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Abstract

Circular RNAs (circRNAs) are non-coding RNAs with a special circular structure produced

formed by the reverse splicing mechanism. Increasing evidence shows that circular RNAs

can directly bind to RNA-binding proteins (RBP) and play an important role in a variety of

biological activities. The interactions between circRNAs and RBPs are key to comprehend-

ing the mechanism of posttranscriptional regulation. Accurately identifying binding sites is

very useful for analyzing interactions. In past research, some predictors on the basis of

machine learning (ML) have been presented, but prediction accuracy still needs to be ame-

liorated. Therefore, we present a novel calculation model, CRBPDL, which uses an Ada-

boost integrated deep hierarchical network to identify the binding sites of circular RNA-RBP.

CRBPDL combines five different feature encoding schemes to encode the original RNA

sequence, uses deep multiscale residual networks (MSRN) and bidirectional gating recur-

rent units (BiGRUs) to effectively learn high-level feature representations, it is sufficient to

extract local and global context information at the same time. Additionally, a self-attention

mechanism is employed to train the robustness of the CRBPDL. Ultimately, the Adaboost

algorithm is applied to integrate deep learning (DL) model to improve prediction perfor-

mance and reliability of the model. To verify the usefulness of CRBPDL, we compared the

efficiency with state-of-the-art methods on 37 circular RNA data sets and 31 linear RNA

data sets. Moreover, results display that CRBPDL is capable of performing universal, reli-

able, and robust. The code and data sets are obtainable at https://github.com/nmt315320/

CRBPDL.git.

Author summary

More and more evidences show that circular RNA can directly bind to proteins and par-

ticipate in countless different biological processes. The calculation method can quickly

and accurately predict the binding site of circular RNA and RBP. In order to identify the

interaction of circRNA with 37 different types of circRNA binding proteins, we developed

an integrated deep learning network based on hierarchical network, called CRBPDL. It
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can effectively learn high-level feature representations. The performance of the model was

verified through comparative experiments of different feature extraction algorithms, dif-

ferent deep learning models and classifier models. Moreover, the CRBPDL model was

applied to 31 linear RNAs, and the effectiveness of our method was proved by comparison

with the results of current excellent algorithms. It is expected that the CRBPDL model can

effectively predict the binding site of circular RNA-RBP and provide reliable candidates

for further biological experiments.

This is a PLOS Computational Biology Methods paper.

Introduction

Circular RNA (circRNA) is a special circular endogenous noncoding RNA produced by selec-

tive shearing [1,2]. It has been proven to be widely present in Drosophila, mice, the hippocam-

pus and human cells and tissues [3,4]. Although the RNA-binding proteins (RBP) binding sites

on circular RNAs are less numerous than those on linear mRNAs, there is still strong evidence

to support the interaction of RBPs with circular RNAs [5,6]. On the one hand, circRNAs can

regulate RBPs in a variety of ways. CircRNAs can competitively bind to RBPs, regulate the func-

tion of RBPs, and act as sponges of RBPs, platforms for RBP assembly, and supertransporters

that concentrate certain specific components [7,8]. RBP-adsorbed circRNA can be used as a reg-

ulatory factor for target gene transcription and splicing [9]. circRNA can also be used as a bait

to retain RBPs in a specific intercellular space and as a scaffold to promote contact between two

or more RBPs [10]. On the other hand, the influence of RBPs on circRNAs is becoming increas-

ingly prominent. As a protein that binds to double-stranded or single-stranded RNA, RBPs are

present throughout the life of RNA and mediate the maturation [11], transport [12], positioning

and translation of RNA [13]. RBPs affect the entire process of the circRNA life cycle, and some

RBPs are also involved in the generation of circRNAs, such as Quking (QKI), FUS, and

HNRNPL. Moreover, they are involved in almost every aspect of the cyclic RNA life cycle,

including generation [14], posttranscriptional regulation [15], and functional execution [16].

Some specific RBPs are tissue-specific or produced under pathological conditions, and their

expression defects can cause a variety of diseases and other effects. Multiple studies have shown

that the interaction between circular RNA and RBP has an important impact on cancer and

other diseases and may be a disease of biomarkers [10,17–21]. Therefore, predicting the binding

site of RNA and RBP can provide insight into the mechanisms underlying diseases involving

RBPs and help to further explore the role of circRNA in disease pathophysiology.

As a promising method, machine learning has been used to solve various biological prob-

lems, its superiority has been proven many times, and it has gradually been used to identify the

binding sites of circular RNA-RBP [22]. Matizka et al. proposed the GraphProt method, which

can learn secondary structure characteristics, and used support vector machine (SVM) to pre-

dict binding sites and affinity of RBPs in all tissues [23]. Corrado et al. applied recommenda-

tion algorithm to recommend RNA targets for RNA-binding proteins based on protein

domain composition and RNA predicted secondary structure features [24]. Yu et al. employed

the random forest algorithm (RF) to predict specific and general RBP sites based on motif

information [25]. The above machine learning models are mainly based on the structural char-

acteristics of RNA sequences to identify the binding sites of circular RNA-RBP [26,27].
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Deep learning has fulfilled remarkable accomplishment in the field of bioinformatics

recently [28–30], which also includes the prediction of RNA-protein interactions The Deep-

Bind method utilized convolutional neural network (CNN) to learn binding preference of

individual RBPs and obtains better performance [31]. Pan et al. proposed iDeepE method,

which uses the global CNN model to predict the binding site by studying RNA sequences [32].

