
Crawling the Hidden Web

Sriram Raghavan Hector Garcia-Molina

Computer Science Department

Stanford University

Stanford, CA 94305, USA
{rsram, hector}@cs.stanford.edu

Abstract

Current-day crawlers retrieve content only from

the publicly indexable Web, i.e., the set of Web

pages reachable purely by following hypertext
links, ignoring search forms and pages that require

authorization or prior registration. In particular,

they ignore the tremendous amount of high qual-
ity content “hidden” behind search forms, in large

searchable electronic databases. In this paper, we
address the problem of designing a crawler capa-

ble of extracting content from this hidden Web.

We introduce a generic operational model of a
hidden Web crawler and describe how this model

is realized in HiWE (Hidden Web Exposer), a

prototype crawler built at Stanford. We intro-
duce a new Layout-based Information Extraction

Technique (LITE) and demonstrate its use in au-

tomatically extracting semantic information from
search forms and response pages. We also present

results from experiments conducted to test and

validate our techniques.

1 Introduction

Crawlers are programs that automatically traverse the Web

graph, retrieving pages and building a local repository of
the portion of the Web that they visit. Depending on the ap-

plication at hand, the pages in the repository are either used

to build search indexes, or are subjected to various forms
of analysis (e.g., text mining). Traditionally, crawlers have

only targeted a portion of the Web called the publicly index-

able Web (PIW) [13]. This refers to the set of pages reach-
able purely by following hypertext links, ignoring search

forms and pages that require authorization or prior regis-

tration.

Permission to copy without fee all or part of this material is granted pro-

vided that the copies are not made or distributed for direct commercial

advantage, the VLDB copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the

Very Large Data Base Endowment. To copy otherwise, or to republish,

requires a fee and/or special permission from the Endowment.

Proceedings of the 27th VLDB Conference,

Roma, Italy, 2001

However, a number of recent studies [2, 13, 14] have ob-

served that a significant fraction of Web content in fact lies

outside the PIW. Specifically, large portions of the Web
are ‘hidden’ behind search forms, in searchable structured

and unstructured databases (called the hidden Web [8] or
deep Web [2]). Pages in the hidden Web are dynamically

generated in response to queries submitted via the search

forms. The hidden Web continues to grow, as organizations
with large amounts of high-quality information (e.g., the

Census Bureau, Patents and Trademarks Office, news me-

dia companies) are placing their content online, providing
Web-accessible search facilities over existing databases.

For instance, the website InvisibleWeb.com lists over

10000 such databases ranging from archives of job listings
to directories, news archives, and electronic catalogs. Re-

cent estimates [2] place the size of the hidden Web (in terms

of generated HTML pages) at around 500 times the size of
the PIW.

In this paper, we address the problem of building a hid-
den Web crawler; one that can crawl and extract content

from these hidden databases. Such a crawler will enable

indexing, analysis, and mining of hidden Web content, akin
to what is currently being achieved with the PIW. In addi-

tion, the content extracted by such crawlers can be used to

categorize and classify the hidden databases.

Challenges. There are significant technical challenges

in designing a hidden Web crawler. First, the crawler
must be designed to automatically parse, process, and in-

teract with form-based search interfaces that are designed

primarily for human consumption. Second, unlike PIW
crawlers which merely submit requests for URLs, hidden

Web crawlers must also provide input in the form of search

queries (i.e., “fill out forms”). This raises the issue of how
best to equip crawlers with the necessary input values for

use in constructing search queries.

To address these challenges, we adopt a task-specific,

human-assisted approach to crawling the hidden Web.

Task-specificity: We aim to selectively crawl portions

of the hidden Web, extracting content based on the re-

quirements of a particular application or task. For exam-
ple, consider a market analyst who is interested in build-

ing an archive of news articles, reports, press releases, and

white papers pertaining to the semiconductor industry, and

(a) User form interaction (b) Crawler form interaction

Figure 1: Interacting with forms

dated sometime in the last ten years. There are two steps

in building this archive: resource discovery, wherein we

identify sites and databases that are likely to be relevant to
the task; and content extraction, where the crawler actu-

ally visits the identified sites to submit queries and extract

hidden pages. In this paper, we do not directly address the
resource discovery problem (see Section 6 for citations to

relevant work). Rather, our work examines how best to au-
tomate content retrieval, given the results of the resource

discovery step.

Human-assistance: Human-assistance is critical to en-

sure that the crawler issues queries that are relevant to the
particular task. For instance, in the above example, the

market analyst may provide the crawler (see Section 3.4

for details) with lists of companies or products that are of
interest. This enables the crawler to use these values when

filling out forms that require a company or product name to

be provided. Furthermore, as we will see, the crawler will
be able to gather additional potential company and product

names as it visits and processes a number of pages.

At Stanford, we have built a prototype hidden Web
crawler called HiWE (Hidden Web Exposer). Based on

our experience with HiWE, we make the following contri-

butions in this paper:

• We develop a generic operational model of a hidden
Web crawler and illustrate how this model was put to

use in implementing HiWE. (Sections 2 and 3)

• We propose a new technique, called LITE (Layout-
based Information Extraction Technique), for infor-

mation extraction from Web pages. We illustrate how

LITE was employed in some parts of the HiWE design.
(Section 4)

• Finally, we present some experiments to demonstrate

the feasibility of hidden Web crawling and measure the
effectiveness of our approach and techniques. (Sec-

tion 5)

2 Hidden Web Crawlers

In this section, we first present a generic high-level opera-

tional model of a hidden Web crawler. Next, we propose

Figure 2: Sample labeled form

metrics for measuring the performance of such crawlers
and justify the rationale behind our choices. Finally, we

identify the key design issues in implementing the model.

