The CRC Handbook of
 Combinatorial Designs

Edited by
Charles J. Colbourn
Department of Computer Science and Engineering
Arizona State University

Jeffrey H. Dinitz
Department of Mathematics and Statistics
University of Vermont

AUTHOR PREPARATION VERSION
$21^{\text {st }}$ April 2006

36.1 NBIBDs: Definition and Example

36.1 Definition If the blocks of a $\operatorname{BIBD}\left(\mathcal{V}, \mathcal{D}_{1}\right)$ with v symbols in b_{1} blocks of size k_{1} are each partitioned into sub-blocks of size k_{2}, and the $b_{2}=b_{1} k_{1} / k_{2}$ sub-blocks themselves constitute a $\operatorname{BIBD}\left(V, \mathcal{D}_{2}\right)$, then the system of blocks, sub-blocks and symbols is a nested balanced incomplete block design (nested BIBD or NBIBD) with parameters $\left(v, b_{1}, b_{2}, r, k_{1}, k_{2}\right), r$ denoting the common replication. $\left(V, \mathcal{D}_{1}\right)$ and $\left(V, \mathcal{D}_{2}\right)$ are the component BIBDs of the NBIBD.
36.2 Example $\operatorname{An} \operatorname{NBIBD}(16,24,48,15,10,5)$. Sub-blocks are separated by \mid.

$(0,1,2,3,4 \mid 5,6,7,8,9)$	$(0,1,2,3,5 \mid 4,6,10,11,12)$	$(0,1,2,3,6 \mid 4,5,13,14,15)$
$(0,1,10,11,12 \mid 2,3,7,8,9)$	$(0,2,13,14,15 \mid 1,3,7,8,9)$	$(0,3,13,14,15 \mid 1,2,10,11,12)$
$(0,4,5,7,11 \mid 1,8,10,13,14)$	$(0,4,5,9,10 \mid 1,7,12,13,15)$	$(0,4,5,8,12 \mid 1,9,11,14,15)$
$(0,6,7,10,13 \mid 2,4,8,11,14)$	$(0,6,9,12,15 \mid 2,4,7,10,13)$	$(0,6,8,11,14 \mid 2,4,9,12,15)$
$(0,7,8,10,15 \mid 3,5,6,12,14)$	$(0,7,9,12,14 \mid 3,5,6,11,13)$	$(0,8,9,11,13 \mid 3,5,6,10,15)$
$(1,5,7,12,14 \mid 2,6,8,10,15)$	$(1,5,9,11,13 \mid 2,6,7,12,14)$	$(1,5,8,9,15 \mid 2,6,9,11,13)$
$(1,4,6,7,13 \mid 3,8,11,12,15)$	$(1,4,6,9,15 \mid 3,7,10,11,14)$	$(1,4,6,8,14 \mid 3,4,8,12,13)$
$(2,5,7,11,15 \mid 3,4,8,12,13)$	$(2,5,9,10,14 \mid 3,4,7,11,15)$	$(2,5,8,12,13 \mid 3,4,9,10,14)$

36.2 NBIBDs: Existence

36.3 Remarks The necessary conditions for existence of a NBIBD are those for the two component BIBDs $\left(V, \mathcal{D}_{1}\right)$ and $\left(V, \mathcal{D}_{2}\right)$. Together they are: $b_{1} \geq v, v \mid b_{1} k_{1}, v(v-$ 1) $\mid b_{1} k_{1}\left(k_{1}-1\right)$, and $v(v-1) \mid b_{1} k_{1}\left(k_{2}-1\right)$. The necessary conditions are sufficient for $k_{1}=4$ [4].
36.4 Remarks There are 3 non-isomorphic BIBDs with $\left(v, b_{1}, k_{1}\right)=(10,15,6)$ and 960 nonisomorphic BIBDs with $\left(v, b_{2}, k_{2}\right)=(10,30,3)$ but [5] there is no $\operatorname{NBIBD}(10,15,30,9,6,3)$. Thus the necessary conditions are not sufficient. This is the only case of nonexistence, where suitable component designs do exist, for $v \leq 16$ and $r \leq 30$.
36.5 Table Initial blocks for NBIBDs for $v \leq 16$ and $r \leq 16$. One solution, provided at least one exists, is listed for each set of parameters meeting the necessary conditions, except that multiples of r are not listed for fixed values of $\left(v, k_{1}, k_{2}\right)$.