In addition, they further used two separate CNNs and a long-term short-term memory net-

work to learn the sites [33]. Pan et al. further used multilabel classification and deep learning

to identify multiple RBPs that can interact with RNA [34]. Jia et al. constructed an hybrid deep

neural network [35]. Zhang advanced a new stacked codon coding scheme and combined it

with hybrid deep learning to complete the prediction [36]. Yang et al. constructed a multiscale

neural network and predicted the binding site of circRBA-RBP based on contextual sequence

information [37]. However, the feature learning network is relatively simple, and there is still

potential for improvement in prediction performance.

In our work, we establish a novel computational predictor CRBPDL, which based on an

ensemble deep network to identify circRNA-RBP interaction sites. First, we adopted 5 coding

schemes to provide comprehensive feature information for model training, including k-nucle-

otide frequency (KNF), Doc2vec, electron-ion interaction pseudopotential (EIIP), nucleotide

chemical properties (CCN) And cumulative nucleotide frequency (ANF). Due to the different

distributions of feature descriptors, we first applied convolution filters to the features respec-

tively, and then concatenated them into a feature matrix. Subsequently, to automatically

extract high-order local and global context information from feature descriptors, we con-

structed a deep neural network architecture, which consists of a deep multi-scale residual net-

work (ResNet) and a bidirectional gated recurrent unit with a self-attention mechanism

(BiGRUs) network composition. We used deep multi-scale residual networks (MRSN) and

BiGRUs to learn local and global contextual information, and can effectively represent high-

level features. Then, used the self-attention mechanism to train the robustness of the model.

After model training and selection, we can get the optimized deep learning model (for conve-

nience, the deep learning model before integration is named "sig-CRBPDL"). Finally, the Ada-

Boost algorithm was used to integrate the deep learning model. We benchmarked CRBPDL

and existing predictors on the unified circRNA dataset. The benchmark test results clearly

showed the superiority of our proposed CRBPDL. In addition, CRBPDL has the potential to

recognize linear RNA-RBP interaction sites. The benchmark results showed that CRBPDL also

has stable performance in predicting linear RNA-RBP binding sites. The structure of the

CRBPDL model is shown in Fig 1.

Results

Model performance under different network layers

Network depth has great effects on the performance of deep learning models. Different net-

work depths will lead to diverse results. A relatively shallow network will make the model per-

form poorly, and an overly complex network will increase the calculation of the model. This

section analyzed the model performance changes under different network layers. We com-

pared the increase and decrease: reducing one MSRB block, that is, a 3-layer convolutional net-

work layer, and adding an MSRB block, which means adding a 3-layer convolutional neural

network, respectively named CRBP-3 and CRBP+3 for convenience of description. We calcu-

lated the prediction performance of CRBPDL, CRBPDL-3 and CRBPDL+3 (AUC as an evalua-

tion index) and running time under 37 data sets (Fig 2A).

First, it can be seen from the scatter plot that the AUC value distribution of CRBPDL is

0.9174, which is higher than that of CRBPDL-3 (0.8995), and the running time is the opposite.
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The AUCs of the CRBPDL and CRBPDL+3 (AUC is 0.9011) distributions are not very differ-

ent, but the running times are quite different. On the other hand, by observing the distribution

of the maximum, minimum, and average values in the box chart, it can be found that the mid-

line positions of the three are similar, but the bottom positions of the CRBPDL-3 and

CRBPDL+3AUC box charts are lower. The top position of the box chart for CRBPDL+3 time

is higher. The prediction performance distributions of CRBPDL-3 and CRBPDL+3 were quite

different, and the performance is not stable enough. In contrast, the distribution difference of

CRBPDL is smaller, and the stability is better. In terms of time consumption, the performance

of CRBPDL-3 is better than that of CRBPDL, but the difference is small. This proves the com-

plexity of the network layer may impact the behavior of the network. It also shows in practical

applications, when faced with the needs of different time consumption and prediction effects,

both the progressive neural network and the deep neural network have research significance

and value.

Model performance under different epoch times

This section statistically analyzes the changes in the loss and ACC of the training set and the

validation set during the training phase and accordingly analyzes the impact of epoch on the

model performance and the convergence of the model. If the graphs of all 37 data sets are

Fig 1. The overall framework of CRBPDL. (A) The workflow of the development and assessment process of CRBPDL. (B) The structure of the sig-CRBPDL

framework, including the input layer, convolutional layers, merger layers, inception module, attention layers, fully connected layers and output layer.

https://doi.org/10.1371/journal.pcbi.1009798.g001
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displayed, there are too many pictures. Therefore, we only randomly selected 9 results for dis-

play, and can illustrate the effects of different data sets (the loss results of the remaining 28

data sets can be seen in S1 Text). This section mainly analyzes 9 out of 37 data sets which are

AGO1, AGO2, U2AF65, DGCR8, FOX2, WTAP, EIF4A3, FMRP, and ZC3H7B. The results of

the 9 data sets are shown in Fig 2B.