2.1 Operational model

The fundamental difference between the actions of a hid-

den Web crawler, such as HiWE, and that of a traditional

crawler [3, 6], is with respect to pages containing search
forms. Figure 1(a) illustrates the sequence of steps (as in-

dicated by the numbers above each arrow) that take place,

when a user uses a search form to submit queries on a
hidden database. Figure 1(b) illustrates the same interac-

tion, with the crawler now playing the role of the human-

browser combination.
Our model of a hidden Web crawler consists of the four

components described below (see Figure 1(b)). We shall

use the term form page, to denote the page containing a
search form, and response page, to denote the page re-

ceived in response to a form submission.
Internal Form Representation. On receiving a form

page, a crawler first builds an internal representation of

the search form. Abstractly, the internal representation
of a form F includes the following pieces of information:

F = ({E1, E2, . . . , En}, S, M}), where {E1, E2, . . . , En}
is a set of n form elements, S is the submission informa-
tion associated with the form (e.g., submission URL, in-

ternal identifiers for each form element, etc.), and M is

meta-information about the form (e.g., URL of the form

page, web-site hosting the form, set of pages pointing to
this form page, other text on the page besides the form,

etc.). A form element can be any one of the standard input

elements: selection lists, text boxes, text areas, checkboxes,
or radio buttons.1 For example, Figure 2 shows a form with

three elements (ignore label(Ei) and dom(Ei) for now).
Details about the actual contents of M and the information

associated with each Ei are specific to a particular crawler

implementation.

Task-specific database. A crawler is equipped, at

least conceptually, with a task-specific database D. This
database contains all the information that is necessary for

the crawler to formulate search queries relevant to the par-

ticular task. For example, in the ‘market analyst’ exam-
ple introduced in Section 1, D could contain lists of semi-

conductor company and product names that are of interest.

The actual format, structure, and organization of D are spe-
cific to a particular crawler implementation. For example,

HiWE uses a set of labeled fuzzy sets (Section 3.2) to rep-

resent task-specific information. More complex represen-
tations are possible, depending on the kinds of information

used by the matching function (see below).

Matching function. A crawler’s matching algo-

rithm, Match, takes as input, an internal form rep-

resentation, and the current contents of the database
D. It produces as output, a set of value assignments.

Formally, Match(({E1, . . . , En}, S, M), D) = {[E1 ←
v1, . . . , En ← vn]}.

A value assignment [E1 ← v1, . . . , En ← vn] asso-
ciates value vi with form element Ei (e.g., if Ei is a textbox

that takes a company name as input, vi could be ‘National

Semicondutor Corp.’). The crawler uses each value assign-
ment to ‘fill-out’ and submit the completed form. This pro-

cess is repeated until either the set of value assignments is

exhausted, or some other termination condition is satisfied.

Response Analysis. The response to a form submis-

sion is received by a response analysis module that stores
the page in the crawler’s repository. In addition, the re-

sponse module analysis attempts to distinguish between

pages containing search results and pages containing error
messages. This feedback can be used to tune the match-

ing function and update the set of value assignments (see

Section 3).

Notice that the above model lends itself to a number of

different implementations depending on the internal form
representation, the organization of D, and the algorithm

that underlies Match.

2.2 Performance Metric

Traditional PIW crawlers use metrics such as crawling

speed, scalability [10], page importance [6], and freshness
[5], to measure the effectiveness of their crawling activity.

Though all of these metrics are applicable and relevant to

hidden Web crawlers, none of these capture the fundamen-

1Note that submit and reset buttons are not included, as they are only
used to manipulate forms, not provide input.

tal challenges in dealing with the Hidden Web, namely, au-
tomatic form processing and submission.

The choice of a good performance metric for hidden

Web crawlers itself turns out to be an interesting issue. We
considered a number of options. For instance, we consid-

ered a coverage metric that measures the ratio of the num-
ber of ‘relevant’ pages extracted by a crawler to the total

number of ‘relevant’ pages present in the targeted hidden

databases. Even though such a metric is conceptually ap-
pealing, there are two problems. First, without additional

information about the hidden databases, it is very difficult

to estimate how much of the their content is relevant to the
task. Second, the metric is significantly dependent on the

contents of D, the crawler’s task-specific database. This in

turn is determined by how well the crawler is configured
for the task, by the human. All other things being equal,

a crawler that has access to a more comprehensive task-

specific database can extract more content and hence report
better coverage. However, we seek a metric that can mea-

sure the effectiveness of the crawler’s form representation
and matching function, independent of the actual contents

of D. Below, we define two versions of a metric that meet

this requirement.

Submission Efficiency. Let Ntotal be the total number

of forms that the crawler submits, during the course of its

crawling activity. Let Nsuccess denote the number of sub-
missions which result in a response page containing one or

more search results.2 Then, we define the strict submission

efficiency (SEstrict) metric as: SEstrict = Nsuccess

Ntotal

Note that this metric is ‘strict’, because it penalizes the

crawler even for submissions which are intrinsically ‘cor-

rect’ but which did not yield any search results because the
content in the database did not match the query parameters.

We also define a lenient submission efficiency (SElenient)

metric that penalizes a crawler only if a form submission is

semantically incorrect (e.g., submitting a company name as

input to a form element that was intended to receive names
of company employees). Specifically, if Nvalid denotes

the number of semantically correct form submissions, then

SElenient = Nvalid

Ntotal

SElenient is more difficult to evaluate, since each form

submission must be compared manually with the actual

form, to decide whether it is a semantically correct. For
large experiments involving hundreds of form submissions,

computing SElenient becomes highly cumbersome.

