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Creating a Test Information Profile for a
Two-Dimensional Latent Space

Terry A. Ackerman

University of Illinois

In some cognitive testing situations it is believed,
despite reporting only a single score, that the test items
differentiate levels of multiple traits. In such situa-
tions, the reported score may represent quite disparate
composites of these multiple traits. Thus, when
attempting to interpret a single score from a set of
multidimensional items, several concerns naturally
arise. First, it is important to know what composite of
traits is being measured at all levels of the reported
score scale. Second, it is also necessary to discern that
all examinees, no matter where they lie in the latent

trait space, are being measured on the same composite
of traits. Thus, the role of multidimensionality in the
interpretation or meaning given to various score levels
must be examined. This paper presents a method for

computing multidimensional information and provides
examples of how different aspects of test information
can be displayed graphically to form a profile of a test
in a two-dimensional latent space. Index terms:

information, item response theory, multidimensional
item response theory, test information.

The purpose of most standardized achievement tests is to distinguish trait levels of examinees and

thereby order individuals on a trait. Ordering examinees accurately requires that all items in a test dis-
criminate between levels of the trait being measured. Problems arise when a test contains items that also
discriminate between levels of traits other than the primary trait being measured. Unfortunately, because
ordering is a unidimensional concept, examinees cannot be ordered on two or more traits at the same
time, unless the ordering is based on, for example, a weighted sum of each trait being measured.

Most standardized achievement tests are hypothesized to be multidimensional (Harrison, 1986; Traub,
1983) and require the use of several abilities that can vary from item to item. Collectively, if items are

capable of measuring different composites of abilities, the composites that are being measured should be
assessed and this knowledge should be used to interpret not only the meaning of the observed score scale
but also the consistency of this interpretation throughout the observable score range.

The first objective of this paper is to explain how to compute the information function for the two-
dimensional item response theory (IRT) compensatory model. Then the information for a unidimensional

composite that is a linear combination of two latent traits is evaluated. The second objective is to illustrate
several graphical analyses that enable a psychometrician to fornulate an information profile for a test.
This profile helps to determine the composite of traits that is being measured, and how accurately those
combinations of traits are being measured.

Multidimensional IRT

The Multidimensional Compensatory Model

For the purposes of this paper, multidimensional item response data will be assumed to be accurately
modeled by a compensatory model given as
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where

Xii is the 0-1 score on item i by person j,
a, is the vector of item discrimination parameters,

dl is a scalar parameter that is related to the difficulty of the item, and

6) is the vector of trait level parameters for personj.
This model is considered to be compensatory because high 0 levels on one dimension can partially compen-
sate for low 0 levels on the second dimension. Total compensation can only occur when all of the discrimi-
nation parameters for an item are equal in value. There is a discrimination parameter for each dimension,
but only one difficulty parameter for an item. The difficulty parameter is indeterminate for each separate
dimension (Reckase, 1985). This model does not impose a correlation between 0, and 0,. For graphical
purposes, the 8¡ axis is always represented as orthogonal to the 0, axis because it is easier to work within a
Cartesian coordinate system. However, in most cases in which the dimensions represent psychological traits,
a scatterplot of estimated 0, and 0, for a group of examinees would indicate some level of correlation.

Information in Two-Dimensional IRT

Reckase & McKinley ( 1991 ) presented a method for computing information for a multidimensional
1RT (MIRT) model. Green (1990) presented a revised version that takes into account the lack of local
independence when the information is estimated for a particular direction. The method discussed here is
an extension of Green’s work.