We can see that as the epoch time increases, the train-acc and validation-acc of CRBPDL

both show an upward trend, and the overall train-loss and validation-loss show a downward

trend and gradually stabilize; the model gradually converges, and training results are gradually

optimized. The obvious performance of overfitting is that the performance of the training set

is particularly fine, but the performance of the verification set is exceptionally poor. It can be

found that in the 5th and 6th data sets of the 9 data sets, the trend of the acc curve is quite dif-

ferent. The performance effect of train-acc is obviously better than that of validation-acc.

There is an obvious overfitting phenomenon, but not in the other 7 data sets. The reason for

this difference may be that the data volumes of AGO3 and WTAP (that is, the 5th and 6th data

sets) are small (1,210 and 892 data points, respectively), and the learning and training process

of the CRBPDL model is not sufficient. In contrast, the data volume of the other data sets is on

average one hundred times greater, achieving better training results. It can also be seen that

the size of the data set is very important for the performance of deep learning neural networks.

Model performance under different learning rate

As a hyperparameter of the neural network, the learning rate can be used to improve the per-

formance of the model. The lower the learning rate is, the slower the gradient rate. When

determining the learning rate, it’s generally essential to rely on the comparison of old experi-

ence and multiple experiments. The section analyzes the effect of the learning rate. To compare

the effect, we analyzed three learning rate attenuation schemes (step-based attenuation learn-

ing rate scheme, linear learning rate attenuation scheme, polynomial learning rate scheme)

Fig 2. (A) Comparison of model performance between different network depths visualized by box and fiddle charts. (B) Model

performance analysis under different EPOCH. (C) Comparison of model performance under different learning rate schemes.

(D) Comparison of model performance under different feature coding schemes.

https://doi.org/10.1371/journal.pcbi.1009798.g002
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and two fixed learning rates (0.002, 0.0005). Fig 2C shows the comparison of the AUC of the

network optimization process when uses different learning rates.

On all circRNA data sets, the Adam method achieved an average AUC value of 0.9284,

which was significantly better than the 0.8926 of the linear scheme and the effect of two fixed

learning rates (average AUC of 0.8167 and 0.8747, respectively). Although it is not much dif-

ferent from the average AUC value of 0.9273 of the step scheme, there are two abnormalities in

the step. In contrast, Adam’s performance is relatively stable. By performing an experimental

comparison of five case, it shows that the Adam linear learning rate plan is always better than

other types of plans and has better performance. Therefore, we choose Adam as the learning

rate learning plan.

Model Performance under different feature encoding schemes

To evaluate the contribution of the feature encoding schemes (named Fea-A) in this article,

under the same CRBPDL architecture, we combined the proposed feature with the coding

schemes of PASSION (named Fea-B) [35] and CRIP’s [36] stacked codon coding (named Fea-

C). The AUC values of the 37 data sets are shown in the line graph of Fig 2D.

First of all, by observing the trend of the line chart, we can find that the AUC value of Fea-A

is higher than that of Fea-B and Fea-C on multiple data. In addition, our method Fea-A

obtains an average AUC value of 0.9201, which is not only upper than the 0.8928 of the Fea-B,

but also superior than the 0.8792 of the Fea-C. For one thing, Fea-B uses 6 hand-designed fea-

tures, and it is possible that a single hand-designed function is not suitable for advanced net-

work architectures. For another thing, Fea-C is an improvement of one-hot encoding, which

only uses feature type references in the pseudo-translation process. This may cause CRBPDL

to fail to fully understand enough information in the circRNA-RBP interaction. Furthermore,

the experimental results prove the validity of our feature encoding schemes.

In addition, we analyzed the different performance of the five feature encodes, and the

results were shown in Fig 3A. It can be found that on 37 data sets, the Doc2vec coding scheme

is relatively better than the other four. It shows that the global text characteristics of RBP bind-

ing sites are relatively obvious. Our word vector model seems to have learned the subtle

sequence context from semantics, thereby improving the recognition performance. For cir-

cRNA data sets, the experimental results show that the self-learning word vector encoding

scheme proposed in this paper has a good application prospect. Based on the word vectors

obtained, whether the conservative motifs of the binding sites can be analyzed.

Performance of neural network structures with different depths

To prove the effectiveness of our proposed CRBPDL, we input our features into different CNN

to compare the prediction performance of different neural networks.We compared its perfor-

mance with 5 structures: CNN-LSTM, iDeepE [32], ResNet [38], CRIP-RNN [36], and

CNN-BiLSTM. CNN-LSTM includes two bidirectional LSTM layers and two fully connected

layers; iDeepE combines output features of the global network and local neural network, and

two layers of local multichannel neural networks (convolution, ReLU and max pooling)

express high-level features and then input the feature map into two fully connected layers;

ResNet uses a 21-layer local multichannel network, inserts a shortcut connection between the

two networks, and makes the network into a corresponding residual network; CRIP uses two

layers, a CNN that extracts high-level features and a RNN that acquires the long-term depen-

dence of sequence; and CNN-BiLSTM uses bi-directional long-short term Memory to inte-

grate data, including two bidirectional LSTM and two fully connected layers. These network

structures can be built with reference to the literature or built by themselves, and the
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parameters of each model have the same parameters as CRBPDL. The experimental result is

displayed in Fig 3B.