Intuitively, the submission efficiency metrics estimate
how much useful work a crawler accomplishes, in a given

period of time. In particular, if two identically configured
crawlers are allowed to crawl for the same amount of time,

the crawler with the higher rating is expected to retrieve

more ‘useful’ content than the other.

2In our experiments, to obtain a precise value for Nsuccess, we used
manual inspection of the pages, rather than using information from the
crawler’s response analysis module.

Figure 3: HiWE Architecture

2.3 Design Issues

Given the operational model and the performance metrics
described in the previous two sections, the following ques-

tions arise:

• What information about each form element Ei, should

the crawler collect? What meta-information about each

form is likely to be useful in designing better matching
functions?

• How should the task-specific database be organized,
updated, and accessed?

• What is the algorithm for Match that is most likely to

maximize submission efficiency?
• Finally, how should the feedback from the response

analysis module be used to tune Match?

In the following section, we shall describe how these

issues are addressed in the HiWE prototype.

3 HiWE: Hidden Web Exposer

Based on the model outlined in Section 2, we have built

a prototype hidden Web crawler called HiWE. The basic
idea in HiWE is to extract some kind of descriptive infor-

mation, or label, for each element of a form. In addition,

the task-specific database is organized in terms of a finite
number of concepts or categories, each of which is also as-

sociated with labels. The matching algorithms attempts to

match form labels with database labels to compute a set of
candidate value assignments.

Figure 3 shows the architecture of HiWE. The basic
crawler data structure is the URL List. It contains all the

URLs that the crawler has discovered so far. The Crawl

Manager controls the entire crawling process. In our im-

plementation, the crawler was configured to operate within

a predetermined set of target sites provided to the Crawl
Manager at startup. The Parser extracts hypertext links

from the crawled pages and adds them to the URL List

structure. Pages that do not contain forms are handled
solely by the Parser and Crawl Manager modules. The

Form Analyzer, Form Processor, and Response Analyzer

modules, together implement the form processing and sub-

mission operations of the crawler. The LVS table is HiWE’s
implementation of the task-specific database described in

Section 2.1. The LVS Manager manages additions and ac-

cesses to the LVS table.

3.1 Form Representation

Given a form F = ({E1, E2, . . . , En}, S, φ})3, for each el-
ement Ei, HiWE collects two pieces of information: a do-

main Dom(Ei) and a label label(Ei). The domain of an
element is the set of values which can be associated with

the corresponding form element. Some elements have finite

domains, where the set of valid values are already embed-
ded in the page. For example, if Ej is a selection list, then

Dom(Ej) is the set of values that are contained in the list.

Other elements with free-form input, such as text boxes,
have infinite domains (e.g., set of all text strings).

The label of a form element is the descriptive infor-

mation associated with that element, if any. Most forms

are usually associated with some descriptive text to help
the user understand the semantics of the element. If such

descriptive information is not available, or cannot be ex-
tracted, the corresponding label(Ei) is set to an empty

string. Figure 2 shows a form with three elements and the

corresponding representation using our notation.

3.2 Task-specific Database

In HiWE, task-specific information is organized in terms of
a finite set of concepts or categories. Each concept has one

or more labels and an associated set of values. For example,

the label ‘Company Name’ could be associated with the set
of values {‘IBM’, ‘Microsoft’, ‘HP’, . . . }. The concepts

are organized in a table called the Label Value Set (LVS)

table. Each entry (or row) in the LVS table is of the form
(L, V), L is a label and V = {v1, . . . vn} is a fuzzy/graded

set [23] of values. Fuzzy set V has an associated member-

ship function MV that assigns weights/grades, in the range
[0, 1], to each member of the set. Intuitively, each vi rep-

resents a value that could potentially be assigned to an ele-

ment E if label(E) “matches” L. MV (vi) is a measure of
the crawler’s confidence that the assignment of vi to E is in

fact a semantically meaningful assignment. Labels can be
aliased, which means that two or more labels can share the

same fuzzy value set. Section 3.4 describes how the LVS

table is populated and Section 3.5 describes how weights
are computed.

3.3 Matching Function

For a form element with a finite domain, the set of possi-

ble values that can be assigned to the element is fixed, and

can be exhaustively enumerated. For example, since do-
main Dom(E1) in Figure 2 has only three elements, the

crawler can first retrieve all relevant articles, then all rele-

vant press releases, and finally all relevant reports. For in-

3The current implementation of HiWE does not collect any meta-
information about a search form. Therefore, the third component of F
is an empty set.

finite domain elements, HiWE textually matches the labels
of these elements with labels in the LVS table. For exam-

ple, if a textbox element has the label “Enter state” which

best matches an LVS entry with the label “State”, the values
associated with that LVS entry (e.g., “California” or “New

York”) can be used to fill out the textbox.

Label Matching. There are two steps in matching form
labels with LVS labels. First, all labels are normalized; this

includes, among other things, conversion to a common case

and standard IR-style stemming and stop-word removal [9]
(see [20] for details). Next, an approximate string match-

ing algorithm is used to compute minimum edit distances,

taking into account not just typing errors but also word re-
orderings (e.g, we require that two labels ‘Company Type’

and ‘Type of Company’, which become “company type”

and “type company” after normalization, be identified as
being very similar, separated by a very small edit dis-

tance). HiWE employs a string matching algorithm from

[15] that meets these requirements. Given element Ei, let
LabelMatch(Ei) denote the entry in the LVS table whose

label has the minimum edit distance to label(Ei), subject to
a threshold σ. If all entries in the LVS table are more than

σ edit operations away from label(Ei), LabelMatch(Ei)
is set to nil.