	$\left(v, b_{1}, b_{2}, r, k_{1}, k_{2}\right)$, Blocks
1.	$(5,5,10,4,4,2),(14 \mid 23) \bmod 5$
2.	$(7,7,21,6,6,2),(16\|25\| 43) \bmod 7$
3.	$(7,7,14,6,6,3),(124 \mid 653) \bmod 7$
4.	$(8,14,28,7,4,2),(01 \mid 42)(36 \mid 5 \infty) \bmod 7$
5.	$(9,18,36,8,4,2),(0102 \mid 1020)(1122 \mid 1221) \bmod (3,3)$
6.	$(9,12,36,8,6,2),(12\|36\| 4 \infty)(56\|72\| 0 \infty)(04\|17\| 35) \operatorname{PC}(4), \bmod 8$

7.	$(9,12,24,8,6,3),(134 \mid 26 \infty)(570 \mid 26 \infty)(134 \mid 570) \mathrm{PC}(4), \bmod 8$								
8.	$(9,9,36,8,8,2)(18\|27\| 36 \mid 45), \bmod 9$								
9.	$(9,9,18,8,8,4),(01021020 \mid 11221221) \bmod (3,3)$								
10.	$(10,15,45,9,6,2),\left(0_{0} 2_{0}\left\|3_{0} 2_{1}\right\| 3_{1} 4_{1}\right)\left(2_{0} 3_{0}\left\|0_{0} 3_{1}\right\| 4_{0} 0_{1}\right)\left(0_{0} 0_{1}\left\|1_{0} 3_{1}\right\| 2_{1} 4_{1}\right) \bmod 5$								
11.	($10,15,30,9,6,3)$, No NBIBD exists, see Example 36.28 for ($10,30,60,18,6,3)$								
12.	$(10,10,30,9,9,3),\left(1_{0} 2_{0} 4_{1}\left\|3_{0} 4_{0} 3_{1}\right\| 0_{1} 1_{1} 2_{1}\right)\left(2_{0} 3_{1} 0_{0}\left\|1_{0} 2_{1} 3_{0}\right\| 1_{1} 4_{0} 4_{1}\right) \bmod 5$								
13.	$(6,15,30,10,4,2),(02 \mid 13)(\infty 0 \mid 34)(\infty 4 \mid 12) \bmod 5$								
14.	$(11,11,55,10,10,2),(110\|29\| 38\|47\| 56) \bmod 11$								
15.	$(11,11,22,10,10,5),(13459 \mid 268107) \bmod 11$								
16.	$(12,33,66,11,4,2),(01 \mid 37)(102 \mid 94)(86 \mid 5 \infty) \bmod 11$								
17.	$(12,22,66,11,6,2),(03\|15\| 49)(810\|76\| 2 \infty) \bmod 11$								
18.	$(12,22,44,11,6,3),(013 \mid 459)(107 \infty \mid 682) \bmod 11$								
19.	$(7,21,42,12,4,2),(01 \mid 42)(02 \mid 14)(04 \mid 21) \bmod 7$								
20.	$(13,39,78,12,4,2),(112 \mid 58)(211 \mid 310)(49 \mid 67) \bmod 13$								
21.	$(13,26,78,12,6,2), \quad(310\|49\| 112)(58\|112\| 67) \bmod 13$								
22.	$(13,26,52,12,6,3)$, (139\|412 10)(265	7811) mod 13							
23.	$(13,13,78,12,12,2),(112\|211\| 310\|49\| 58 \mid 67) \bmod 13$								
24.	$(13,13,52,12,12,3),(139\|41210\| 265 \mid 7811) \bmod 13$								
25.	$(13,13,39,12,12,4),(11258\|211310\| 4967) \bmod 13$								
26.	$(13,13,26,12,12,6),(13941210 \mid 2657811) \bmod 13$								
	$\begin{aligned} & (15,35,105,14,6,2),\left(1_{1} 0_{0}\left\|2_{1} 0_{1}\right\| 4_{1} \infty\right)\left(0_{0} 3_{0}\left\|0_{1} 5_{0}\right\| \infty 6_{0}\right)\left(2_{0} 1_{0}\left\|4_{0} 3_{1}\right\| 1_{1} 0_{1}\right) \\ & \left(2_{0} 0_{1}\left\|5_{0} 1_{1}\right\| 3_{1} 3_{0}\right)\left(4_{0} 1_{1}\left\|5_{0} 0_{0}\right\| 0_{1} 3_{1}\right) \bmod 7 \\ & \hline \end{aligned}$								
	$(15,35,70,14,6,3),\left(1_{1} 2_{1} 4_{1} \mid 0_{0} 0_{1} \infty\right)\left(0_{0} 0_{1} \infty \mid 3_{0} 5_{0} 6_{0}\right)\left(2_{0} 4_{0} 1_{1} \mid 1_{0} 3_{1} 0_{1}\right)$ $\left(2_{0} 5_{0} 3_{1} \mid 0_{1} 1_{1} 3_{0}\right)\left(4_{0} 5_{0} 0_{1} \mid 1_{1} 0_{0} 3_{1}\right) \bmod 7$								
29.	$(15,21,105,14,10,2)$, No \mathcal{D}_{1} exists, but ($\left.15,42,210,28,10,2\right)$ does exist ([10])								
30.	$(15,21,42,14,10,5)$, No \mathcal{D}_{1} exists, but ($\left.15,42,84,28,10,5\right)$ does exist ([10])								
31.	$(15,15,105,14,14,2),(114\|213\| 312\|411\| 510\|69\| 78) \bmod 15$								