The information function for a multivariate sample X with individual parameters 0 can be written as

where E denotes the expected value and L is the likelihood function of 6 (Kendall & Stuart, 1973).
The two-dimensional case of Equation 2 can be expressed as

or in matrix form as

where the likelihood function for Equation 1 can be written as

where

1’; is the probability of a correct response as defined in Equation 1,
~; is the probability of an incorrect response or 1 -~, and
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ui is the dichotomous (0,1 ) item score.
The natural logarithm of Equation 5 then is given as

The multidimensional information in Equation 4 can be written as

(A complete derivation is provided in the Appendix.) For a single item or for n items that measure in

exactly the same direction (i.e., a¡¡= c~2;, V i = 1, ..., n), Equation 7 is singular. This result, which can be

generalized to higher ordered dimensions (i.e., dimensions beyond the first dimension), should be ex-

pected because in both cases the test would be, by definition, unidimensional. Hence, for I(G) to be posi-
tive definite, there must be at least two items that measure different composites of two traits. It appears
that a necessary, but not sufficient, condition for unidimensionality within an IRT setting is for the infor-
mation matrix of the maximum likelihood estimate (MLE) to be singular.

Information for a Linear Composite of Two Underlying Traits

Assume that a single score is reported for a test that is actually capable of discriminating between levels
of two distinct and probably correlated traits. Implicitly, the unidimensional 0 scale represents a composite
of the two latent traits-8¡ and 0,. In two-dimensional IRT, once a particular composite of traits is selected,
local independence does not hold with respect to this composite.

Reckase & McKinley (1991) defined MINF, as a variant of multidimensional information, beginning
with the expression

and then computed the m-dimensional directional derivative

for the numerator of Equation 8. The final form of MINF, for item i, in a (81’ (2) composite direction a, is

Although useful, MINF is not the multidimensional information shown in Equation 7. Instead, MINF is essen-
tially a multidimensional critical ratio (Lord, 1980, p. 69). MINF is a measure of how effective test score x is
at discriminating between a trait level (0,, O2) and a trait level &dquo;close by&dquo; (6p 6~) along a line through (919 (2)
at angle a. MINF, when computed for more than a single item, is not a replacement for the information
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measure of Equation 7 because it fails to take into account the lack of local independence (i.e., Equation 9
fails to properly account for the covariance that results from specifying a particular direction). It does,
however, have the advantage of providing an approximation to the measurement precision for a single item
for a particular composite. [Note that Reckase & McKinley (1991) used a logistic model for their form of the

compensatory model (i.e., Equation 1) without the 1.7 scaling factor. Thus, MINF lacks the effect of having
this scaling factor present.]

Junker (1992) cautioned against estimating this composite from a unidimensional perspective if the test
is not essentially unidimensional (Stout, 1987, 1990) [e.g., using LOGIST (Wingersky, Barton, & Lord, 1982)
or BILOG (Misle~r ~ Bock, 1990) to obtain an estimate of 0, when the complete latent space is defined by m
traits, (&reg;1, &reg;2, ..., &reg;&dquo;,)]. Primarily because of the lack of local independence, linear composites of the m under-
lying traits cannot be estimated consistently, and subsequently the unidimensional MLE, 6, does not con-
verge to the composite 0c where

for any choice of composite weights ~3,9[iz9 ...~ (3&dquo;, [and in particular Wang’s (1986) reference composite].
However, if the test is not essentially unidimensional and the Os are estimated using a multidimensional

model that accounts for the complete latent space and thus reinstates local independence [e.g., using cali-
bration programs such as TESTFACT (Wilson, Wood, & Gibbons, 1984), MIRTE (Carlson, 1987), orNOHARM

(Fraser & McDonald, 1988)] then the fact can be used that the MLE of

is equal to P,6, + (32&reg;z + ... + fl~, 6~, where 6~, 132, ..., 6~ are the MLEs of the trait parameters (Zehna, 1966).
Note that in this case the MLE does converge to 0,.

For the current discussion, assume that the unidimensional trait level 0 is equal to the linear compos-
Be’ defined Be = fi~0~ + P102, in which 8e represents a linear composite in the angular direction of a and

131 = cosa and ~2 = sina. To find the information function for this user-selected composite, the information
matrix (Equation 7) must first be inverted to obtain the asymptotic covariance matrix for ( 6 ~ , ê2) (Lehmann,
1983, Theorem 4.1, pp. 429-430).