Given a form F = ({E1, . . . , En}, S, φ), HiWE’s
matching function computes, for each element Ei, a fuzzy

set Vi denoting the set of values that the crawler intends to

assign to Ei. Specifically, if Ei is an infinite domain ele-
ment and (L, V) = LabelMatch(Ei) is the closest match-

ing LVS entry, then Vi = V and MVi
= MV . However,

if Ei is a finite domain element, then Vi = Dom(Ei) and
MVi

(x) = 1, ∀x ǫ Vi.

The set of value assignments is computed as the prod-

uct of all the Vi’s; i.e., Match(F, LV S) = {[E1 ←
v1, . . . , En ← vn] : vi ǫ Vi, i = 1 . . . n}

Ranking value assignments. HiWE employs an aggre-

gation function to compute a rank for each value assign-

ment, using the weights of the individual values in the as-
signment. In addition, HiWE accepts, as a configurable

parameter, a minimum acceptable value assignment rank

(ρmin). The intent is to improve submission efficiency
by only using relatively ‘high-quality’ value assignments.

Hence, to generate submissions, HiWE uses only value as-

signments whose rank is at least ρmin. We experimented
with the following aggregation functions:

1. Fuzzy Conjunction The rank of a value assignment
is the minimum of the weights of all the constituent val-

ues. This is equivalent to treating the value assignment as

a standard Boolean conjunction of the individual fuzzy sets
[23].

ρfuz([E1 ← v1, . . . , En ← vn]) = min
i=1...n

MVi
(vi)

2. Average The rank of a value assignment is the aver-
age of the weights of the constituent values.

ρavg([E1 ← v1, . . . , En ← vn]) =
1

n

∑

i=1...n

MVi
(vi)

3. Probabilistic This ranking function treats weights
as probabilities. Hence MVi

(vi) is the likelihood that the

choice of vi is useful and 1−MVi
(vi) is the likelihood that

it is not. Hence, the likelihood of a value assignment being

useful, is computed as:

ρprob([E1 ← v1, . . . , En ← vn]) = 1−
∏

i=1...n

(1−MVi
(vi))

Note that ρfuz is very conservative in assigning ranks.
It assigns a high rank for a value assignment only if each

individual weight is high. The average is less conservative,

always assigning a rank which is at least as great as the rank
of the fuzzy conjunction for the same value assignment. In

contrast, ρprob is more aggressive and assigns a low rank

only if all the individual weights are very low.

3.4 Populating the LVS Table

HiWE supports a variety of mechanisms for adding entries
to the LVS table.

Explicit Initialization. HiWE can be supplied with

labels and associated value sets at startup time. These
are loaded into the LVS table during crawler initialization.

Explicit initialization is particularly useful to equip the

crawler with values for the labels that the crawler is most
likely to encounter. For example, when configuring HiWE

for the task described in Section 1, we supplied HiWE with

a list of relevant company names from the semiconductor
industry and associated that list with labels such as “Com-

pany”, “Company Name”, “Organization”, etc.

Built-in entries. HiWE has built-in entries in the LVS
table for certain commonly used categories, such as dates,

times, names of months, days of the week, etc., which are
likely to be useful for a variety of tasks.

Wrapped data sources. The LVS Manager (Figure 3)

can communicate and receive entries for the LVS table by
querying various data sources (on the Web or elsewhere),

through a well-defined interface. These data sources can ei-

ther be task-specific (for example, Table 4 lists some of the
task-specific Web sources that we used for the task outlined

in Section 1), or correspond to relevant portions of generic

directories, such as the Yahoo directory [22] and the Open
Directory [18]. Each data source must be ‘wrapped’ by a

program to export an interface that supports one or both of

the following two kinds of queries:
• Type 1: Given a set of labels, return a fuzzy value set

that can be associated with these labels.

• Type 2: Given a set of values, return other values that
belong to the same value set.

Type1 queries are used to add new entries to the LVS
table whereas Type2 queries are used to expand existing

entries. In [20], we describe in some detail, how the Yahoo

directory was wrapped to export the above interface.
Crawling experience. Finite domain form elements are

a useful source of labels and associated value sets. When-

ever HiWE encounters a finite domain form element, it
extracts the label and domain values of that element and

add the information to the LVS table. As we demonstrate

in Section 5, this technique is particularly effective if the

same/similar label is associated with a finite domain ele-
ment in one form and with an infinite domain element in

another. For example, we observed that when experiment-

ing with the crawling task described in Section 1, some
forms contained a predefined set of subject categories (as

a select list) dealing with semiconductor technology. Other
forms had a text box with the label “Categories”, expecting

the user to come up with the category names on their own.

By using the above technique, the crawler was able to use
values from the first set of forms to more effectively fill out

the second set of forms.

3.5 Computing weights

Since value sets in the LVS table are modeled as fuzzy sets

(Section 3.2), whenever a new value is added to the LVS
table, it must be assigned a suitable weight. Typically, val-

ues obtained through explicit initialization and built-in cat-
egories have fixed predefined weights that do not vary with

time (usually the weight is 1, representing maximum con-

fidence in these human-supplied values). Values obtained
either from external data sources or through the crawler’s

own activity, are assigned weights that vary with time. The

weight of a value gets a positive (negative) boost ever time
it is used in a successful (unsuccessful) form submission.