	$(15,15,30,14,14,7)$, ($\left.0_{1} 1_{1} 2_{1} 3_{1} 4_{1} 5_{1} 6_{1} \mid 0_{0} 1_{0} 2_{0} 3_{0} 4_{0} 5_{0} 6_{0}\right)$ fixed, $\left(\infty 4_{0} 1_{0} 1_{1} 2_{0} 4_{1} 2_{1} \mid 0_{1} 6_{1} 5_{1} 5_{0} 3_{1} 6_{0} 3_{0}\right)$ $\left(0_{0} 2_{0} 4_{0} 5_{1} 1_{0} 6_{1} 3_{1} \mid \infty 6_{0} 5_{0} 4_{1} 3_{0} 2_{1} 1_{1}\right) \bmod 7$								
33.	$(16,60,120,15,4,2),(\infty 0 \mid 510)(12 \mid 48)(69 \mid 713)(113 \mid 1214) \bmod 15$								
	$\begin{aligned} & (16,40,120,15,6,2),(01\|93\| 512)(03\|112\| 62)(119\|13\| 08) \\ & \text { mod } 16, \text { last block PC(} 8) \end{aligned}$								
	$(16,40,80,15,6,3),\left(0_{0} 0_{1} 0_{2} \mid 1_{1} 2_{1} 3_{1}\right)\left(1_{0} 3_{0} 0_{2} \mid 1_{2} 0_{1} 2_{1}\right)\left(1_{0} 3_{0} 0_{1} \mid 0_{0} 3_{2} 4_{1}\right)$ $\left(2_{0} 3_{0} 4_{1} \mid 4_{0} 0_{2} 1_{2}\right)\left(0_{0} 0_{1} 0_{2} \mid 1_{2} 2_{2} 4_{2}\right)\left(\infty 3_{0} 4_{0} \mid 0_{0} 3_{1} 4_{2}\right)\left(\infty 2_{1} 4_{2} \mid 0_{0} 3_{1} 1_{2}\right)$ $\left(\infty 3_{1} 1_{2} \mid 0_{0} 1_{1} 3_{2}\right) \bmod 5$								
36.	$(16,30,120,15,8,2),(\infty 0\|314\| 14 \mid 97)(28\|613\| 510 \mid 1112) \bmod 15$								
37.	$(16,30,60,15,8,4),(0137 \mid 4914 \infty)(2101113 \mid 56812) \bmod 15$								
	$\begin{aligned} & (16,24,120,15,10,2),\left(\infty_{1} 0_{1}\left\|\infty_{2} 0_{2}\right\| 1_{2} 1_{3}\left\|2_{2} 2_{4}\right\| 2_{3} 1_{4}\right)\left(\infty_{2} 0_{3}\left\|\infty_{3} 0_{2}\right\| 1_{1} 2_{4}\left\|2_{1} 2_{3}\right\| 1_{3} 1_{4}\right) \\ & \left(\infty_{1} 0_{3}\left\|\infty_{3} 0_{1}\right\| 1_{1} 2_{2}\left\|2_{1} 1_{4}\right\| 1_{2} 2_{4}\right)\left(\infty_{2} 2_{4}\left\|\infty_{3} 2_{3}\right\| \infty_{4} 0_{2}\left\|0_{1} 2_{2}\right\| 1_{1} 1_{2}\right) \\ & \left(\infty_{1} 0_{2}\left\|\infty_{3} 2_{4}\right\| \infty_{4} 0_{3}\left\|2_{1} 1_{3}\right\| 1_{2} 2_{3}\right)\left(\infty_{1} 2_{4}\left\|\infty_{2} 1_{1}\right\| \infty_{4} 0_{1}\left\|2_{1} 0_{3}\right\| 2_{2} 1_{3}\right) \\ & \left(\infty_{4} 0_{4}\left\|1_{1} 2_{1}\right\| 1_{2} 2_{2}\left\|1_{3} 2_{3}\right\| 1_{4} 2_{4}\right) \bmod 3, \text { with }\left(\infty_{1} \infty_{2}\left\|\infty_{3} \infty_{4}\right\| 2_{1} 2_{4}\left\|2_{2} 1_{4}\right\| 2_{3} 0_{4}\right) \\ & \left(\infty_{1} \infty_{3}\left\|\infty_{2} \infty_{4}\right\| 0_{1} 0_{4}\left\|0_{2} 2_{4}\right\| 0_{3} 1_{4}\right)\left(\infty_{1} \infty_{4}\left\|\infty_{2} \infty_{3}\right\| 1_{1} 1_{4}\left\|1_{2} 0_{4}\right\| 1_{3} 2_{4}\right) \end{aligned}$								
39.	($16,24,48,15,10,5)$, See Example 36.2								
	$(16,20,120,15,12,2),(12\|48\| 613\|79\| 05 \mid 10 \infty)(67\|913\| 113\|1214\| 510 \mid 0 \infty)$ (11 12\|14 3	1 8	2 4	10 0	5 ∞)(14\|6 9	11 14	2 8	7 13	12 3) PC(5), mod 15
	$(16,20,80,15,12,3),(015\|2810\| 679 \mid 134 \infty)(5610\|7130\| 111214 \mid 39 \infty)$ $(10110\|1235\| 124 \mid 814 \infty)(2712\|148\| 6913 \mid 31114) \operatorname{PC}(5), \bmod 15$								
	$(16,20,60,15,12,4),[(1248\|67913\| 0510 \infty)(67913\|1112143\| 5100 \infty)$ $(1112143\|1248\| 1005 \infty)(1248\|67913\| 1112143)] \mathrm{PC}(5), \bmod 15$								
	$(16,20,40,15,12,6),(0514713 \mid 268109 \infty)(51069123 \mid 71113014 \infty)$ $(100111428 \mid 121354 \infty)(19614114 \mid 87131232) \operatorname{PC}(5), \bmod 15$								
	$(16,16,80,15,15,3),(158\|21012\| 347\|61113\| 91415) \bmod 16$								
	$(16,16,48,15,15,5),(3141021\|1258611\| 9154713) \bmod 16$								