As shown in Fig 3B, we find that the average AUCs of all circular RNA data sets are 0.9174,

0.8778, 0.8854, 0.8877, 0.8760, 0.8733, 0.9148, and 0.9201. When the feature codes of this arti-

cle are input into different neural networks, the results obtained are different. The difference is

based on whether the network structure expresses high-level features accurately. Obviously,

the CRBPDL model can learn more valuable sequence information for the identification of cir-

cRNA-RBP interaction sites.

To demonstrate how CRBPDL learns efficient feature representation, we take the “WATP”

data set as an example, and use t-SNE graphs to visualize feature representation. Both dimen-

sions automatically learn CRBPDL. The original features are shown in Fig 3C. We can find

that it is challenging to visually distinguish two categories with primitive characteristics. In

addition, the second level of full connectivity after feature representation (Fig 3D) can be used

to better identify and separate positive and negative examples. Graphical display shows that

CRBPDL can effectively learn excellent feature representations. Moreover, we further analyzed

the different performance of MSRN and BiGRU, as shown in Fig 4A. It can be found that

although the difference between the two is relatively small, the effect of MSRN is significantly

better than that of BiGRU, indicating that in the CRBPDL model, the contribution of MSRN is

greater.

Fig 3. (A) Performance comparison of five feature codes.(B) Heat maps of different network model performance

under 37 data sets.(C) T -SNE scatter plot with original feature coding. (D) T-SNE Scatter Diagram of Deep Feature

after Deep Convolutional Network.

https://doi.org/10.1371/journal.pcbi.1009798.g003
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Performance evaluation of the integration model

In this section, the CRBPDL model and the sig-CRBPDL, RF, SVM, and logistics models and

four other machine learning methods are compared. Among them, the evaluation indicators

include ACC, SE, SP, and MCC. The parameters of the RF [39,40], SVM, and logistics algo-

rithms are experimented with the default parameters, and the results (ACC, SE, SP, MCC) are

shown in Fig 4B. We find that the value of our proposed integrated deep network model

CRBPDL on ACC, SE, SP and MCC is significantly higher than the experimental results of RF,

SVM and logistics, and the average values of SE, SP, MCC, ACC are 0.8548, 0.7796, 0.6897,

and 0.8739. Compared with the single deep network model sig-CRBPDL, there is also a certain

level of improvement, indicating that the integrated deep learning model CRBPDL improves

the prediction performance of circRNA-RBP interaction sites.

Prediction performance of CRBPDL on 37 circRNA data sets

In this part, the prediction performance of CRBPDL, iCircRBP-DHN [37] and CRIP [36],

PASSION [35], CSCRSites [41] and CircSLNN [42] and five other existing calculation meth-

ods are measured by AUC. CSCRSites was based on multiple convolutional thermal coding

layers to identify cancer-specific RBP binding sites on circular RNAs. In contrast, CircSLNN

used a sequence tagging network to recognize the interaction site. In terms of fairness, the six

methods were tested on a unified benchmark data set, using the same sequence similarity

threshold. In addition, the same setting environment is used as the model iCircRBP-DHN.

The AUC results and average values of other comparative experiments are shown in Table 1,

obtained directly from the literature (the maximum value was shown in bold) [37].

Fig 4. (A) Performance comparison of MSRN and BiGRU. (B) The performance comparison between CRBPDL integrated model and various classification

algorithms (C) ROC curves of 37 datasets under the integration model (D) Radar chart of ACC indicators of CRBPDL model under 31 lncRNA datasets.

https://doi.org/10.1371/journal.pcbi.1009798.g004
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As shown in Table 1, the average values of CRBPDL, iCircRBP-DHN, PASSION, CRIP,

CSCRites and CircSLNN are 0.9188, 0.908±0.06, 0.884±0.06, 0.876±0.07, 0.842±0.07 and 0.809

±0.010, respectively. Obviously, our model improves the state-of-the-art performance in 28 of

the 37 and accomplishes the supreme average AUCs of 0.9174, specifically in AGO1, AGO2,

ALKBH5 and MOV10. And we provide the ROC curve of CRBPDL, and the average ROC

curve (Fig 4C). The results fully indicate the enhancement of CRBPDL. At the same time, we

also noticed that on the 6 data sets, the performance of CRBPDL has a very small gap with

iCircRBP-DHN and PASSION, especially 4 of them are slightly worse than PASSION. The

Table 1. Comparison of prediction performance under different classification models on 37 circRNA datasets.