The success or otherwise, of a form submission, is reported

by the response analysis module. In [20], we describe how
feedback from the response analysis module is used to tune

the weights.

The initial weights for values obtained from external
data sources are usually computed by the respective wrap-

pers. However, for values directly gathered by the crawler,

the following strategy is used:

Suppose HiWE encounters a finite domain form element

E with Dom(E) = {v1, . . . , vn}. Even though Dom(E)
is a crisp set, it can be treated as a fuzzy set with mem-

bership function MDom(E), such that MDom(E)(x) = 1 if

x ǫ {v1, . . . , vn}, and MDom(E)(x) = 0, otherwise. The
following cases arise, when incorporating Dom(E) into

the LVS table:

Case 1. Crawler successfully extracts label(E) and

computes LabelMatch(E) = (L, V). We replace the

(L, V) entry in the LVS table by the entry (L, V ∪
Dom(E)). Here, ∪ is the standard fuzzy set union op-
erator [23] which defines the new membership function

as MV ∪Dom(E)(x) = max(MV (x), MDom(E)(x)). Intu-

itively, Dom(E) not only provides new elements to the
value set but also ‘boosts’ the weights/confidence of ex-

isting elements.

Case 2. Crawler successfully extracts label(E) but

LabelMatch(E) = nil. A new row/entry (label(E),
Dom(E)) is created in the LVS table.

Case 3. Crawler cannot extract label(E). This can

happen either because the label is absent, or because there

is a problem in label extraction. We identify an entry
in the LVS table whose value set most closely resembles

Dom(E). Once such an entry is located, we shall add

the values in Dom(E) to the value set of that entry. For-

1 Set of sites to crawl
2 Explicit initialization entries for the LVS table
3 Set of data sources, wrapped if necessary
4 Label matching threshold (σ)
5 Minimum acceptable value assignment rank (ρmin)
6 Minimum form size (α)
7 Value assignment aggregation function

Table 1: Configuring a crawler

mally, for each entry (L, V) in the table, we compute a

score,4 defined by the expression

∑
x ǫ Dom(E)

MV (x)

|Dom(E)| . In-

tuitively, the numerator of the score measures how much

of Dom(E) is already contained in V and the denomina-

tor normalizes the score by the size of Dom(E). Next, we
identify the entry with the maximum score (Lmax, Vmax)
and also the value of the maximum score smax. We derive a

new fuzzy set D′ from Dom(E) by using the membership
function MD′(x) = smaxMDom(E)(x). We replace entry

(Lmax, Vmax) by the new entry (Lmax, Vmax ∪ D′).

3.6 Configuring HiWE

In the previous sections, we described different aspects of
HiWE that require explicit customization or tuning to meet

the needs of a particular task. In addition, we also intro-

duced a few configurable parameters that control the ac-
tions of the crawler. Table 1 summarizes all the inputs that

the user must provide, before initiating the crawling activ-

ity.

4 LITE

Recall that as part of its operations, HiWE must extract var-

ious pieces of information out of forms and response pages.

A number of other Web applications are also faced with the
same problem of ‘scraping’ information from pages. For

example, Web-based information integration applications

such as online comparison shopping engines or process au-
tomation systems use wrappers [19] to provide structured

interfaces to Web sites. As one of its functions, a wrap-
per for a website is required to scrape the Web pages on

that site to extract data elements (e.g., names, addresses,

zip-codes, prices, etc.) of interest. Traditionally, wrappers
scrape pages by using a suite of (regular expression) pat-

terns that are constructed using a variety of automatic and

semi-automatic techniques [19, 21]. However, such tech-
niques operate purely on the underlying HTML text of Web

pages.

In this section, we introduce a new technique called

LITE (Layout-based Information Extraction), where, in ad-
dition to the text, the physical layout of a page is also used

to aid in extraction. LITE is based on the observation that

the physical layout of different elements of a Web page
contains significant semantic information. For example, a

piece of text that is physically adjacent to a table or a form

4In fuzzy set terminology, this score is the degree of subsethood of

Dom(E) in V , defined by S(Dom(E), V) =
|Dom(E)∩V |
|Dom(E)|

.

Figure 4: Pruning before partial layout

widget (such as a text box) is very likely a description of the

contents of that table or the purpose of that form widget.

Unfortunately, this semantic association between ele-

ments is not always directly reflected in the underlying
HTML markup of the Web page. There are two reasons for

this. First, elements of a page that are visually very close

to each other when displayed on a screen, may in fact be
separated arbitrarily, in the actual text of the page. Second,

even when the HTML specification provides a facility for

semantic relationships to be reflected in the markup, such
facilities are not used in a majority of Web pages. For ex-

ample, many Web pages do not use the CAPTION element

to specify the title of a table, relying instead on the physical
placement of the title text relative to the table, to convey the

same information. Similarly, recent HTML standards pro-

vide a LABEL element to associate descriptive information
with individual form elements. However, almost none of

the Web pages that HiWE visited during its experimental

runs used this facility.

Note that accurate page layout is a relatively complex

process, since it must take into account factors such as zip
codes, font metrics, images, etc. However, for the purposes

of information extraction, our experience (see succeeding

sections) has been that even a crude and approximate lay-
out of portions of a page, can yield very useful semantic

information.

LITE is used in HiWE to extract information from both
form and response pages. In the next section, we briefly

describe how LITE is used for form analysis and refer the

reader to [20] for a similar description of response analysis.