Some initial blocks taken through partial cycles, e.g. PC(5) \Rightarrow subcycle of order 5
36.6 Definition An NBIBD is resolvable if the superblock component design $\left(V, \mathcal{D}_{1}\right)$ is resolvable. An NBIBD is near-resolvable if the superblock component design $\left(V, \mathcal{D}_{1}\right)$ is near-resolvable and $k_{1}<v-1$.

36.7 Remarks

1. Table 36.5 contains resolvable and near-resolvable NBIBDs whenever the necessary conditions for those designs are met.
2. In Table 36.5, the following NBIBDs are resolvable: $4,16,17,18,33,36,37$.
3. In Table 36.5, the following NBIBDs are near-resolvable: 5, 20, 21, 22.

36.3 Relationships Between NBIBDs and Other Designs

36.8 Remark An NBIBD with $k_{1}=v-1$ is a near-resolvable BIBD.
36.9 Remarks A whist tournament design $\mathrm{Wh}(4 n)$ is a resolvable $\operatorname{NBIBD}(4 n, n(4 n-1), 2 n(4 n-$ $1), 4 n-1,4,2)$. A whist tournament design $\mathrm{Wh}(4 n+1)$ is for $n>1$ a near-resolvable $\operatorname{NBIBD}(4 n+1, n(4 n+1), 2 n(4 n+1), 4 n, 4,2)$. Any NBIBD with $k_{1}=2 k_{2}=4$ is a balanced doubles schedule [4].
36.10 Remarks Resolvable and near-resolvable NBIBDs have also been called generalized whist tournaments ([1]). A pitch tournament design is a resolvable or near-resolvable $\operatorname{NBIBD}(v, v(v-1) / 8, v(v-1) / 4, v-1,8,4)$.
36.11 Remarks Table 36.5 contains these designs:

1. Near-resolvable BIBDs: $1,2,3,8,9,12,14,15,23,24,25,26,31,32,44,45$.
2. Whist tournaments: $1,4,5,16,20,33$.
3. Other balanced doubles schedules: 13,19
4. Pitch tournaments: 9, 37.
36.12 Remark A partition of the rows of a perpendicular array $\mathrm{PA}_{\lambda}\left(t, k_{1}, v\right)$ into $\frac{k_{1}}{k_{2}}$ sets of size k_{2} is a $\operatorname{NBIBD}\left(v, \lambda\binom{v}{t}, \lambda\binom{v}{t} k_{1} / k_{2}, \lambda\binom{v}{t} k_{1} / v, k_{1}, k_{2}\right)$.

