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Creases in soft tissues generated by growth
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Abstract – Soft tissues growing under constraint often form creases. We adopt the model of
growth that factors the deformation gradient into a growth tensor and an elastic deformation
tensor, and show that the critical conditions for the onset of creases take a remarkably simple
form. The critical conditions are illustrated with tubes of tissues growing either inside a rigid
shell or outside a rigid core. By comparing the critical conditions for the onset of wrinkles, we
show that the creases are the preferred type of instability. Furthermore, deep creases in a tube are
simulated by using the finite-element method, and the number of creases in the tube is estimated
by minimizing the free energy.
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Soft tissues often grow under constraint. For example,
many tubular organs —arteries, airways, esophagi and
intestines— grow under the constraint of a stiffer tissue,
the smooth muscle [1,2]. Some tumors grow under the
constraint of necrotic cores [3]. Even in the absence of any
stiff tissues, soft tissues develop internal constraint when
the growth is inhomogeneous [4,5]. Constrained growth
can cause the soft tissues to undulate and fold. These
mechanical instabilities have physiological and patholog-
ical consequences [3,6–11]. When the smooth muscle of
airways shortens, the mucosa folds and obstructs the
airways; the amount of obstruction increases in asthma
due to the thickening of the airway walls [6,7]. Buckling
can enable the invagination of embryos [9], and the primor-
dial development of sunflowers [10]. Fingerprint patterns
can result from the buckling of the layer of basal cells of
the fetal epidermis [11]. The shape of a tumor can indicate
its type [3].
Figure 1 illustrates several ubiquitous patterns of insta-

bility. For a soft material covered with a stiff thin layer,
compression beyond a critical level leads to wrinkles [12].
Further compression will turn some of the wrinkles into
folds [13,14]. For a soft material not covered with a stiff
layer, however, compression beyond a critical level leads to
creases, without forming wrinkles first [15–21]. While the
wrinkles keep the surface of the material locally smooth,
the folds and creases cause the surface to self-contact. The
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Fig. 1: (Color online) Schematic illustrations of three ubiqui-
tous patterns of mechanical instability.

tip of a fold remains open due to the bending rigidity of
the stiff layer, but the tip of a crease is sharp.
The onset of wrinkles corresponds to superposing a field

of strain infinitesimal in amplitude, but finite in space. By
contrast, the onset of creases corresponds to superposing
a field of strain finite in amplitude, but infinitesimal in
space. Consequently, the critical condition for the onset of
wrinkles can be determined by a classical linear perturba-
tion analysis, while the critical condition for the onset of
creases cannot. Several recent papers have studied creases
in soft materials caused by external forces [15–20]. This
paper studies creases in tissues undergoing constrained
growth. We show that the critical conditions for the onset
of the growth-induced creases take a remarkably simple
form. The critical conditions are illustrated with tubes of
tissues growing either inside a rigid shell or outside a rigid

64002-p1



Lihua Jin et al.

core. Furthermore, deep creases in a tube are simulated
by using the finite-element method, and the number of
creases is estimated by minimizing the free energy.
As illustrated in fig. 2, we adopt a well-known model

of growth [22]. A tissue is taken to be stress-free before
the growth. An unconstrained and homogeneous growth
changes the size of the tissue, but does not induce any
stress. The stress-free growth is characterized by a growth
tensor, G, which maps any vector in the tissue in the
stress-free state to a vector in the tissue after the growth
by a stretch and a rotation. To model the constrained and
inhomogeneous growth, we think of the tissue as many
small elements, and name each element by its coordinate
X when the tissue is in the stress-free state. The growth
of the element is characterized by a growth tensor G(X),
which may vary from one element to another. If only the
stress-free growth tensor were considered, the neighboring
elements would not fit together after the growth, but
would have gaps or overlaps [23]. This incompatible,
stress-free state after the growth is illustrated in fig. 2.
To make the elements compatible with one another, and
to satisfy the constraint imposed by surrounding stiff
tissues, each element deforms, which is characterized
by a deformation tensor, A(X). The multiplication of
the growth tensor and the deformation tensor gives the
deformation gradient [22]:

F=AG. (1)