4.1 Form Analysis in HiWE

Recall that the aim of form analysis is to process a form

page and extract all the information necessary to build

the internal representation (Section 3.1) of the form. For
HiWE, the main challenge in form analysis is the accurate

extraction of the labels and domains of form elements.

Label extraction is a hard problem, since the nesting re-

lationship between forms and labels in the HTML markup

is not fixed. For example, some pages layout form elements
and labels within the cells of a table whereas others con-

trol alignment through explicit spaces and line breaks. To

achieve high-accuracy label extraction, in HiWE, we em-
ploy the following LITE-based heuristic:

• Prune the form page and isolate only those elements

that directly influence the layout of the form elements

and the labels. For instance, consider Figure 4, which
shows the tree-structured representation of two differ-

ent Web pages, one in which the FORM is directly em-

bedded in the main body and another in which it is em-
bedded within a table. The pruned tree is constructed

by using only the subtree below the FORM element and
the nodes on the path from the FORM to the root.

• Approximately layout the pruned page using a custom

layout engine that discards images, and ignores styling
information such as font sizes, font styles, and style

sheets.

• Using the layout engine, identify the pieces of text, if
any, that are physically closest to the form element, in

the horizontal and vertical directions. These pieces of

text are the candidates.5

• Rank each candidate using a variety of measures that

take into account the its position, font size, font style,

number of words, etc. (see [20] for details).
• Choose the highest ranked candidate as the label as-

sociated with the form element. Perform any post-

processing on the label as necessary (e.g., removing
stop words and non alphanumeric characters, stem-

ming, etc.)

Reference [20] describes a similar heuristic for extract-

ing the domains of form elements.

5 Experiments

We conducted a number of experiments to study and mea-
sure the performance of HiWE. In this section, we report

on some of the more significant results from these experi-
ments.

Parameter Value

Number of sites visited 50
Number of forms encountered 218
Number of forms chosen for submission 94
Label matching threshold (σ) 0.75
Minimum form size (α) 3
Value assignment ranking function ρfuz

Minimum acceptable value assignment rank (ρmin) 0.6

Table 3: Parameter values for Task 1

Site Name URL

Semiconductor Research Corporation www.src.org
The Semiconductor Reference Site www.semiref.com
Hoover Online Business Network www.hoovers.com
Lycos Companies Online companies.lycos.com

Table 4: Sample data sources for Task 1

Table 2 describes the three tasks that we undertook to

accomplish using HiWE. Due to space constraints, we

provide configuration details and other related information
only for Task 1. Table 3 lists the default values of some

of the parameters that we used for experiments involving

Task 1. The parameter α represents the minimum size of a

5For form elements involving groups of items, such as a set of check-
boxes, distances are measured relative to the ‘center’ of the group.

No. Task Description - Collect Web pages containing:

1 News articles, reports, press releases, and white papers relating to the semiconductor industry, dated sometime in the last ten years
2 Reviews, synopses, articles, and historical information about movies directed by Oscar-winning directors in the last 30 years
3 Database technical reports from 30 CS departments, published in the last 5 years

Table 2: Description of the three experimental tasks

form (in terms of number of elements) that HiWE will at-
tempt to process. Since α was set to 3, all forms containing

less than 3 elements were ignored by HiWE. This helped to

eliminate most of the forms that dealt with simple keyword
searches within a site (‘local site-search’), not relevant to

extracting content from hidden databases. As indicated in

Table 3, the crawler encountered 218 forms when crawling
the 50 sites, of which 124 were ignored, either because they

were too small (less than 3 elements) or because HiWE was
unable to generate valid value assignments for them.

Site Name URL

IEEE Spectrum spectrum.ieee.org
Semiconductor Online semiconductoronline.com
Semiconductor Business News semibiznews.com
Yahoo News news.yahoo.com
Total News totalnews.com
Semiconductor Intl. semiconductor-intl.com
Solid State Technology Intl. Magazine solid-state.com
CNN Financial News cnnfn.com
TMCnet.com Technology News tcmnet.com
SemiSeekNews semiseeknews.com

Table 5: Sample target sites crawled for Task 1

Table 4 lists some of the online sources we used to gen-

erate LVS entries for Task 1. These entries included partial
lists of names of semiconductor manufacturing companies

as well as list of sub-sectors (or areas) within the semi-

conductor industry. The first two sources listed in Table 4
were (manually) used only once, to extract information for

explicit initialization. The remaining two sources in Ta-

ble 4, as well as the Yahoo [22] and Open [18] directo-
ries, were wrapped by custom wrappers to interface with

the LVS manager and provide values at run-time. Table 5
presents a sample of some of the 50 sites that were targeted

by HiWE for Task 1.

Effect of Value Assignment ranking function. To
study the effect of the value assignment ranking function

(Section 3.3), the crawler was executed three times, with

the same parameters, same initialization values, and same
set of data sources, but using a different ranking function on

each occasion. Table 6 shows the result of these executions,

for all three tasks. Notice that when using ρfuz and ρavg ,
the crawler’s submission efficiency is mostly above 80%,

even reaching 90% on one occasion. This indicates that
the label extraction and matching algorithms used in HiWE

are highly effective in automating form processing and sub-

mission. Table 6 also illustrates an interesting trade-off be-
tween ρfuz and ρavg . Ranking function ρfuz consistently

provides the best submission efficiency, but being conser-

vative, causes less forms to be submitted, when compared
with ρavg . The latter submits more forms but also generates

more successful submissions without significantly compro-

mising crawler efficiency (at least for Tasks 1 and 2). This

Figure 5: Variation of performance with α, for Task 1

10 20 30 40 50 60 70 80 90
0

500

1000

1500

2000

2500

3000

Number of forms processed

N
u
m

b
e
r

o
f
s
u
c
c
e
s
s
fu

l
fo

rm
 s

u
b
m

is
s
io

n
s

Crawler input enabled
Crawler input disabled

Figure 6: Effect of crawler input to LVS table, for Task 1

indicates that if maximum content extraction with ‘reason-
able’ crawler efficiency were to be the goal, at least for our

tasks, ρavg might be a better choice. In comparison, rank-

ing function ρprob performs poorly. For instance, in the
case of Task 1, even though ρprob causes 35% more forms

to be submitted when compared with ρfuz , it still achieves

lesser number of successful form submissions, resulting in
an overall success ratio of only 65%.