36.4 General nesting and other nested designs

36.13 Definition Let \mathcal{D}_{1} and \mathcal{D}_{2} be two collections of equi-sized multisets (blocks) of elements from the same v-set \mathcal{V}. If there is a partition of each of the b_{1} blocks of \mathcal{D}_{1} into blocks of size k_{2}, so that the resulting collection of $b_{2}=b_{1} k_{1} / k_{2}$ blocks is \mathcal{D}_{2}, then the blocks of \mathcal{D}_{2} are sub-blocks of the blocks of \mathcal{D}_{1} and the $\operatorname{system}\left(\mathcal{V}, \mathcal{D}_{1}, \mathcal{D}_{2}\right)$ is a nested block design.
36.14 Remarks This definition of nested block design provides a general framework for the nesting concept. Excluded, among others, are notions of nesting for which sub-blocks do not fully partition blocks [7].
36.15 Remark A resolvable $\operatorname{BIBD}(\operatorname{RBIBD})(V, \mathcal{D})$ is a nested block design $\left(V, \mathcal{D}_{1}, \mathcal{D}_{2}\right)$ where the blocks of \mathcal{D}_{1}, of size $k_{1}=v$, are the resolution classes of \mathcal{D}, and $\mathcal{D}_{2}=\mathcal{D}$.
36.16 Remark Nested block designs may have more than two blocking systems and consequently more than one level of nesting. A doubly nested block design is a system $\left(\mathcal{V}, \mathcal{D}_{1}, \mathcal{D}_{2}, \mathcal{D}_{3}\right)$ where both $\left(\mathcal{V}, \mathcal{D}_{1}, \mathcal{D}_{2}\right)$ and $\left(\mathcal{V}, \mathcal{D}_{2}, \mathcal{D}_{3}\right)$ are nested block designs. This may be extended in the obvious fashion.
36.17 Definition A multiply nested $\operatorname{BIBD}(\mathrm{MNBIBD})$ is a nested block design $\left(\mathcal{V}, \mathcal{D}_{1}, \mathcal{D}_{2}, \ldots, \mathcal{D}_{s}\right)$ with parameters $\left(v, b_{1}, \ldots, b_{s}, r, k_{1}, \ldots, k_{s}\right)$ for which the systems $\left(\mathcal{V}, \mathcal{D}_{j}, \mathcal{D}_{j+1}\right)$ are NBIBDs for $j=1, \ldots, s-1$.
36.18 Remarks A resolvable NBIBD is a doubly nested block design. A near-resolvable $\operatorname{NBIBD}\left(v, b_{1}, b_{2}, r, k_{1}, k_{2}\right)$ is a $\operatorname{MNBIBD}\left(v, b_{1} k_{1} /(v-1), b_{1}, b_{2}, r, v-1, k_{1}, k_{2}\right)$.
36.19 Example $(116,134|98,152||314,512| 107,116) \bmod 17$ is an initial block for a triply nested BIBD ($17,17,34,68,136,17,16,8,4,2$).
36.20 Remark For $v \leq 20$ and $r \leq 30$ there are 29 sets of parameters meeting the necessary conditions for existence of a doubly nested BIBD. At this writing designs are known for all of these except $\left(v, b_{1}, b_{2}, b_{3}, r, k_{1}, k_{2}, k_{3}\right)=(16,20,40,80,15,12,6,3)$ [11].
36.21 Construction Let \mathcal{M}_{1} be an $\operatorname{MNBIBD}\left(\bar{v}, \bar{b}_{1}, \bar{b}_{2}, \ldots, \bar{b}_{s}, \bar{r}, \bar{k}_{1}, \bar{k}_{2}, \ldots, \bar{k}_{s}\right)$ with $s \geq 1$ component designs (if $s=1$ then \mathcal{M}_{1} is a BIBD; if $s=2$ then an NBIBD; and if $s>2$ then an MNBIBD). Let \mathcal{M}_{2} be an MNBIBD ($\left.