As illustrated in fig. 2, G(X) maps the tissue from
the stress-free state before the growth to the stress-free
state after the growth, A(X) maps the tissue from the
stress-free state after the growth to the stressed state after
the growth, and the deformation gradient F(X) maps the
tissue from the stress-free state before the growth to the
stressed state after the growth. While both G(X) and
A(X) may be incompatible, their multiplication F(X) is
compatible [23,24].
The deformation gradient relates to the field of displace-

ment in the usual way. Let an element of the tissue occupy
a place of coordinateX when the tissue is in the stress-free
state before the growth, and move to a place of coordinate
x when the tissue is in the stressed state after the growth.
The field of displacement in the tissue is represented by
the function x(X). The constraint of the surrounding stiff
tissues can be imposed by prescribing the values of the
function x(X) for the elements of the tissue on the bound-
ary. The deformation gradient is defined as

FiK = ∂xi (X) /∂XK . (2)

We adopt the simplest version of the model, in which
the field of the growth tensor G(X) is prescribed and is
independent of the stress in the tissue. Furthermore, the
deformation is assumed to be elastic and incompressible,
det(A) = 1. The elasticity of the tissue is assumed to be

Fig. 2: A model of the growth of a tissue identifies three
states: the stress-free state before the growth, the stress-free
state after the growth, and the stressed state after the growth.
Mapping from one state to another is accomplished by three
tensors: the growth tensor G, the deformation tensor A, and
the deformation gradient F, which are related to each other by
F=AG.

neo-Hookean and isotropic, so that the elastic energy of
the tissue is

Π=

∫
μ

2

[
tr
(
A
T
A
)
− 3
]
det (G) dV , (3)

where μ is the shear modulus. The integral extends over
the volume of the tissue in the stress-free state before
the growth, and det(G) is the volume after the growth
divided by that before the growth. If the body is subject
to mechanical forces, the potential energy of the forces
need be added to (3). The total free energy is minimized
subject to the constraint det(A) = 1 and the boundary
conditions of x(X).
Before creases set in, the surface of the tissue is smooth,

and every element on the surface is in a well-defined state
of strain. When the state of strain of an element reaches a
critical condition, a crease sets in at this element —that is,
the onset of each crease is autonomous [16,17]. For a neo-
Hookean material subject to external forces, the critical
conditions for the onset of creases have been calculated for
general states of strain [16]. We now apply these conditions
to tissues growing under constraint. Within the model
of growth illustrated in fig. 2, the stress is developed in
going from the stress-free state after the growth to the
stressed state after the growth. Consequently, the critical
conditions for the onset of creases obtained in [16] should
be applied to the elastic deformation tensor A(X).
For an element X on the surface of the tissue, the three

eigenvalues of ATA are denoted by α21, α
2
2, α

2
3 —that is,

α1, α2, α3 are the principal elastic stretches. The surface
of the tissue is assumed to be traction free, so that the
direction normal to the surface is a principal direction of
the stress tensor and, for a material of isotropic elasticity,
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Fig. 3: (Color online) A tube of a tissue grows inside a rigid
shell. (a) The stress-free state before the growth. (b) The
axisymmetric stressed state after the growth. The critical
growth ratio for the onset of creases as a function of A/B for
(c) isotropic growth and (d) an example of anisotropic growth.
The solid lines are for circumferential creases, and the dashed
lines are for longitudinal creases. In (d) the line with circles and
triangles are the critical conditions for the onset of wrinkles. For
the isotropic growth (c), when A/B = 0.6, the critical growth
ratio is gc = 1.0817.

is also a principal direction of the elastic deformation
tensor. The other two principal directions are tangential
to the surface of the tissue. We label the direction normal
to the surface as direction 3, and the other two principal
directions as directions 1 and 2. The critical condition for
the onset of a crease normal to direction 1 is

α3/α1 = 2.4, (4)

while the critical condition for the onset of a crease normal
to direction 2 is

α3/α2 = 2.4. (5)

The value 2.4 was obtained for the incompressible neo-
Hookean material by finite-element calculation in ref. [16],
in which the critical condition for the onset of crease is
defined as the condition when the elastic energy of creased
state equals the smooth state. Creases will form first in the
direction with the lower value in α1 and α2. If α1 = α2,
creases may form in any direction inside the surface.
We next illustrate the critical conditions with examples.