The inverse of Equation 7 can be written as:

where 1/(81’ 0,)l is the determinant of the information matrix given as

To compute the information for a particular composite, Equation 13 should be by the row
vector [0, ~2] and postmultiplied by the column vector

to find
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The reciprocal of the resulting scalar quantity,

represents multidimensional information for the MLE êc of the specified composite fi~ 0~ + fi~0~.
Method

MIRT Item Vector Representation

Insight about the multidimensional nature of items and examinee traits can be obtained using MIRT
models. The work of Reckase & McKinley ( 1991 ) that defined MIRT item characteristics provided
a framework for examining the interaction between multidimensional items and the multidimensional trait
distributions associated with groups of examinees.

In a two-dimensional latent trait space (e.g., math and verbal abilities), the ~; vector designates the

composite of 0 ~ and 02 that is being best measured. If c~l = c~2, both dimensions would be measured with the
same degree of accuracy. However, if ~1=0 and a~ 1.0, discrimination would only occur along the 02
dimension. The number of different trait composites being assessed can be made readily apparent. If all of
the items measure exactly the same (81’ 02) composite (i.e., the same &dquo;direction&dquo; in the two-dimensional
latent trait plane), the test would be strictly unidimensional. The more varied the composites being as-
sessed by different items, the larger the off-diagonal terms in Equation 13 become.

Following Reckase & McKinley (1991), an item that requires two traits for a correct response can be

represented in the two-dimensional latent trait space as a vector. The length of the vector for item i is equal
to the degree of multidimensional discrimination, MDISC, given as

MDISC is analogous to the unidimensional IRT model’s discrimination parameter. The measurement direc-
tion of the vector in degrees from the positive 0 axis is

This reference angle represents the composite of the (81’ 82) trait space that item i best measures. It is

important to note that unless an item measures along an axis (e.g., cz2= 0) it measures both dimensions to
some degree. The item vector originates at, and is graphed orthogonal to, the p = .5 equiprobability con-
tour. In the compensatory model (Equation 1), these equiprobability contours are always parallel. The

signed distance, D, from the origin to the p = .5 contour is computed as

Di is analogous to the unidimensional IRT difficulty parameter, b. Because the as can never be negative,
the item vectors can only lie in the third quadrant (representing easy items) or in the first quadrant
(representing more difficult items); the first quadrant is bordered by the positive 0, and positive 0, axes
and the remaining quadrants are numbered in a counterclockwise fashion.

Tests

To help illustrate the concept of multidimensional information, four different tests were examined. The
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first three consisted of 30 items each. The two-dimensional item parameters generated for these tests were
specifically contrived to portray three different tests: (1) a test with simple structure (i.e., half the items
measured 0, and half measured 0,), (2) a unidimensional test, and (3) a test in which the items measured
different (&reg;,, 02) composites from 0° to 90° in 3° increments (two-dimensional). The fourth test contained 40
items from the Math Usage Test of the ACT Assessment’s Form 24B. Reckase (1985) reported that the
parameters for Form 24B were two-dimensional estimates. Note that comparisons between tests assumed
that the parameter estimates were all on the same scale. The item vector plot for each test is displayed in
Figure 1.

Figure 1
Multidimensional Two-Parameter Logistic Item Vectors for Four Tests
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The simple structure test (Figure la) might be created by item writers who, in an attempt to make items
more difficult, require a different trait or an additional trait (e.g., placing an algebraic problem within the
context of a story, thus requiring an additional skill of reading comprehension to solve the problem). The
generated unidimensional test (Figure lb) was composed of items whose vectors fell within a 10° sector of
the 0, axis. The items for the two-dimensional test (Figure lc) had equal MDISC and cl values. The c~, and a2
parameters were varied to provide measurement for an equal &dquo;spread&dquo; of composites from 0° to 90° in 3 °

increments. The Form 24B (Figure ld) item vectors demonstrated how varied the composite skills being
measured by a standardized test can actually be: Items appear to be capable of distinguishing between trait
levels for a full range of (0,, 82) composites.