\widehat{v}, \widehat{b}_{1}, \widehat{b}_{2}, \ldots, \widehat{b}_{t}, \widehat{r}, \widehat{k}_{1}, \widehat{k}_{2}, \ldots, \widehat{k}_{t}\right)$ with $t \geq 2$ component designs, and with $\widehat{k}_{1} / \widehat{k}_{q}=\bar{v}$ for some $2 \leq q \leq t$. Select one block of size \widehat{k}_{1} from \mathcal{M}_{2} and label its sub-blocks of size \widehat{k}_{q} with the symbols $1,2, \ldots, \bar{v}$, which are the treatment symbols of \mathcal{M}_{1}. Now replace each symbol in \mathcal{M}_{1} by the correspondingly labelled sub-block of the selected block from \mathcal{M}_{2}. Each large block of the so modified \mathcal{M}_{1} is now of size $k_{1}=\bar{k}_{1} \widehat{k}_{q}$ and contains successively nested blocks of sizes $k_{2}, k_{3}, \ldots, k_{s+t-q+1}$ where $k_{j}=\bar{k}_{j} \widehat{k}_{q}$ for $j=1, \ldots, s$ and $k_{j}=\widehat{k}_{q+j-s-1}$ for $j=s+1, \ldots, s+t-q+1$. Repeat this process \widehat{b}_{1} times, using a new copy of \mathcal{M}_{1} for each of the \widehat{b}_{1} blocks of \mathcal{M}_{2}. The resulting design \mathcal{M} is an MNBIBD $\left(v, b_{1}, b_{2}, \ldots, b_{s+t-q+1}, r, k_{1}, k_{2}, \ldots, k_{s+t-q+1}\right)$ with $v=\widehat{v}, r=\widehat{r} r$, block sizes k_{j} as specified above, and $b_{j}=\bar{b}_{j} \widehat{b}_{1}$ for $j \leq s$, and $b_{j}=\bar{k}_{s} \bar{b}_{s} \widehat{b}_{1} \widehat{k}_{q} / \widehat{k}_{q+j-s-1}$ for $j>s$.
36.22 Theorem Let v be a prime power of the form $v=a_{0} a_{1} a_{2} \cdots a_{n}+1\left(a_{0} \geq 1, a_{n} \geq 1\right.$ and $a_{i} \geq 2$ for $1 \leq i \leq n-1$ are integers). Then there is an MNBIBD with n component designs having $k_{1}=u a_{1} a_{2} \cdots a_{n}, k_{2}=u a_{2} a_{3} \cdots a_{n}, \ldots, k_{n}=u a_{n}$, and with $a_{0} v$ blocks of size k_{1}, for any integer u with $1 \leq u \leq a_{0}$ and $u>1$ if $a_{n}=1$. If integer $t \geq 2$ is chosen so that $2 \leq t u \leq a_{0}$, then there is an MNBIBD with $n+1$ component designs, with the same number of big blocks but of size $k_{0}=t k_{1}$, and with its n other block sizes being k_{1}, \ldots, k_{n} as given above.
36.23 Theorem With the conditions of Theorem 36.22, if a_{0} is even and a_{i} is odd for $i \geq 1$, then MNBIBDs can be constructed with the same block sizes but with $a_{0} v / 2$ blocks of size k_{1}.
36.24 Remarks NBIBD constructions arise as special cases of $36.21,36.22$, and 36.23. An example for 36.21 is $s=1, t=2$. With mild abuse of terminology, Construction 36.21 also works if either \mathcal{M}_{1} or \mathcal{M}_{2} is taken as a RBIBD, for instance $s=1, t=2$ and $\hat{v}=\hat{k}_{1}$ so that \mathcal{M}_{2} is RBIBD and \mathcal{M} is NBIBD.
36.25 Definition A nested row-column design is a system $\left(\mathcal{V}, \mathcal{D}_{1}, \mathcal{D}_{2}, \mathcal{D}_{3}\right)$ for which (i) each of $\left(\mathcal{V}, \mathcal{D}_{1}, \mathcal{D}_{2}\right)$ and $\left(\mathcal{V}, \mathcal{D}_{1}, \mathcal{D}_{3}\right)$ is a nested block design, (ii) each block of \mathcal{D}_{1} may be displayed as a $k_{2} \times k_{3}$ row-column array, one member of the block at each position in the array, so that the columns are the \mathcal{D}_{2} sub-blocks in that block, and the rows are the \mathcal{D}_{3} sub-blocks in that block.
36.26 Definition A (completely balanced) balanced incomplete block design with nested rows and columns, $\operatorname{BIBRC}\left(v, b_{1}, k_{2}, k_{3}\right)$, is a nested row-column design $\left(\mathcal{V}, \mathcal{D}_{1}, \mathcal{D}_{2}, \mathcal{D}_{3}\right)$ for which each of $\left(\mathcal{V}, \mathcal{D}_{1}, \mathcal{D}_{2}\right)$ and $\left(\mathcal{V}, \mathcal{D}_{1}, \mathcal{D}_{3}\right)$ is a NBIBD.
36.27 Example A BIBRC for five symbols in ten 2×2 nesting blocks.
36.28 Example A BIBRC for ten symbols in thirty 2×3 nesting blocks. Initial blocks (mod 10) are