dataset CRBPDL iCircRBP-DHN PASSION CRIP CSCRites CircSLNN

AGO1 0.9232 0.898±0.003 0.909±0.003 0.905±0.002 0851±0.002 0.844±0.002

AGO2 0.8233 0.797±0.004 0.822±0.003 0.811±0.001 0.755±0.127 0.715±0.013

AGO3 0.9472 0.920±0.016 0.909±0.008 0.895±0.002 0.820±0.004 0.860±0.006

ALKBH5 0.9952 0.979±0.004 0.752±0.030 0.721±0.008 0.798±0.009 0.583±0.014

AUF1 0.9810 0.985±0.002 0.979±0.003 0.980±0.000 0.940±0.001 0.971±0.001

C17ORF85 0.9881 0.987±0.002 0.860±0.021 0.813±0.007 0.815±0.012 0.721±0.010

C22ORF28 0.9088 0.913±0.004 0.894±0.008 0.876±0.002 0.878±0.002 0.797±0.001

CAPRIN1 0.8765 0.858±0.012 0.860±0.009 0.843±0.003 0.827±0.002 0.745±0.008

DGCR8 0.9236 0.906±0.002 0.917±0.002 0.914±0.001 0.870±0.002 0.846±0.002

EIF4A3 0.853 0.799±0.003 0.823±0.004 0.812±0.001 0.820±0.001 0.717±0.005

EWSR1 0.9443 0.942±0.004 0.938±0.006 0.936±0.001 0.882±0.002 0.906±0.002

FMRP 0.8966 0.892±0.002 0.900±0.002 0.898±0.001 0.890±0.001 0.826±0.003

FOX2 0.9618 0.958±0.005 0.830±0.034 0.815±0.006 0.755±0.010 0.602±0.033

FUS 0.8618 0.855±0.004 0.859±0.002 0.858±0.002 0.799±0.003 0.770±0.003

FXR1 0.9948 0.994±0.001 0.959±0.009 0.952±0.003 0.871±0.003 0.942±0.004

FXR2 0.9518 0.939±0.009 0.941±0.003 0.938±0.002 0.868±0.002 0.896±0.004

HNRNPC 0.9771 0.977±0.001 0.976±0.001 0.972±0.000 0.973±0.001 0.970±0.001

HUR 0.8758 0.867±0.005 0.879±0.006 0.874±0.001 0.850±0.001 0.796±0.009

IGF2BP1 0.8554 0.843±0.002 0.845±0.003 0.843±0.001 0.835±0.003 0.760±0.009

IGF2BP2 0.8426 0.831±0.004 0.827±0.009 0.821±0.002 0.752±0.126 0.740±0.004

IGF2BP3 0.8229 0.816±0.004 0.831±0.003 0.822±0.002 0.754±0.122 0.706±0.003

LIN28A 0.8751 0.857±0.007 0.875±0.005 0.865±0.001 0.840±0.002 0.777±0.003

LIN28B 0.9014 0.892±0.004 0.889±0.005 0.882±0.001 0.758±0.129 0.822±0.003

METTL3 0.8649 0.852±0.009 0.878±0.010 0.854±0.003 0.808±0.003 0.772±0.007

MOV10 0.8674 0.838±0.006 0.845±0.005 0.849±0.001 0.778±0.004 0.777±0.008

PTB 0.8347 0.822±0.006 0.829±0.004 0.826±0.001 0.692±0.157 0.738±0.007

PUM2 0.9758 0.970±0.004 0.952±0.004 0.953±0.001 0.936±0.001 0.932±0.002

QKI 0.9879 0.971±0.006 0.927±0.005 0.921±0.003 0.866±0.004 0.866±0.007

SFRS1 0.9684 0.964±0.000 0.965±0.003 0.964±0.001 0.963±0.001 0.926±0.003

TAF15 0.9945 0.992±0.002 0.967±0.002 0.965±0.001 0.941±0.002 0.968±0.002

TDP43 0.9336 0.926±0.002 0.934±0.002 0.930±0.001 0.923±0.001 0.896±0.003

TIA1 0.9666 0.961±0.004 0.935±0.006 0.932±0.003 0.915±0.009 0.901±003

TIAL1 0.9249 0.917±0.003 0.906±0.003 0.902±0.001 0.898±0.002 0.871±0.005

TNRC6 0.9797 0.967±0.002 0.785±0.010 0.741±0.007 0.729±0.010 0.662±0.015

U2AF65 0.9306 0.926±0.002 0.930±0.002 0.928±0.001 0.911±0.001 0.899±0.004

WTAP 0.9713 0.967±0.002 0.794±0.069 0.793±0.011 0.808±0.022 0.732±0.009

ZC3HB 0.8151 0.804±0.003 0.804±0.005 0.792±0.002 0.794±0.004 0.697±0.008

AVG 0.9188 0.908±0.06 0.884±0.06 0.876±0.07 0.842±0.07 0.809±0.010

https://doi.org/10.1371/journal.pcbi.1009798.t001
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underlying reason may be that PASSION has extracted 6 types. This shows that manual fea-

tures including richer sequence information can be used, and integrated optimization algo-

rithms can also be used. In addition, CRBPDL is better than CircSLNN, but CircSLNN is a

sequence tagging method that can predict the location of the binding site. Therefore, as a new

research direction, we can consider whether we can improve the accuracy of predicting the

position of the binding site, not just as a binary classification problem.

