G(t0) = G,E0,F1).

Observe that

Prθ(E1, Xt0 = w,G(t0) = G, E0,F1) = O(t−3/2).

Use (3.30) plus an extra O(t−1/2) factor for the extra neighbour(s). Furthermore,
it is easily seen that

Prθ(F≥1 | Xt0 = w,G(t0) = G, E0, ) = Ω̃(t−1).

Combining these two statements with (3.26) for k = 2, we see that

Prθ(E1 | Xt0 = w,G(t0) = G, E0,F1) = O(t−1/2).
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So we can assume that E1 does not hold. We consider two possibilities:
(a) There is an i < t− 1 such that Xi = j1 and Xi+1 = i1:
Model 1. From time i + 1 on, our walk is conditioned to walk on the graph H

induced by ([t0]∪{j1})\{s}. If v ∈ H , then its steady state probability π(v) for

a random walk on H is at least 1/(2t0) and the probability that Xi+1 = v is at

most twice this. It follows that in any subsequent step of a simple random walk,

the probability S is at v is at most 2π(v). Although the walk is conditioned rather

than constrained to walk on H , arguments similar to those for (3.16) show that

this conditioning only changes such probabilities by a factor 1+O(m−1). Thus,
in this case the probability we arrive at a neighbour of s, at time t − 1 is also
O(t−1) and (3.27) follows for this case.
Model 2. Now if v ∈ [t0] \ {s}, its steady state random walk probability π(v) is

asymptotically equal to the probability it is chosen as Xi+1 and we can use the

analysis for Model 1.

(b) For all i < t− 1, Xi = j1 implies Xi+1 = i1:
Now after replacing some sequences i1, j1, i1 by just i1, our walk is conditioned

on F0 and then (3.27) is implied by Lemma 3.7.
3.6.5. Proof of (3.28). This follows from the fact that in Model 2, the maximum

degree in G(t) is O(t1/2) whp, see e.g., [Cooper and Frieze 01]. For Model 1,

the maximum degree is O(ln t) with sufficiently high probability.

3.7. ≥ 1.
We follow the above analysis and note that the degrees do not change during

the spider’s walk and that error estimates do not increase (no new vertices are

added).

4. Proof of Theorem 1.2
4.1. Model 1

Theorem 4.1.

η ,m(t) = (1 +O(m
−1))

1

0

exp (m+
2
) lnx+

2m2

1− x 2m dx.

η =
2
e( +2)

2/(4 )
∞

( +2)/
√
2

e−z
2/2 dz.

Thus, when = 1, η1 = 2
√
πe9/4(1 − Φ(3/√2)) where Φ(x) is the standard

normal cumulate. Thus η1 ∼ 0.5699953.... Furthermore, as →∞, η ∼ 2/ .
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Proof of Theorem 4.1. We write d(s, t) as

d(s, t) = Xs +Xs+1 + · · ·+Xτ + · · ·+Xt,
where Xs = m and for τ > s, the Xτ = B(m,

1
τ−1 ) are independent.

Now

t

τ=s

d(s, τ )

τ
=

t

τ=s

1

τ

τ

r=s

Xr

=

t

r=s

Xr

t

τ=r

1

τ
.

t

τ=r

1

τ
= ln

t

r
+O

1

r
.

Thus,

t

τ=s

1− d(s, τ )
2mτ

1 +O
1

m
= exp − 1 +O

1

m

t

τ=s

d(s, τ)

2mτ

(4.1)

= exp − 1 +O
1

m 2m

t

r=s

Xr ln
t

r

=

t

r=s

r

t

Xr
2m (1+O(

1
m))

.

Then we can write

t

r=s

r

t

λ2Xr
2m ≤

t

τ=s

1− d(s, τ)
2mτ

1 +O
1

m
≤

t

r=s

r

t

λ1Xr
2m

where − A
m
≤ λ1 ≤ ≤ λ2 ≤ + A

m
for some constant A > 0.

Now

E

t

r=s

r

t

λ1Xr
2m

=

t

r=s

E
r

t

λ1Xr
2m

=
s

t

λ1
2

t

r=s+1

1− 1

r − 1 +
1

r − 1
r

t

λ1
2m

m

= (1 + o(1))
s

t

λ1
2

exp m ln
s

t
+
2m2

λ1
1− s

t

λ1
2m

.



84 Internet Mathematics

Thus,

ν ,m(t) ≥ (1 + o(1))t
1

0

exp m+
λ1

2
lnx+

2m2

λ1
1− x λ1

2m dx

= 1 +O
1

m
t

1

0

exp m+
2

lnx+
2m2

1− x 2m dx.

Replacing λ1 by λ2 to get an upper bound, we deduce that

ν ,m(t) = 1 +O
1

m
t

1

0

exp m+
2

lnx+
2m2

1− x 2m dx.

The values of this integral are easily tabulated. For = 1, they quickly reach a

value of about 0.57 as m grows. The approximation is accurate to the second

decimal place for m ≥ 4.
As m → ∞, by using the transformations x = e−y and z = /2y + (l +

2)/(
√
2 ), we obtain

η =
∞

0

exp − + 2

2
y −

4
y2 dy

=
2
e( +2)

2/(4 2)
∞

( +2)/
√
2

e−z
2/2 dz

∼ 2

since ex
2/2 ∞

x
e−y

2/2dy ∼ 1/x as x→∞.

4.2. Model 2

Theorem 4.2. η = e 2 2
∞
y−3e−y dy.

When = 1, η1 = 0.59634.... Furthermore, as →∞, η ∼ 2/ .

Lemma 4.3.

(a) Pr(∃s, t : d(s, t) ≥ 2m t/s(ln t)2) = O(t−10).