Results

Test Response Surfaces

A contour plot of the test response surface (the two-dimensional analogue to the test response function
in unidimensional IRT), computed from Equation 1, relates the &dquo;true score&dquo; scale to the latent trait plane
(Figure 2). Each contour indicates the (0~ , (2) combination that would have the expected observed score
(&dquo;true&dquo; score) indicated by the number on the contour. Contour plots assist psychometricians in describing
the meaning of the observed score scale in terms of the underlying latent traits.

Figure 2b shows that the observed score scale for the unidimensional test represents differences be-
tween levels of only 0, throughout the observed score range. Both the two-dimensional test (Figure 2c)
and Form 24B (Figure 2d) seem to distinguish between levels of a composite skill denoted by an approxi-
mate equal weighting of 0, and 02. The meaning of the observed score scale is not as consistent as in the
unidimensional case because the contours are not strictly parallel, especially for extremely low and ex-

tremely high true scores. The worst case scenario, with respect to consistency of the interpretation of the
true score scale, appears to be the simple structure test (Figure 2a). True score categories 1-12 (for exam-
inees in the third quadrant) seem to reflect differences in primarily 0,, whereas score categories 16-28
(for examinees in the first quadrant) depict differences in mostly 02,

Test Information

The test information profile consists of a series of different graphs, each revealing how well a test is

capable of measuring different composites of two-dimensional skills for examinees &dquo;located&dquo; throughout
the latent trait space. The intent of such a graphical analysis is to clarify what a test measures. This

knowledge then can be used to interpret different points along the observed score range.
Clamshell plots. A test information &dquo;clamshell&dquo; plot (Reckase & McKinley, 1991 ) shows how vari-

ous composite skills are being measured throughout the two-dimensional Lrait plane. In the clamshell plot
the test information value is represented as a vector. The longer the vector, the greater the measurement
precision. Information is computed at each point in a 7 x 7 grid [for (0,, &reg;z) =-3.0 to +3.0 in increments
of 1 unit] in 10 different directions (for 0° to 90° in 10° increments). The individual clamshells identify
which direction(s) provides the most information for various regions of the latent trait plane. A clamshell

plot for each test is displayed in Figure 3.
The longest information vector at any given trait level in Figure 3 will be in the direction that is orthogo-

nal to the nearest equitrue-score contour line shown in Figure 2. The scale of information is provided at the
bottom of each plot. The unidimensional test (Figure 3b) provided the least amount of information, and
Form 24B provided the greatest (Figure This result was expected because Form 241~ had 10 more items
than each of the other three tests. The simple structure plot (Figure 3a) shows the composite of skills that
would be best measured in each quadrant. For example, in the first quadrant, examinees were measured

primarily on 0,. In the second quadrant, it appears that the test measured all composites approximately
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Figure 2
Contour Plot of the Test Response Surface for Four Tests

equally well. However, examinees in the third quadrant were only distinguished by levels of 8p and in the
fourth quadrant there was very little measurement precision in any direction. The clamshells for the two-
dimensional test (Figure 3c) and Form 24B are very similar to each other.

Information directional plots. After examining the clamshell pl&reg;ts9 it is usefial to ask what the direction
of maximum information is at each point and how variable the directions are throughout the latent trait
plane. Figure 4 shows the direction of maximum information for each of the 49-point grids shown in the
clamshell plots. In this type of plot, the size of the print indicating the angle of the direction of maximum
information is proportional to the amount of information (i.e., the larger the type size, the greater the
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Figure 3
Multidimensional Test Information Vectors at 49 Selected Trait Levels for Four Tests

amount of information for the composite indicated by the angle specified by the number at that point).
If only a single score is reported for a test, it would be desirable to have each level of the resulting scale

represent different levels of the same skill (or some composite of multiple skills). Such a case is the
unidimensional case (Figure 4b). Even though the amount of information was not the same, the compos-
ite that was measured best tended to be between 4° and 6° for most examinees throughout the trait plane.
The worst case was the simple structure test (Figure 4a). For this test, the composite that was measured best
varied greatly from quadrant to quadrant (e.g., the first and third quadrants) and even within a quadrant
(e.g., in the second quadrant). The two-dimensional test (Figure 4c) and Form 24B (Figure 4d) also seemed
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Figure 4
Angles of Maximum Information at 49 Selected Trait Levels for Four Tests

to be quite variable, although only at the extreme trait levels was there a great deal of variability in the
direction of best measurement. However, not many examinees would be expected in these trait regions.