Prediction performance of CRBPDL on 31 linear data sets

Similar to CRIP and PASSION, our CRBPDL also has the ability to identify linear RNA-pro-

tein interactions. To demonstrate the performance of our model CRBPDL, we compare it with

ICIRCRBP-DHN, CRIP, iDeepS, DEEPBbind, CSCrites, and CIRCSLNN. To make a fair com-

parison, we used the same experimental data as the iCircRBP-DHN, and the results of the

other comparative experiments were obtained directly from the literature [37]. The experi-

mental results are shown in Table 2. From Table 2, CRBPDL obtained an average AUC of

Table 2. Comparison of prediction performance under different classification models on 31 linear RNA datasets.

dataset CRBPDL iCircRBP-DHN CRIP iDeepS DeepBind CSCRites CircSLNN

AGO1234 0.8178 0.788±0.041 0.737±0.005 0.708 0.687 0.708±0.004 0.662±0.015

AGO2MNAS 0.7995 0.736±0.069 0.598±0.009 0.564 0.535 0.583±0.005 0.557±0.007

2-bingding_1 0.9353 0.925±0.011 0.862±0.004 0.788 0.811 0.842±0.003 0.795±0.006

2-bingding_2 0.9439 0.929±0.014 0.852±0.007 0.831 0.814 0.828±0.003 0.754±0.004

AGO2 0.9088 0.800±0.010 0.638±0.006 0.639 0.585 0.636±0.005 0.562±0.017

eIF4AIII_1 0.9753 0.963±0.004 0.952±0.001 0.942 0.925 0.937±0.004 0.894±0.005

eIF4AIII_2 0.9851 0.963±0.006 0.954±0.001 0.945 0.933 0.944±0.002 0.897±0.006

ELVAL1-1 0.9482 0.939±0.006 0.918±0.002 0.914 0.903 0.910±0.001 0.882±0.005

ELVAL1-MNASE 0.7325 0.695±0.050 0.604±0.007 0.567 0.546 0.581±0.010 0.520±0.13

ELVAL1-A 0.9377 0.922±0.006 0.898±0.002 0.888 0.869 0.876±0.002 0.845±0.006

ELVAL1-2 0.9482 0.943±0.002 0.926±0.001 0.937 0.914 0.925±0.001 0.898±0.002

EWSR1 0.9217 0.918±0.005 0.912±0.003 0.919 0.882 0.884±0.001 0.851±.004

FUS 0.9596 0.947±0.007 0.941±0.001 0.934 0.926 0.907±0.002 0.905±0.007

mut-FUS 0.9621 0.946±0.006 0.939±0.001 0.938 0.915 0.907±0.002 0.9070.013

IGF2BP1-3 0.8156 0.781±0.031 0.693±0.005 0.691 0.685 0.703±0.005 0.597±0.013

hnRNPC-1 0.9514 0.952±0.009 0.963±0.001 0.966 0.954 0.936±0.004 0.935±0.004

hnRNPC-2 0.9891 0.974±0.002 0.985±0.000 0.982 0.976 0.967±0.002 0.962±0.001

hnRNPL-1 0.8583 0.829±0.032 0.748±0.005 0.659 0.761 0.650±0.007 0.670±0.011

hnRNPL-2 0.7995 0.761±0.027 0.740±0.007 0.671 0.74 0.636±0.004 0.654±0.014

HnRNPL-like 0.8008 0.779±0.021 0.685±0.010 0.644 0.708 0.632±0.010 0.636±0.014

MOV10 0.8971 0.885±0.010 0.814±0.002 0.807 0.803 0.803±0.003 0.764±0.010

NSUN2 0.8681 0.832±0.008 0.865±0.003 0.789 0.847 0.798±0.004 0.776±0.015

PUM2 0.9782 0.969±0.003 0.963±0.003 0.966 0.937 0.959±0.002 0.920±0.004

QKI 0.9786 0.962±0.002 0.967±0.001 0.972 0.955 0.956±0.001 0.929±0.004

SFRS1 0.9236 0.912±0.007 0.886±0.004 0.888 0.86 0.885±0.003 0.794±0.008

TAF1S 0.9336 0.971±0.002 0.963±0.001 0.961 0.956 0.922±0.004 0.925±0.002

TDP-43 0.946 0.928±0.013 0.911±0.002 0.914 0.902 0.913±0.003 0.841±0.009

TIA1 0.9636 0.945±0.011 0.930±0.001 0.916 0.908 0.891±0.001 0.894±0.005

TIAL1 0.9799 0.915±0.012 0.898±0.002 0.885 0.881 0.864±0.004 0.847±0.009

U2AF65 0.9782 0.971±0.007 0.968±0.001 0.965 0.959 0.918±0.002 0.932±0.003

Y2AF65 0.969 0.951±0.005 0.935±0.002 0.927 0.916 0.906±0.004 0.893±0.002

Ave 0.9163 0.895±0.08 0.860±0.012 0.842 0.839 0.833±0.012 0.803±0.013

https://doi.org/10.1371/journal.pcbi.1009798.t002
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0.9163, which is significantly superior than 0.895, 0.860, 0.842, 0.839, 0.833 and 0.803 of other

methods. And on the 31 data sets, only the AUC of hnRNPC-1 is slightly lower than PASSION.

In the remaining 30 data sets, our performance is still better than other methods. In addition,

we have given the ACC on 31 data sets (Fig 4D), and we can find that the accuracy on the 31

data sets can meet the identification requirements of linear RNA-RBP binding sites.

Conclusion

In this paper, we design a new deep learning method, called CRBPDL, for circular RNA-RBP

interaction site identification. Based on the MSRN framework, CRBPDL first connects the five

codes into a single feature vector. Then MSRB is used to automatically explore higher-level

local or global context dependencies and obtain high-level sequence features. Subsequently,

the output of each MSRB is combined for global hierarchical feature fusion. And add self-

Attention to grasp more critical and relevant features and improve prediction performance.