(b) If t/ ln t ≤ s ≤ t and r ≤ 2m t/s(ln t)2, then

Pr(d(s, t) = m+ r) =
m+ r − 1

r

s

t

m/2

1− s

t

1
2

r

· 1 +O (m+r)3

s
+O r√

s
.
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Proof of Lemma 4.3. (a) Fix s ≤ t and let Xτ = d(s, τ ) for τ = s, s + 1, . . . , t. Now

conditional on Xτ = x, we have

Xτ+1 = Xτ +B m,
x

2mτ

and for λ ≤ 1
E eλXτ+1 | Xτ = x = eλx 1− x

2mτ
+

x

2mτ
eλ

m

≤ exp λx− x

2τ
+
x

2τ
(1 + λ+ λ2)

= exp λx 1 +
1 + λ

2τ
.

Thus,

E eλXτ+1 ≤ E exp λ 1 +
1 + λ

2τ
Xτ

≤ exp mλ

τ

τ=s+1

1 +
1 + λ

2τ

≤ exp{2mλ(t/s)(1+λ)/2}
≤ exp{2mλ(t/s)1/2 ln t}.

Putting u = 2m(t/s)1/2(ln t)2, λ = 2 ln ln t
ln t , we get

Pr(Xt ≥ u) ≤ exp{λ(2m(t/s)1/2 ln t− u)}
≤ exp{−m(t/s)1/2 ln t)2}

and part (a) follows.

(b) Let τ = (τ1, ..., τr) where τj is the step at which the transition from degree

m + j to degree m + j + 1 occurs. Let τ0 = s and let τr+1 = t. Let p(s, t, r :

τ ) = Pr(d(s, t) = m+ r and τ ). Then

p(s, t, r : τ ) =
r

j=0

Φj(τj)
τj<T<τj+1

1− m+ j
2mT

m

 ,
where Φ0 = 1 and

Φj = 1 +O m+j
τj

m(m+ j − 1)
2mτj

1− m+ j − 1
2mτj

m−1
.
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In the above and in the following we use the fact that τj ≥ s (m + r)3 and

r = o(s1/2). The events that an edge sends two edges to s only contribute to the

error terms here.

Now

τj<T<τj+1

1− m+ j
2mT

m

= exp

−m+ j
2

τj<T<τj+1

1

T
+O

m+ j

T 2


= exp −m+ j

2
log

τj+1

τj
+O

m+ j

τj

=
τj

τj+1

m+j
2

1 +O
(m+j)2

τj
.

Thus,

Pr(d(s, t) = m+ r) =
τ
p(s, t, r : τ )

where

p(s, t, r : τ ) = 1 +O
(m+r)3

s

m(m+ 1) · · · (m+ r − 1)
2r

· s

t

m/2 1

tr/2
1√
τ1
...

1√
τr
. (4.2)

Now

τ

1√
τ1
...

1√
τr

=
1

r!

t

s

1√
τ
dτ +O

1√
s

r

= 1 +O r√
s

2r

r!

√
t−√s

r

.

The result follows.

Assuming the same conditions on r, s as in Lemma 4.3(b), define

ρ(s, t) =

t

τ=s

exp − d(s, τ )

2mτ
.

As in the proof of Lemma 4.3, let d(s, t) = m+ r and let τ = (τ1, ..., τr) denote

the transition steps of d(s, t) from m to m+r. As before, let τ0 = s and τr+1 = t.

Let ρ(s, t : τ ) be the value of ρ given τ .
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Then

ρ(s, t : τ ) = exp

− l

2m

r

j=0 τj≤T<τj+1

m+ j

T


= exp

−
2m

r

j=0

(m+ j) log
τj+1

τj
+O

1

τj


= 1 +O

(m+r)2

s

s

t

2

t−r /2mτ1 /2m...τr /2m.

Thus, combining ρ(s, t : τ ) with p(s, t, r : τ ) (as given in (4.2)) for τ of length r

and summing over τ , we have

E ρ(s, t) =

r τ
ρ(s, t : τ )p(s, t, r : τ )

=
r

1 +O
(m+r)3

s

s

t

(m+ )/2 m+ r − 1
r

r!

2r

· 1

tr(1+ /m)/2
τ

r

j=1

1

τ
(1− /m)/2
j

=

r

1 +O
(m+r)3

s
+O r

s(1− /m)/2

· m+ r − 1
r

1− s
t

(1+ /m)/2

1 + /m

r

= (1 + o(1))
1 +

m

1 +
m

t
s

(1+ /m)/2

m

.

Thus, using the transformations, x = s/t and y = /
√
x, we find

lim
m,t→∞

E ν ,m(t)

t
= lim

m,t→∞
1

t

t

s=1

1 +
m

1 +
m

t
s

(1+ /m)/2

m

= e
1

0

e− /
√
x dx

= e 2 2
∞
y−3e−y dy

as required.
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5. Extensions and Further Research

There are some natural questions to be explored in the context of the above

models.

• It should be possible to extend the analysis to other models of web graphs
e.g., [Broder et al. 00] and [Cooper and Frieze 01]. In principal, one

should only have to establish that random walks on these graphs are rapidly

mixing.

• One can consider nonuniform random walks. Suppose, for example, that

each v ∈ [t] is given a weight λ(v) and when at a vertex v the spider chooses
its next vertex with probability proportional to λ(v). If Λ(v) = N(v) λ(v)

(N(v) denotes the neighbours of v), then the steady state probability π(v)

of being at v in such a walk is proportional to Θ(v) = λ(v)Λ(v). Again,

once one shows rapid mixing, it should be possible to obtain an expression

like (1.1) for the number of unvisited vertices.

• We have only estimated the expectation of the number of unvisited vertices.
It would be interesting to establish a concentration result.
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