Information surface plots. There is an information surface for each direction from 00 to
90°. The height of the surface, indicating the amount of information, at each of the 49 grid points for a 30°
composite direction, for example, would be equal to the value indicated by the length of the vector in the
30° direction in the clamshell plot, at each trait level. For example, plots of the information surfaces for
the simple structure test in the 0°, 30°, 60°, and 90° composite directions are plotted in Figure 5. The four
surfaces can be compared to the length of the 0°, 30°, 60°, and 90° composite direction vectors shown in
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Figure 5
Test Information Surface and Corresponding Contours for the 5° Composite Direction for the Unidimensional Test

Figure 3a. Specifically, in the 0° direction the longest vectors were in a vertical band from &reg;, _ -3.0 to 0.0
and from &reg;Z = -3.0 to 3.0. This corresponds to the location of the ridged surface shown in Figure 5a. For the
30° and 60° directions, the clamshell plot indicates that most of the information was in the second quadrant.
This is reflected in terms of the information surface plots in Figures 5b and 5c. Finally, note the ridge in the
surface representing the 90° composite direction. This ridge corresponds to the band from 0, = -3.0 to 3.0
and 82 = 0.0 to 3.0 where the 90° vectors were the longest.

Information characteristic curves. At each of the 49 selected trait levels it is also important to know
the rate at which the amount of information decreases when moving away from the direction of maximum
information. Specifically, if the direction of maximum information is 50°, it would be interesting to know
what the information would be at 55° or 45°. Whether the amount of information drops off quickly or

gradually when moving away from the direction of maximum information is also of interest. To resolve
these questions, a fourth plot can be examined.

The amount of information for composites from 0° to 90° in 1 increments was computed at each of the
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49 selected trait levels. Plots displaying the 49 curves then were created from this information, and are
shown in Figure 6. The vertical axis represents the amount of information, and the horizontal axis de-
notes the angular composite from 0° to 90°. By examining the variability of the height of each of the
curves for any one angle, the degree of homogeneity of information for this composite can be assessed at
the 49 different locations throughout the trait plane. If the same composite were being assessed in all
regions of the trait plane, the curves would be homogeneous. In the perfect consistency case they would be
coincident. This consistency was achieved only for the unidimensional test (Figure 6b). The collection of
items on this test measured a composite in the direction of 5 °-6° from the 0, axis. The amount of informa-
tion dropped off dramatically as the angle of the composite increased. This was not true for the other tests.

Figures 6a, 6c, and 6d show that for each of the other tests there was a range of curves with different
maximums, some of which were in quite different directions. For example, the plot for the simple structure
test (Figure 6a) shows that several curves peaked near 0°, whereas several other curves peaked between 80°
and 90°. The degree of composite measurement consistency was quite low. This implies that depending on
where examinees lie in the latent trait plane, the types (or composites) of skills on which they are being
measured differ greatly.

Directional composite correlations. Another plot indir~~tly reveals the relationship between mea-
surement precision of different composites and the observed score (number-correct) scale. To create this
plot, 2,000 examinees were generated randomly from a bivariate normal distribution (&OElig;s = as =1.0 and

pe&dquo;&reg;‘ _ .4 ) for each of the four sets of item parameters (including Form 24B). The trait plane then was
divided into octants and the correlation between examinee’ observed scores and a linear composite of their

(81’82) levels was computed for each composite representing 0° (only 01) to 90° (only 02) for examinees in
each octant.