Finally, an integrated deep learning network is constructed based on the Adaboost algorithm.

Through the visualization of feature representation, this unique architecture has proven to be

effective. To verify CRBPDL, we performed predictions of the binding sites of circRNA and

linear RNA and evaluated the performance of different methods. The comparison of 37 circu-

lar RNA data sets and 31 linear RNAs not only proves the effectiveness of our method but also

shows the potential of the model in the identification of circular RNA-RBP interaction sites.

Currently, there are few data on known RBP binding sites. The positive and negative samples

are unbalanced. Therefore, the most important thing is that future research is to expand the

data set, collect RBP binding sites that bind to circRNA, lncRNA or other RNAs, explore their

binding characteristics, and develop universal prediction software.

Materials and methods

Data sets

To prove the effectiveness of our proposed CRBPDL and make a fair comparison with other

tools at the same time, we used the benchmark data set (named as ‘circRNA_RBP-37’) used in

[35,37,42]. The data set consists of 37 RBPs downloaded from the circinteractome database

(https://circinteractome.nia.nih.gov/) [19]. The database collects RBP bound to mature circu-

lar RNA and RBP bound to the upstream and downstream sequences of mature circular RNA.

Since RBP binding may play a role in regulating splicing events near the splicing site, we con-

sidered all RBP binding sites in this study. In the end, we obtained a total of 32,216 circular

RNAs related to 37 circular RNA data sets. Among them, the positive sample came from the

interaction site on the circular RNA verified by the laboratory. In each CLIP-seq peak, the

sequence fragment with a length of 101 nucleotides (nt) was centered and extends 50 nucleo-

tides (nt) in both directions. At the same time, negative sequences were randomly selected

from the left-over circular RNA fragments. Subsequently, we applied the same postprocessing

method to extract the 101 nucleotide length (nt) binding sites/residual intermediate readings

in the previous work [17,18]. Since sequence similarity will influence the consistency of the

ML, we used CD-HIT to eliminate the sequence with a similarity threshold of 0.8, which is the

same as in CRIP and PASSION. After removing sequence redundancy, we got the final data

set, namely the positive and negative samples are 335,976 and 335,976 respectively. 80% of the

data sets were selected as training set, and 20% were used as test set.

Additionally, refer to other studies [17,18], we compared the efficiency of CRBPDL to iden-

tify the linear RNA -RBP interaction sites. We downloaded the linear RNA data set from PAS-

SION [35] and iDeepS [22], which includes the linear RNA dataset of CLIP-Seq data

combined with 31 RBP. Each data set has 5,000 training sets and 1,000 test sets.
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Feature encoding

k-nucleotide frequencies. To characterize the local context features of circular RNA

sequences, we used KNF coding sequences. KNF describes the frequency of all possible poly-

nucleotides of k nucleotides in the sequence. In this study, we took k = 1, 2, 3, namely single-

nucleotide composition frequency, dinucleotide composition frequency and trinucleotide

composition frequency. KNF retains a large number of original sequence patterns and inte-

grates a variety of sequence information [43,44]. Compared with traditional single hot spot

representation [45], KNF effectively compensates for the lack of information.

Doc2vec. In recent DL model research, to learn more sequence context and semantic

information, an increasing number of sequence studies have adopted continuous, high-dimen-

sional word embedding-based coding to substitute one-hot coding, and have achieved good

results. Therefore, based on the circRNA corpus of circBase [46], we used the Distributed

Memory Model of Paragraph Vectors (PV-DM) model of the Doc2Vec algorithm to vectorize

the sequence [47] and train the vectorized model Doc2Vec.model. After that, sequence data

were input into the model, 10-mer sequence fragments were taken as circular RNA words, and

word embedding training was used to obtain feature vectors. In this way, learning as a contin-

uous distribution representation of global context features expands the vocabulary and can

capture the semantics and grammar in these subsequences for long-term dependency

modeling.

Electron–ion interaction pseudopotential. The EIIP [48] describes the characteristics of

free electron energy on the circRNA sequences. EIIP was widely used to predict the binding

sites of RBPs. The EIIP values of the four characters that may appear in the sequence (ie, “A”,

“T”, “C”, “G”) are 0.1260, 0.1335, 0.1340 and 0.0806. Hence the EIIP coding method can be

used to encode DNA sequence as a digital vector. For example, AATCCGA encoding is a

numeric vector consisting of (0.1260, 0.1260,0.1335, 0.1340, 0.1340, 0.0806,0.1260).

Chemical characteristic of nucleotide. Each nucleotide has three types of chemical char-

acteristics (CCN): chemical functions (including amino and keto groups), ring structure

(including bicyclic purines and monocyclic pyrimidines), and hydrogen bonds (including

weak hydrogen bonds and strong hydrogen bonds) [49]. For the ring structure, A and G

belong to purines, coded as 1, and C and T belong to pyrimidines, coded as 0. For chemical

functions, A and C belong to amino groups, coded as 1; G and T belong to ketone groups,

coded as 0. For hydrogen bonds, A and T belong to a weak hydrogen bond, coded as 1, while

C and G belong to a strong hydrogen bond, coded as 0. For example, AATCCGA can be

encoded as (1,1,1,1,1,1,0,0,1,0,1,0,0,1,0,1,0,0,1,1,1).