Figure 3 shows a tube of a tissue growing in a rigid shell. In
the stress-free state before the growth, the tube is of radii
A and B. In the stressed state after the growth, the tube
is of radii a and B. The rigid shell constrains the growth,
and the soft tissue is perfectly bonded to the rigid shell,
so that after the growth the outer radius and the length of
the tube remain unchanged. Since the length of the tube

is large compared to the radii, we assume that the tissue
deforms under the plane-strain conditions. The growth
tensor is assumed to be of the form G=diag[gr, gθ, gz],
where gr, gθ, gz are the growth ratios in the radial,
circumferential, and longitudinal directions of the tube.
The growth is taken to be homogeneous, so that gr, gθ, gz
are constant independent of the position in the tissue.
Prior to the onset of creases, the growth causes the

tube to undergo axisymmetric deformation. Consider an
element of the tissue, at distance R from the axis of the
tube in the stress-free state before the growth. In the
stressed state after the growth, the element moves to a
place at distance r from the axis of the tube. The function
r(R) specifies the field of displacement. Because the elastic
deformation is taken to be incompressible, the increase
in the volume of the tube is entirely due to the growth.
Consider an annulus between the radii B and R in the
stress-free state before the growth, and between the radii
B and r in the stressed state after the growth. The growth
increases the volume of the annulus by a factor grgθgz, so
that

B2− r2 = grgθgz
(
B2−R2

)
. (6)

This expression specifies the field of displacement,
the function r(R). To prevent the tissue from inter-
penetrating after the growth, we require that a> 0.
Inserting this condition into (6), we obtain that
B2 > grgθgz(B

2−A2). The deformation gradient takes
the form F=diag[λr, λθ, λz], with the principal stretches
being λr = grgθgz/λθ, λθ = r/R, and λz = 1. The elastic
deformation tensor takes the form A=diag[αr, αθ, αz],
with the principal elastic stretches being αr = λr/gr,
αθ = λθ/gθ, αz = λz/gz.
Following (4) and (5), the critical condition for the onset

of circumferential creases is αr/αθ = 2.4 at the surface of
the tube R=A, or

g2θgz

/(
B2

A2
− grgθgz

(
B2

A2
− 1
))
= 2.4. (7)

The critical condition for the onset of longitudinal creases
is αr/αz = 2.4 at the surface of the tube R=A, or

gθg
2
z

/√
B2

A2
− grgθgz

(
B2

A2
− 1
)
= 2.4. (8)

In the limit A/B→ 0, any growth grgθgz > 1 will cause
very large compressive elastic strain at the inner surface
of the tube, so that the critical condition for the onset
of creases is grgθgz = 1. In the limit A/B→ 1, the tube
behaves like a flat layer constrained by a rigid substrate,
so that the critical condition for the onset of the circum-
ferential creases is g2

θ
gz = 2.4, and the critical condition

for the onset of the longitudinal creases is gθg
2
z = 2.4.

For isotropic growth, gr = gθ = gz = g, fig. 3(c) plots the
critical growth ratio gc for the onset of creases as a function
of A/B. The solid curve represents the critical condition
for the onset of circumferential creases, and the dashed
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Fig. 4: (Color online) A tube of a tissue grows outside a
rigid core. (a) The stress-free state before the growth. (b)
The axisymmetric stressed state after the growth. The critical
growth ratio for the onset of creases as a function of A/B for
(c) isotropic growth and (d) an example of anisotropic growth.
The solid lines are for circumferential creases, and the dashed
lines are for longitudinal creases.

curve represents the critical condition for the onset of
longitudinal creases. For both types of creases, gc = 1 in
the limit A/B→ 0, and gc = 3

√
2.4 in the limit A/B→ 1.

Between the two limits, the growth ratio needed to initiate
the circumferential creases is less than that needed to
initiate the longitudinal creases.
As an example of anisotropic growth, consider the

growth ratios gr = gθ = g and gz = 1. Figure 3(d) plots
the critical growth ratio gc for the onset of creases as
a function of A/B. In the limit A/B→ 1, gc =

√
2.4 for

the onset of the circumferential creases and gc = 2.4 for
the onset of the longitudinal creases. In this example, the
growth needed to initiate the circumferential creases is
less than that needed to initiate the longitudinal creases.
Also included in fig. 3(d) are the critical conditions for
the onset of circumferential wrinkles obtained by the
linear perturbation analysis (circles from [1] and triangles
from [25]). A comparison of these results in fig. 3(d)
indicates that the circumferential creases will set in, rather
than the circumferential wrinkles.
Figure 4 illustrates a tube of a tissue growing outside

a rigid core. The tube is of radii A and B in the stress-
free state before the growth, and is of radii A and b in
the stressed state after the growth. Prior to the onset of
creases, the growth causes axisymmetric deformation in
the tube. The field of deformation r(R) is determined by

r2−A2 = grgθgz
(
R2−A2

)
. (9)

Fig. 5: (Color online) For a tube of a tissue growing inside a
rigid shell, the ratio of the elastic energy of the creased state to
that of the axisymmetric state, Π/Π0, is plotted as a function
of the growth ratio, g. The inset enlarges the squared region.