Effect of α. Figure 5 illustrates the effect of changing

α, the minimum form size. For each value of α, the fig-
ure indicates the values of both Ntotal and Nsuccess, for

Task 1. The percentage figure represents the corresponding
value of SEstrict. Note that in general, the crawler per-

forms better on larger forms. Smaller forms tend to have

less descriptive labels, often consisting merely of an unla-
beled text box with an associated “Search” button. As ex-

pected, the crawler either ignores such forms or is unable to

find matches for element labels. On the other hand, larger
and more complicated forms tend to have more descriptive

labels as well as a significant number of finite domain ele-

ments, both of which contribute to improved performance.

Task 1 Task 2 Task 3
Ranking function

Ntotal Nsuccess SEstrict Ntotal Nsuccess SEstrict Ntotal Nsuccess SEstrict

ρfuz 3214 2853 88.8 2615 2354 90.0 1018 886 87.0
ρavg 3760 3126 83.1 3404 2622 77.0 1467 1243 84.7
ρprob 4316 2810 65.1 3648 2240 61.4 1789 1128 63.0

Table 6: Performance with different ranking functions

Effect of crawler input to LVS table. In Section 3.4,
we described the process by which a crawler can contribute

entries to the LVS table. Figure 6 studies the effect of this

technique on the performance of the crawler. To gener-
ate the data for Figure 6, the crawler was executed twice,

once with the crawler contributing LVS entries, and another

time, with such contributions disabled. Figure 6 shows that
in the initial stages of the crawl, the presence or absence of

the crawler contributions do not have a significant impact

on performance. However, as more forms are processed,
the crawler encounters a number of different finite domain

elements and is able to contribute new entries to the LVS

table. In addition, the LVS manager uses these new entries
to retrieve additional values from the data sources. As a re-

sult, by the end of the crawl, contributions from the crawler
are, directly or indirectly, responsible for almost a 1000 ad-

ditional successful form submissions. We observed similar

trends for Tasks 2 and 3 (see [20] for corresponding plots).

5.1 Label extraction

We conducted a separate set of experiments to measure the

performance of our LITE-based heuristic for label extrac-
tion. Table 7 summarizes the relevant statistics of our test

set of forms. In choosing the test set, we ensured that a
variety of forms were included, ranging from the simplest

single element search box to more complex ones with 10
or more elements. Each form in the test set was manually
analyzed to derive the correct label for each form element.

In addition to evaluating the LITE-based heuristic on

this set of forms, we also tested other label extraction meth-
ods [12] that we developed in the context of enabling form

support on small devices, such as PDAs. In [12], we de-
scribe two classes of label extraction heuristics; one class

based purely on textual analysis, and another based on ex-

tensive manual observations of the most common ways in
which forms are laid out. For comparison, we ran two

of the more effective heuristics from [12], one from each

class, on the same test set.

We treated an extracted label as accurate, if it matched

the one obtained through manual inspection. We observed
that the LITE-based heuristic consistently outperformed

the other two heuristics, achieving an overall accuracy of

93%, compared to 72% and 83% respectively, for the
other two heuristics. In particular, we noted that the LITE-

based heuristic avoids two of the three common failure rea-

sons identified in [12], and also performs significantly bet-
ter on more complex forms. We believe that an effective la-

bel extraction technique was an important factor in HiWE’s

high submission efficiency, as reported in Table 6.

Total number of forms 100
Number of sites from which forms were picked 52
Total number of elements 460
Total number of finite domain elements 140
Average number of elements per form 4.6
Minimum number of elements per form 1
Maximum number of elements per form 12

Table 7: Forms used to test label extraction techniques

6 Related Work

In recent years, there has been significant interest in the

study of Web crawlers. These studies have addressed vari-
ous issues, such as performance, scalability, freshness, ex-

tensibility, and parallelism, in the design and implementa-

tion of crawlers [3, 4, 6, 10, 17]. However, all of this work
has focused solely on the PIW. To the best of our knowl-

edge, there has not been any previous report (at least none
that is publicly available) on techniques and architectures

for crawling the hidden Web.

The work on focused crawling [3, 7, 16] addresses

the resource discovery problem, (i.e., identifying sites and

pages relevant to a specific task or topic) and describes the
design of topic-specific PIW crawlers. This work is com-

plementary to ours, since these resource discovery tech-

niques can be used to identify target sites for a hidden Web
crawler.

The online service InvisibleWeb.com [11] provides easy
access to thousands of online databases, by organizing

pointers to these databases in a searchable topic hierarchy.

Their web page indicates that a ‘combination of automated
intelligent agents along with human experts’ are responsi-

ble for creating and maintaining this hierarchy. Similarly,

the online service BrightPlanet.com [1] claims to automat-
ically ‘identify, classify, and categorize’ content stored in

the hidden Web. In both cases, the techniques are propri-
etary and details are not publicly available.

