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�e energy domain is still dominated by equilibrium models that underestimate both the dangers and opportunities related to
climate change. In reality, climate and energy systems contain tipping points, feedback loops, and exponential developments. �is
paper describes how to create realistic energy transition management models: quantitative models that can discover pro�table
pathways from fossil fuels to renewable energy. We review the literature regarding agent-based economics, disruptive innovation,
and transition management and determine the following requirements. Actors must be detailed, heterogeneous, interacting,
learning, and strategizing. Technology should be represented as a detailed and heterogeneous portfolio that can develop in a
bottom-up manner, using endogenous feedback loops. Assumptions about discount rates and the social cost of carbon should be
con�gurable.�emodel should contain interactions between the global, national, local, and individual level. A review of modelling
techniques shows that equilibrium models are unsuitable and that system dynamics and discrete event simulation are too limited.
�e agent-based approach is found to be uniquely suited for the complex adaptive sociotechnical systems that must be modelled.
But the choice for agent-based models does not mean a rejection of other approaches because they can be accommodated within
the agent-based framework. We conclude with practical guidelines.

1. Introduction

Scientists are “95% certain that humans are the main cause
of global warming [which] will lead to high to very high
risk of severe, widespread and irreversible impacts globally”
[1]. �ey advise “stabilizing temperature increase to below
2∘C relative to pre-industrial levels” but note that “this will
require an urgent and fundamental departure from business
as usual” [1]. Politicians in 194 countries signed the “Paris
Agreement” that pledges to keep global warming below the
2∘C mark [2]. Anthropogenic greenhouse gasses are largely
caused by humanity’s use of fossil fuels to power energy
intensive machinery. Electricity and heat are responsible for
25%, and it is tightly connected to transportation (which
might become electri�ed) with 14%, industry with 21%, and
other energy related greenhouse gasses with 10% [1].We need
models that help us to uncover quick and preferably pro�table
pathways to a renewable energy system [3].

Since our industrial civilization is built on fossil energy
that nowpermeates every aspect of it, switching to renewables
is a fundamental and integral transition that is not easy to
model. Renewable energy is also decentralized and intermit-
tent with a larger role for prosumers (consumers who are also
producers) and demand-response and storage, which makes
the entire energy system fundamentally dierent. Current
models cannot cope with the magnitude of this transition
and oer ineective and myopic perspectives. But the reality
is less pessimistic: renewable technologies are on track to
be cheaper than fossil alternatives [4, 5], even more so if
we phase out fossil fuel subsidies [6, 7] and internalize risk
calculations [8]. Renewables promise economic growth [9],
jobs [10], and energy security [11] while reducing geopolitical
tensions [12].

So why not take a more positive approach and try to take
advantage of the opportunities that renewables oer?
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In this paper we build on theories found in agent-based
economics, disruptive innovation, and transition management.
We formulate requirements and make practical recommen-
dations for models that can not only make better predictions
but also empower us to actively manage the transition to
renewable energy. We call them energy transition manage-
ment models and de�ne them as quantitative models that
can discover pro�table pathways from fossil fuels to renewable
energy.

�is paper brings together a wide review of both theory
and practice in order to show how such models could be
constructed. It consists of �ve parts:

(1) “Clinging to Equilibrium” functions as a problem
statement, showing that most current models are
unsuitable for transitions.

(2) “�eories of Disruption” reviews agent-based eco-
nomics, disruptive innovation, and transition manage-
ment.

(3) “Modelling Requirements” builds on the theories and
focusses on actors, technologies, and carbon pricing.

(4) “Modelling Methods” evaluates system dynamics and
discrete event simulations before concluding that
modelling complex adaptive systems requires agent-
based models.

(5) “Building a Model” contains practical advice.

2. Clinging to Equilibrium

Currently, most predictions regarding the energy transition
come from equilibrium models that are simply not suited to
dealing with transitions.

Imagine how hard physics would be if electrons
could think (Murray Gell-Mann)

2.1. Equilibrium Models Still Dominate. Economics became
a science in the period that most social scientists tried to
emulate Newtonian physics, requiring humans to be just as
predictable as, say, electrons. Adam Smith’sWealth of Nations
(1776) [13] was inspired by Newton’s Principia. Leon Walras
translated Smith’s ideas into “Newtonian” economic models
called general equilibrium models [14]. Computing them was
�rst done in 1967 and such models were called Applied
General Equilibrium (AGE) models [15]. Since the mid-1980s
an implementation called Computable General Equilibrium
(CGE) models came to dominate economics [16–18] and
their newest incarnation called Dynamic Stochastic General
Equilibrium Models (DSGE) dominates economics now [19].