The critical condition for the onset of circumferential
creases on the outer surface of the tube is

g2θgz

/(
A2

B2
− grgθgz

(
A2

B2
− 1
))
= 2.4. (10)

The critical condition for the onset of longitudinal creases
on the outer surface of the tube is

gθg
2
z

/√
A2

B2
− grgθgz

(
A2

B2
− 1
)
= 2.4. (11)

In the limit A/B→ 0, the rigid core becomes a thin
needle, and the critical conditions for the onset of the
circumferential and longitudinal creases become gθ/gr =
2.4 and

√
gθg3z/gr = 2.4. In the limit A/B→ 1, the tube

behaves like a flat layer constrained by a rigid substrate,
which has been discussed above.
For the isotropic growth gr = gθ = gz = g, fig. 4(c) plots

the critical level of growth gc for the onset of creases as
a function of A/B. The critical condition for the onset
of circumferential creases can only be satisfied when
A/B >

√
7/12. Below this value, the rigid core does

not provide sufficient constraint to cause circumferential
creases on the outer surface of the tube. At all values
of A/B, longitudinal creases will set in before circum-
ferential creases. By contrast, in the case of anisotropic
growth, gr = gz = 1, gθ = g, circumferential creases can
form in the entire range of A/B, and can form before
longitudinal creases, fig. 4(d). In ref. [26], the swelling of
a gel under constraint was studied in a similar geometry.
When the core is much stiffer than the swelling gel, sharp
creases were observed in the gel. The linear perturbation
analysis in ref. [26] assumed infinitesimal strains from
the smooth state, and corresponds to an analysis of
wrinkling. By contrast, our analysis based on the result of
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Fig. 6: (Color online) Deep creases develop from the surface of a tube of a tissue growing inside a rigid shell. Different numbers
of creases are prescribed. The color indicates the level of the von Mises stress.

nonlinear finite-element method allows large strains from
the smooth state, and corresponds to creases.
Because the state of strain is invariant everywhere on

the surface of the tube under the axisymmetric deforma-
tion, every point on the surface reaches the critical condi-
tion to initiate a crease simultaneously. Consequently,
the condition for the onset of creases does not deter-
mine the number of creases in a tube. In order to deter-
mine the number of creases, we go beyond the initiation
of the creases and analyze deep creases. The analysis is
carried out by using the commercial finite-element soft-
ware ABAQUS, in which the growth of soft tissues can
be simulated by thermal expansion. Plane-strain condi-
tions are assumed. Symmetry is assumed such that if the
number of creases is N , we only need to simulate one part
of the tube within the angle π/N . Following ref. [19], we
prescribe the nucleus of a crease by placing a defect, a
quarter of a circle with small radius, on the surface of
the tube. To eliminate the effect of the defect, its size is
made much smaller than the thickness of the tube. At the
same time, to resolve the field close to the defect, the size
of the elements close to the defect is made much smaller
than the size of the defect. The surface of the tube is
allowed to self-contact.
As an example, consider a tube of a tissue growing

inside a rigid shell, with A/B = 0.6. The growth is taken
to be isotropic, and the elasticity neo-Hookean. The finite-
element calculation determines the free energy per unit
thickness of the tube as a function of the growth ratio,

Π(g). The free energy per thickness of the axisymmetric
deformation without creases can be calculated analyti-
cally, according to eq. (3):

Π0 =
μπg

2

[
B2
(
1− g3

)
log
g3
(
A2−B2

)
+B2

A2

+
(
2g3+1− 3g2

) (
B2−A2

) ]
. (12)