1	2	4				
5	6	9	\quad	1	2	7
:---	:---	:---				
3	5	8	\quad	1	2	4
:---	:---	:---				
3	9	5				

36.29 Remark If $k_{2}=k_{3}$ then a nested row-column design is a BIBRC if $\left(\mathcal{V}, \mathcal{D}_{1}\right)$ and $\left(\mathcal{V}, \mathcal{D}_{2} \cup \mathcal{D}_{3}\right)$ are BIBDs, loosening the complete balance requirement that $\left(\mathcal{V}, \mathcal{D}_{2}\right)$ and $\left(\mathcal{V}, \mathcal{D}_{3}\right)$ are individually BIBDs. An example is the first five blocks of Example 36.28. Further relaxations are explained in [8].
36.30 Theorem If $v=m p q+1$ is a prime power and p and q are relatively prime, then initial nesting blocks for a $\operatorname{BIBRC}(v, m v, s p, t q)$ are $A_{l}=x^{l-1} L \otimes M$ for $l=1, \ldots, m$, where $L_{s \times t}=\left(x^{i+j-2}\right)_{i, j}, M_{p \times q}=\left(x^{[(i-1) q+(j-1) p] m}\right)_{i, j}, s$ and t are integers with $s t \leq m$, and x is a primitive element of GF_{v}. If m is even and $p q$ is odd, then $A_{1}, \ldots, A_{m / 2}$ are intial nesting blocks for $\operatorname{BIBRC}(v, m v / 2, s p, t q)$
36.31 Theorem Write $x^{u_{i}}=1-x^{2 m i}$ where x is a primitive element of GF_{v} and $v=4 t m+1$ is a prime power. Let A be the addition table with row margin $\left(x^{0}, x^{2 m}, \ldots, x^{(4 t-2) m}\right)$ and column margin $\left(x^{m}, x^{3 m}, \ldots, x^{(4 t-1) m}\right)$, and set $A_{l}=x^{l-1} A$. If $u_{i}-u_{j} \not \equiv m$ $(\bmod 2 m)$ for $i, j=1, \ldots, t$ then A_{1}, \ldots, A_{m} are initial nesting blocks for $\operatorname{BIBRC}(v, m v, 2 t, 2 t)$. Including 0 in each margin for A, if further $u_{i} \not \equiv m(\bmod 2 m)$ for $i=1, \ldots, t$ then A_{1}, \ldots, A_{m} are initial nesting blocks for $\operatorname{BIBRC}(v, m v, 2 t+1,2 t+1)$.
36.32 Definition A bottom-stratum universally optimal nested row-column design, $\operatorname{BNRC}\left(v, b_{1}, k_{2}, k_{3}\right)$, is a nested row-column design $\left(\mathcal{V}, \mathcal{D}_{1}, \mathcal{D}_{2}, \mathcal{D}_{3}\right)$ for which (i) $\left(\mathcal{V}, \mathcal{D}_{2}\right)$ is a BIBD or, more generally, a BBD , and (ii) the \mathcal{D}_{3} sub-blocks within any block of \mathcal{D}_{1} are identical as multi-sets.
36.33 Example A BNRC with 4 symbols in nesting blocks of size 2×4.

1	1	2		2	3	3	4	4	1	2	3		4	1	2	3	4	1	2	3	4	1	2	3	4
2	2	1		1	4	4	3	3	3	4	2		1	3	4	2	1	3	4	2	1	3	4	2	1