The direction corresponding to the linear composite that yielded the largest correlation was determined.
This direction characterizes the composites of two-dimensional skills that relate best with the observed score
for individuals in the area of the latent trait plane. A plot showing the composite direction with the highest
correlation for each octant is shown for each test in Figure 7. The size of the font used to indicate each angle
is directly proportional to the ratio of the squared correlation for the indicated angle with the maximum
squared correlation achieved among the octants (i.e., the largest font is used for the angle having the greatest
correlation between observed score and the indicated composite).
A moderate degree of similarity might be expected between each pair of corresponding plots in Figures 4

and 7. That is, the direction of maximum information indicated at the various grid points in Figure 4 should
be similar to the direction that has the greatest correlation with the number-correct score. This did not

appear to happen. In the first quadrant of the simple structure test (Figure 7a), the direction of maximum
correlation was less than the composite direction of maximum information. The opposite was true in the
third quadrant: The direction of maximum correlation was greater than the direction of maximum informa-
tion. Surprisingly, Figure 4a indicates that there was relatively little information being provided in the third

quadrant, yet Figure 7a implies a relatively large correlation between the observed scores and the latent trait
composites in the indicated directions for examinees in this quadrant. The differences between Figures 4a
and 7a might be due to the way the examinees were grouped in computing Figure 7a, which differs from a
uniform spread of the 49 grid points in Figure 4. The range of indicated directions is 66° between examinees
in the second and fifth octants.

As in Figure 7a, Figures 7b, 7c, and 7d reveal inconsistency between the composite directions and the
maximum correlation for the different octants. For the two-dimensional test, the symmetry that existed in

Figure 4c does not exist in Figure 7c. The unidimensional test had the smallest range (10°) of composites
having the maximum correlation. Figure 7d reveals that for Form 24B the greatest differences between
examinees were in the second and sixth octants (42° and 10°, respectively).
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Figures6
Test Information Functions for 49 Selected Trait Levels for Different Composites

Ranging from 0° to 90° for Four Tests

True score composite directions. A final plot relates the true score value to the direction of maximum
information. Throughout the observable score range it is important that the interpretation attached to
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Figure 7
Angles Representing the Directional Composite That Yielded the Highest Correlation,

~.Y~AP for Generated Examinees in Each Octant

different score values be consistent. For example, in a 30-item test the difference between a score of 5 and
a score of 6 should represent an increase in the same trait as the difference between a score of 25 and 26.
To confirm this, several preliminary computations were performed. First, the &dquo;true&dquo; score, T, for examinee

j was computed for a 31 x 31 grid [(0j, 0~) = -3.0 to 3.0 in .2 increments] of trait levels. T is defined as
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For those traits that had the same value of T (rounded to the nearest integer), the information was computed
for all composites from 0° to 90° and then averaged for each direction. The direction with the largest average
then was determined for each x value. Finally, a plot was created that displayed the direction of maximum

average information for each T value. If the score scale has a consistent interpretation, the direction of
maximum average information should be the same throughout the T range. The plots displaying these

relationships for each of the four tests are shown in Figure 8.

Figure 8b shows that only for the unidimensional test was the angle of maximum average information
the same for cache value. As expected, the plot for the simple structure test (Figure 8a) revealed that T =

Figure 8
The Direction of Maximum Average Information for Each Expected Score
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1 to 14 were based only on 8p and T = 15 through 30 represented different levels of 8~. The plots for the
two-dimensional test (Figure 8c) and Form 24B (Figure 8d) both suggest a lack of score scale consistency
(i.e., low scores represent trait composites quite different from high scores).

Discussion

The different plots were intended to graphically provide insight into what a two-dimensional test
measures throughout the latent space and hence throughout the observed score scale. The clamshell plots
in Figure 3 indicate how much information was provided about different composites at selected points in
the latent trait plane. This plot also provides a sense of the degree to which the ass~arnption &reg;f unidirncn-
sionality is violated. Psychometricians need to be concerned if a test distinguishes between levels of many
different composite traits (e.g., the two-dimensional test or Form 2~I3) but only a single score is reported.

The difference between the composite traits that were measured in the example tests is shown in

Figures 4a-4d. If only a single score were reported, the ideal situation would be to have the same compos-
ite being measured best for all examinees in the latent space (e.g., the unidimensional test, Figure 4b).
This would indicate consistency of meaning or interpretation to the full range of the observed score scale.
A worst case scenario was the simple structure test (Figure 4a) in which high trait level examinees in the
first quadrant were separated according to their level of 0,, and examinees in the third quadrant were
separated according to their level of 0,.