Figure 5 shows the ratio Π/Π0 as a function of the
growth ratio g for several cases of prescribed numbers of
defects. When g is small, Π/Π0 = 1, and the defects do
not cause the surface to self-contact and become creased.
Beyond a critical value gc = 1.085, however, Π/Π0 < 1, and
the defects cause the surface to self-contact and become
creased. This critical value is consistent with the analytical
prediction for the onset of creases gc = 1.0817 as shown in
fig. 3(c). Right after the initiation, individual creases do
not interact, so that more creases can release more energy.
With further growth, the creases deepen and interact with
one another. As shown in fig. 5, the energy in the tube
with seven creases is the lowest when g < 1.1033. After
that the tube with six creases has the lowest energy until
g= 1.1291, and then the tube with five creases has the
lowest energy. Figure 6 shows the creased states of the tube
with different prescribed numbers of creases at different
growth ratios. The color indicates the value of the von
Mises stress.
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In summary, we obtain the critical conditions for the
onset of creases caused by constrained growth. The critical
conditions are illustrated with tubes of soft tissues growing
under the constraint of either rigid outer shells or rigid
inner cores. By comparing with the critical conditions
for the onset of wrinkles, we show that creases are the
preferred type of instability. Deep creases are simulated
by using the finite-element method. The number of deep
creases in a tube may be determined by minimizing the
free energy.

∗ ∗ ∗

This work is supported by the U.S. National Science
Foundation through the grant CMMI-0800161, and by
U.S. Army Research Office through the contract W911NF-
09-1-0476.

REFERENCES

[1] Li B., Cao Y. P. and Feng X. Q., J. Biomech., 44
(2011) 182.

[2] Li B., Cao Y. P., Feng X. Q. and Gao H., J. Mech.
Phys. Solids, 59 (2011) 758.

[3] Dervaux J. and Ben Amar M., J. Mech. Phys. Solids,
59 (2011) 538.

[4] Goriely A. and Vandiver R., IMA J. Appl. Math., 75
(2010) 549.

[5] Ben Amar M. and Goriely A., J. Mech. Phys. Solids,
53 (2005) 2284.

[6] Wiggs B. R., Hrousis C. A., Drazen J. M. and Kamm
R. D., J. Appl. Physiol., 83 (1997) 1814.

[7] Hrousis C. A. et al., J. Biomech. Eng., 124 (2002) 334.
[8] Yang W., Fung T. C., Chian K. S. and Chong C. K.,
J. Biomech., 40 (2007) 481.

[9] Pauchard L. andCouder Y., Europhys. Lett., 66 (2004)
667.

[10] Dumais J. and Steele C. R., J. Plant Growth Regul.,
19 (2000) 7.

[11] Kucken M. and Newell A. C., Europhys. Lett., 68
(2004) 141.

[12] Bowden N. et al., Nature, 393 (1998) 146.
[13] Pocivavsek L. et al., Science, 320 (2008) 912.
[14] Sun J. et al., Folding wrinkles of a thin stiff layer on a

soft substrate, to be published in Proc. R. Soc. A-Math.
Phys. Eng. Sci.

[15] Hohlfeld E. andMahadevan L., Phys. Rev. Lett., 106
(2011) 105702.

[16] Hong W., Zhao X. and Suo Z., Appl. Phys. Lett., 95
(2009) 111901.

[17] Cai S., Bertoldi K., Wang H. and Suo Z., Soft Matter,
6 (2010) 5770.

[18] Wong W. H., Guo T. F., Zhang Y. W. and Cheng
L., Soft Matter, 6 (2010) 5743.

[19] Cai S., Chen D., Hayward R. C. and suo Z., Creasing
instability of elastomer films, unpublished.

[20] Cao Y. and Hutchinson J. W., From wrinkles to creases
in elastomers: The instability and imperfection-sensitivity

of wrinkling, to be published in Proc. R. Soc. A-Math.
Phys. Eng. Sci. (2011) DOI: 10.1098/rspa.2011.0384.

[21] Trujillo V., Kim J. and Hayward R. C., Soft Matter,
4 (2008) 564.

[22] Rodriguez E. K., Hoger A. and Mcculloch A. D.,
J. Biomech., 27 (1994) 455.

[23] Skalak R. et al., J. Math. Biol., 34 (1996) 889.
[24] Skalak R., in Proceedings of the IUTAM Symposium on

Finite Elasticity, edited by Carlson D. E. and Shield
R. T. (Martinus Nijhoff, The Hague) 1982, pp. 347–355.

[25] Moulton D. E. and Goriely A., J. Mech. Phys. Solids,
59 (2011) 525.

[26] Dervaux J. et al., Phys. Rev. Lett., 107 (2011) 018103.

64002-p6