36.34 Theorem The existence of $\operatorname{BNRC}\left(v, b_{1}, k_{2}, k_{31}\right)$ and $\operatorname{BNRC}\left(v, b_{1}, k_{2}, k_{32}\right)$ implies existence of $\operatorname{BNRC}\left(v, b_{1}, k_{2}, k_{31}+k_{32}\right)$. The existence of $\operatorname{BNRC}\left(v, b_{1}, k_{2}, k_{3}\right)$ for which b_{1} is a multiple of s implies existence of $\operatorname{BNRC}\left(v, b_{1} / s, k_{2}, s k_{3}\right)$. The column-wise juxtaposition of the nesting blocks of a BNRC into a $k_{2} \times b_{1} k_{3}$ array is a row-regular GYD.
36.35 Theorem If $v=m q+1$ is a prime power and $2 \leq p \leq q$, initial nesting blocks for a $\operatorname{BNRC}(v, m v, p, q)$ are $A_{l}=\left(x^{(i+j-2) m+l-1}\right)_{i j}$ for $l=1, \ldots, m$ and x a primitive element of GF_{v}. If m is even and q is odd, $A_{1}, \ldots, A_{m / 2}$ generate $\operatorname{BIBRC}(v, m v / 2, p, q)$.

36.36 Remarks

1. BIBRCs and BNRCs are statistically optimal for competing models ([8]).
2. The necessary conditions for existence of these designs are those of the component BIBDs. The necessary conditions are sufficient for $k_{1}=4$ ([2],[13]).
3. Most work on BIBRCs and BNRCs has concentrated on constructing infinite series, often employing starter blocks and the finite fields ([6],[8],[2]) as illustrated in $36.30,36.31$, and 36.35 .

36.5 See Also

§II.7	General treatment of resolvable and near-resolvable BIBDs.
§VI.65.6	Details on BBDs and Generalized Youden designs.
§VI.38	Perpendicular arrays can be arranged into MNBIBDs and BIBRCs.
§VI.54	Many constructions for NBIBDs which are Whist tournaments.
§VI.51	Various tournament designs, some of which are NBIBDs.
$[10]$	Survey of NBIBDs; contains much of the information given here.
$[8]$	Survey of nested designs, including NBIBDs, BIBRCs, and BNRCs.
$[9]$	Exploration of nesting, crossing, and other relationships for block- ing systems from an optimality perspective, with constructions.
$[1]$	Construction of resolvable and near-resolvable NBIBDs. Uses of NBIBDs in constructing other combinatorial designs not discussed here.
12$],[3]$	

References

[1] R. J. R. Abel, N. J. Finizio, M. Greig, and S. J. Lewis, Generalized whist tournament designs, Discrete Math., 268 (2003), pp. 1-19. [cited on pages]
[2] S. Bagchi, A. C. Mukhopadhyay, and B. K. Sinha, A search for optimal nested row-column designs, Sankhyā Ser. B, 52 (1990), pp. 93-104. [cited on pages]
[3] S. Gupta and S. Kageyama, Optimal complete diallel crosses, Biometrika, 81 (1994), pp. 420-424. [cited on pages]
[4] P. Healey, Construction of balanced doubles schedules, J. Combin. Theory Ser. A, 29 (1980), pp. 280-286. [cited on pages]
[5] T. Hishida, K. Ishikawa, M. Jimbo, S. Kageyama, and S. Kuriki, Non-existence of a nested bib design nb(10,15, 2, 3), J. Combin. Math. Combin. Comput, 36 (2001), pp. 55-63. [cited on pages]
[6] T. Hishida and M. Jimbo, Constructions of balanced incomplete block designs with nested rows and columns, J. Statist. Plann. Inference, 106 (2002), pp. 47-56. [cited on pages]
[7] J. Longyear, A survey of nested designs, J. Statist. Plann. Inference, 2 (1981), pp. 181-187. [cited on pages]
[8] J. P. Morgan, Nested designs, in Handbook of Statistics, Vol. 13, Elsevier Science, 1996, pp. 939-976. [cited on pages]
[9] J. P. Morgan and R. A. Bailey, Optimal design with many blocking factors, Annals of Statistics, 28 (2000), pp. 553-577. [cited on pages]
[10] J. P. Morgan, D. A. Preece, and D. H. Rees, Nested balanced incomplete block designs, Discrete Math., 231 (2001), pp. 351-389. [cited on pages]
[11] D. A. Preece, D. H. Rees, and J. P. Morgan, Doubly nested balanced incomplete block designs, Congr. Numer., 137 (1999), pp. 5-18. [cited on pages]
[12] K. Sinha, R. K. Mitra, and G. M. Saha, Nested bib designs, balanced bipartite weighing designs and rectangular designs, Utilitas Math., 49 (1996), pp. 216-222. [cited on pages]
[13] S. K. Srivastav and J. P. Morgan, On the class of 2×2 balanced incomplete block designs with nested rows and columns, Comm. Statist. Theory Methods, 25 (1996), pp. 1859-1870. [cited on pages]