Accumulated nucleotide frequency. ANF presents the density characteristics of nucleo-

tide sequence [49]. Suppose a circRNA sequence S = s1s2. . .si, where i is the length of S. Sj =

s1s2. . .sj, j is the length of Sj. Sj is the j-th prefix sequence of S. Then the ANF calculation for-

mula is:

ANFsj ¼
fðsjÞ
j

ð1Þ

f ðsjÞ ¼
Pj

n¼1
TðstÞ;TðstÞ ¼

1; st ¼ sj
0; st 6¼ sj

ð2Þ

(

Multiscale residual network

To obtain rich feature information, a multi-scale CNN layer is constructed to capture high-

level features. Unlike traditional Convolutional Neural Networks, different from traditional
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CNN, multiscale residual network can improve the information trend flow and gradient of the

whole network, reduce the computational complexity and improve the model performance

[50].

In the MSRN framework, due to the different distributions of the five feature descriptors,

we employed convolution filters on five characteristics with a convolution kernel of 128 and

then cascaded, which is a common method to balance the distribution of biological features.

Afterwards, the MSRN framework contained a shallow CNN extraction layer, and the size of

the convolution kernel was 3. Then, the inception module, including 6 cascaded multiscale

residual block (MSRB) modules, was used, and the convolution kernel was 64. Each MSRB

includes a 3 convolutional layer. Based on the hierarchical feature fusion structure (HFFS), the

output of each MSRB was combined to perform global feature fusion. Subsequently, following

input to a layer of convolution kernel, there were 192 filters, and a 1×1 convolution can

increase and decrease the number of channels, organize information across channels, and

increase feature transformation with a small amount of calculation and nonlinear transforma-

tion to improve the network expression ability. After that, there was a merge layer with a drop-

out value of 0.4.

bidirectional gating recurrent unit

For circRNA sequences, besides local background information, there are also long-chain

dependencies [51]. Multiscale residual block network can capture only the dependencies

between sequences. Therefore, the study employed a Bidirectional GRU to obtain context

information from the front and back at the same time to improve the performance.

Bidirectional GRU has only two gates, namely, the update and the reset gate. The update

gate controls the extent to which the state information at the previous moment is brought into

the current state. The larger the value of the update gate, the more the state information at the

previous moment is brought in. The reset gate is used to control the degree of ignoring the

state information at the previous moment. The smaller the reset gate, the more information is

ignored. The bidirectional GRU can adaptively change its state according to the input, thereby

solving the problem of vanishing gradient in RNN.

Self-Attention

The self-attention mechanism was to adaptively pay attention to and learn an important part

according to the needs, and ignore the insignificant part. It was widely used in various deep

learning applications, including vision processing, phosphorylation site prediction, drug target

prediction, etc. [52]. The intention of the attention mechanism is to neglect insignificant word

in the bulk of information, selectively filter out a particle of important information, and and

express the importance of the information by calculating the weight of the information.

In this research, in our model CRBPDL, the output matrix of the BiGRU layer and its trans-

posed matrix were input into the attention layer, and different features were given different

weights, and important features were selected from the dimensional features. Abandon some

secondary features and used sigmoid as the activation function.

Implementation

CRBPDL was implemented using the Keras 1.1.2 library in Python. First, we used 80% of the

benchmark data set for the training and 20% for testing. Then, on the training set, 80% for

training and 20% for verification. Acc was used to evaluate each parameter setting. The verifi-

cation data set was applicable to monitor the astringency of each stage in the training process,

and the training process can be quitted in advance. The study adopted the update method of
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the learning rate of the Adam gradient descent algorithm, where the initial learning rate is set

to 0.001, the max epochs is 200, the epochs is 30, and the batch size is 50. In addition, we have

also adopted a variety of techniques to prevent or reduce overfitting, such as batch normaliza-

tion [50], dropout [51] and early stopping. We used the selected optimal parameter settings,

used all training data to train the model, chose the model with the greatest performance as the

base model, employed AdaBoost for ensemble, and applied the integrated model as the

computational model. AdaBoost is an iterative algorithm. Its core idea is to train different clas-

sifiers (weak classifiers) for the same training set, and then group these weak classifiers to form

a stronger final classifier (strong classifier) [53,54].

Evaluation metrics

In this study, we employed five evaluation metrics: sensitivity (SE), specificity (SP), accuracy

(ACC), Matthew’s correlation coefficient (MCC) and AUC [55–63], defined as follows:

SE ¼
TP

TPþ FN
ð3Þ

SP ¼
TN

TN þ FP
ð4Þ

ACC ¼
TN þ TP

TN þ FP þ TP þ FN
ð5Þ

MCC ¼
ðTP � TNÞ � ðFP� FNÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTP þ FPÞ � ðTP þ FNÞ � ðTN þ FPÞ � ðTN þ FNÞ

p ð6Þ

where TP, TN, FP and FN denote the numbers of true positives, true negatives, false positives

and false negatives, respectively. Furthermore, the area under the curve (AUC) is the area

under the ROC curve.
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