The plots in Figure 6 also provide a sense of which composites were being best measured. There was a

striking difference between the unidimensional test (Figure 6b) and the simple structure test (Figure 6a).
The angular direction of the modes of the 49 curves is the information provided in Figure 4. What is

important to see from Figure 6, however, is the kurtosis of the curves. For example, for the unidimen-
sional test the curves were quite leptokurtic. The composite being best measured throughout the plane can
be interpreted as being within a narrow angular range.

The plots in Figures 7 and 8 relate the linear composites of the underlying traits to the observed and

expected score scales. Two things need to be noted about the type of plot displayed in Figure 7. First, the
composite angle that has the highest correlation with the number-correct scores should be similar for each
of the octants. If only a single test score is being reported, the composite direction yielding the highest
correlation should be the same for examinees in each octant. The unidimensional test (Figure 7b) came
closest to this. Second, the size of the correlation indicates the degree of agreement between the ordering
of examinees on the number-correct score and on the linear combination of (81’ 82) in each octant relative
to the highest correlation among the octants. For example, for Form 24B (Figure 7d) the correlations were
similar in magnitude, but the composite directions were different. The correlations for the simple struc-
ture test were variable and were so for rather disparate composites.

Figure 8 depicts graphically the consistency of the best average composite that was measured for each
value of the true score scale. If tests are detected as being multidimensional, it should be confirmed that the

composite that is being best measured is the same for all values of that score range.
One important question that needs to be studied further is how large a difference in degrees should be

considered an important, substantive difference for interpreting the observed score scale. It might be inter-
esting to divide the latent trait plane into concentric circles rather than octants and repeat the analysis.

Conclusions

The purpose of this paper was to demonstrate graphical ways to use multidimensional inforrnation to
assess the composite of traits being measured by a single reported score when multiple traits are being
measured (i.e., essential unidimensionality does not exist). It is important that those responsible for report-
ing test scores be able to interpret the observed score scale. If a test is multidimensional, but only a single
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score is being reported, the composite that is best measured must be identified. For the sake of uniform
interpretation it is also important that component traits be measured to the same degree of accuracy through-
out the observable unidimensional score scale range.

The graphical approach presented here was predicated on the assumption that the test data fit the two-
dimensional IRT compensatory model given in Equation 1. Before the plots to create a test information
profile can be constructed, it must be determined that the response data are indeed two-dimensional and that

estimating item parameters using Equation 1 is appropriate. Also, the accuracy of the information plots and
subsequent interpretations are only as good as the item parameter estimates from which they were generated.

The information function computed at various trait levels in different composite directions describes the
measurement precision of the maximum likelihood estimate of the latent traits. There is not a simple trans-
formation from these underlying traits to an examinee’s observed score. Thus, all except the last set of plots
(Figure 8) require that conclusions be drawn about the true score and observed score based on evidence

provided about the precision of maximum likelihood estimates of different linear composites of the underly-
ing latent traits. Ideally, the test information profile in conjunction with a substantive cognitive analysis of
the operations involved in solving the test items could hclp corroborate what a multidimensional test mea-
sures, especially if only a single score is being reported.

Appendix A

Extending the proof provided by Hambleton & Swaminathan ( 1985, p. 98) to the two-dimensional IRT

case, the process of differentiating Equation 6 with respect to 0, and 0, can be approached by first applying
the chain rule to yield

and

The second derivatives then can be obtained by using the product rule:

and

Similarly, the derivative with respect to both 0, and 0, can be computed as

Next it is necessary to compute the first and second derivatives of the log of the likelihood with respect
to P,. Differentiating Equation 6 gives
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To complete the computation ofY(6p 0,), the expectations, using Equations 28 and 29, can be expressed as

and

The components of Equation 4 now can be computed individually:

and

When Pi is defined by the two-dimensional compensatory model (as in Equation 1), explicit expressions
for the numerators of Equations 33-35 can be obtained as follows:

and
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Finally, the multidimensional information in Equation 4 can be written as
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