7 Conclusion

Current-day crawlers are used to build repositories of Web
pages that provide the input for systems that index, mine,

and otherwise analyze pages (e.g., a Web search engine).

However, these crawlers are restricted to the set of pages in
the publicly indexable portion of the Web. In this paper, we

addressed the problem of extending current-day crawlers

to build repositories that include pages from the “hidden
Web”, the portion of the Web behind searchable HTML

forms.

We proposed an application/task specific approach to

hidden Web crawling. We argued that as with the PIW,

the tremendous size and heterogeneity of the hidden Web

makes comprehensive coverage very difficult, and possibly
less useful, than task-specific crawling. A narrow applica-

tion focus is also useful in designing a crawler that can ben-

efit from knowledge of the particular application domain.

We presented a simple operational model of a hid-
den Web crawler that succinctly describes the steps that

a crawler must take, to process and submit forms. We

described the architecture and design techniques used in
HiWE, a prototype crawler implementation based on this

model. The promising experimental results using HiWE

demonstrate the feasibility of hidden Web crawling and the
effectiveness of our form processing and matching tech-

niques. We believe that our operational model sets the

stage for designing a variety of hidden Web crawlers, rang-
ing in complexity from the simple label matching approach

of HiWE, to the use of sophisticated natural language and

knowledge representation techniques.

For the immediate future, we plan to address two lim-
itations of the HiWE design that if rectified, can signifi-

cantly improve HiWE’s performance. The first limitation

is HiWE’s inability to recognize and respond to simple de-
pendencies between form elements (e.g., given two form

elements corresponding to states and cities, the values as-

signed to the ‘city’ element must be cities that are located
in the state assigned to the ‘state’ element). The second

limitation is HiWE’s lack of support for partially filling out

forms; i.e., providing values only for some of the elements
in a form.

References

[1] BrightPlanet.com. http://www.brightplanet.com.

[2] The Deep Web: Surfacing Hidden Value.
http://www.completeplanet.com/Tutorials/DeepWeb/.

[3] S. Chakrabarti, M. van den Berg, and B. Dom. Fo-

cused crawling: A new approach to topic-specific web

resource discovery. In Proc. of the 8th Intl. WWW

Conf. , 1999.

[4] J. Cho and H. Garcia-Molina. The evolution of the

web and implications for an incremental crawler. In

Proc. of the 26th Intl. Conf. on Very Large Databases,
2000.

[5] J. Cho and H. Garcia-Molina. Synchronizing a

database to improve freshness. In Proc. of the ACM

SIGMOD Conf. on Management of Data, 2000.

[6] J. Cho, H. Garcia-Molina, and L. Page. Efficient

crawling through url ordering. In Proc. of the 7th Intl.

WWW Conf., 1998.

[7] M. Diligenti, F. Coetzee, S. Lawrence, C. L. Giles,
and M. Gori. Focused crawling using context graphs.

In Proc. of the 26th Intl. Conf. on Very Large

Databases, pages 527–534, Sept. 2000.

[8] D. Florescu, A. Y. Levy, and A. O. Mendelzon.
Database techniques for the world-wide web: A sur-

vey. SIGMOD Record, 27(3):59–74, 1998.

[9] W. B. Frakes and R. Baeza-Yates. Information Re-

trieval Data Structures & Algorithms. Prentice Hall,

Englewood Cliffs, N.J., 1992.

[10] A. Heydon and M. Najork. Mercator: A scalable,
extensible Web crawler. World Wide Web, 2(4):219–

229, Dec. 1999.

[11] InvisibleWeb.com. http://www.invisibleweb.com.

[12] O. Kaljuvee, O. Buyukkokten, H. Garcia-Molina, and

A. Paepcke. Efficient web form entry on pdas. Proc.

of the 10th Intl. WWW Conf., May 2001.

[13] S. Lawrence and C. L. Giles. Searching the World

Wide Web. Science, 280(5360):98, 1998.

[14] S. Lawrence and C. L. Giles. Accessibility of infor-
mation on the web. Nature, 400:107–109, 1999.

[15] D. Lopresti and A. Tomkins. Block edit models for

approximate string matching. Theoretical Computer

Science, 181(1):159–179, July 1997.

[16] A. McCallum, K. Nigam, J. Rennie, and K. Sey-

more. Building domain-specific search engines
with machine learning techniques. In Proc. of the

AAAI Spring Symposium on Intelligent Agents in Cy-

berspace, 1999.

[17] R. C. Miller and K. Bharat. Sphinx: a framework for

creating personal, site-specific web crawlers. In Proc.

of the 7th Intl. WWW Conf., 1998.

[18] Open directory. http://www.dmoz.org.

[19] Y. Papakonstantinou, H. Garcia-Molina, A. Gupta,

and J. Ullman. A query translation scheme for
rapid implementation of wrappers. In Proc. of the

4th Intl. Conf. on Deductive and Object-Oriented

Databases, pages 161–186, National University of
Singapore(NUS), Singapore, 1995.

[20] S. Raghavan and H. Garcia-Molina. Crawling the hid-

den web. Technical Report 2000-36, Computer Sci-
ence Dept., Stanford University, Dec. 2000. Available

at http://dbpubs.stanford.edu/pub/2000-36.

[21] Whizbang! labs. http://www.whizbanglabs.com.

[22] Yahoo incorporated. http://www.yahoo.com.

[23] H.-J.Zimmermann. Fuzzy Set Theory. Kluwer Aca-

demic Publishers, 1996.