“�e concept of equilibrium . . . is one of the central
pillars of the Great Borrowing from physics . . . Voluntary
exchange matches up buyers and sellers, prices �oat until
everyone is content, and all markets clear. �e similarity to
the ideal gas law of physics is not at all accidental” [20].
A generally accepted de�nition does not exist [21] but an
o�en used one is as follows [18]: [CGE models] “describe the
allocation of resources in a market economy as the result of
the interaction of supply and demand, leading to equilibrium

prices. �e building blocks of these models are equations
representing the behavior of the relevant economic agents:
consumers, producers, the government, etc. Each of these
agents demands or supplies goods, services and factors of
production, as a function of their prices.”

Proponents of CGE argue that the models are complex
enough to capture the essential features of an economic situ-
ation yet simple enough to be tractable [22]. Other claimed
advantages are accounting consistency due to the use of a
closed accounting system and an accurate measurement of
changes in wealth (as de�ned in macroeconomics) and they
are widely used in economics because they “ensure policy-
making is guided by a correct theoretical understanding of
how economies function” [23]. �ey also provide a “solid
microeconomic foundation” [18] so “CGE analysis consti-
tutes a powerful scienti�c method for the comprehensive ex-
ante simulation of adjustment eects induced by exogenous
policy interference” [24].

According to Fagiolo and Roventini [19]: “at the dawn
of 2008 – just before the �nancial crisis unexpectedly hit –
a new consensus emerged: the New Neoclassical Synthesis,
. . . grounded upon Dynamic Stochastic General Equilibrium
(DSGE) models.” Proponents claimed that monetary and
even economic policy was �nally becoming science [25–27].
Currently most energy models are still largely equilibrium
models, for example, the World Energy Model (used by
the IEA for its in�uential “Energy Outlook” series), POLES
(used by Enerdata), and PRIMES (used by the European
Commission) [28]. Stanton et al. [29] also review the
following integrated assessment models using CGE: JAM;
IGEM; IGSM/EPPA (MIT); SMG; WORLDSCAN (CPB);
ABARE-GTEM; G-CUBED; MS-MRT; AIM; IMACLIM-R;
WIAGEM; MiniCAM; and GIM.

2.2. EquilibriumModels Are PreciselyWrong. It is better to be
partly right than precisely wrong [30] and notwithstanding
their dominance and mathematical precision, equilibrium
models have a long list of problems.�ey are essentially static:
they assume that external shocks can take the system from
one equilibrium to another but that the transition itself is
irrelevant [17]. Furthermore they are top-downmodels based
on “the holy trinity of rationality, sel�shness, and equilib-
rium” [31]. �ey assume “rational” actors that can be repre-
sented by a couple of “representative” aggregated agents [19].
�ese “rational” actors only strive for utility maximization.
�ey immediately know the utility of every product and price
on the market. �ey are impervious to status, strategizing,
populism, idealism, tribalism, hearsay, ormarketing.�ey do
not empathize with future generations (see “discount rate” in
this paper) or people in other countries (see “Negishi welfare
weights” in this paper). Furthermore, the actors function in
“ideal” markets.�is means, among other things, no bankers
with perverse incentives, no lobbyists, no political games, no
idealists, no monopolistic tendencies, no network eects, no
incumbent resistance to change, and so on.

Each of the above simpli�cations has been falsi�ed, both
within economics and by �ndings from other social sciences
like psychology, sociology, and political science [20]. But in
equilibrium models they endure, hence the accusation that
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users of equilibriummodels display “a steadfast refusal to face
facts” [32].

But we are beginning to see some change. For many
economists, the 2008 economic crisis was the last straw.
It laid bare the crisis in economic theory itself [33–36].
Utility theory became mocked as a “fetish” [37]. Fagiolo and
Roventini survey the update of CGE to DSGE in detail and
conclude it is “patches on torn clothes” [19].

Ackerman observes [38]: “�e mathematical dead end
reached by general equilibrium analysis is not due to obscure
or esoteric aspects of the model, but rather arises from inten-
tional design features, present in neoclassical theory since its
beginnings. Modi�cation of economic theory to overcome
these underlying problems will require a new model of
consumer choice, nonlinear analyses of social interactions,
and recognition of the central role of institutional and social
constraints.”

Nobel laureate Krugman adds [35]: “As I see it, the
economics profession went astray because economists, as a
group, mistook beauty, clad in impressive-looking mathe-
matics, for truth. . . . Economists need to abandon the neat
but wrong solution of assuming that everyone is rational
and markets work perfectly. �e vision that emerges as the
profession rethinks its foundations may not be all that clear;
it certainly won’t be neat; but we can hope that it will have the
virtue of being at least partly right.”

2.3. Speci�c Problems with Energy Models. State-of-the-art
integrated assessment models (IAMs) usually embed equi-
librium models that treat climate policy as an additional
constraint while predicting and factoring in climate-related
damage [39]. But there is growing consensus in the literature
that this conveys a false sense of control and underestimates
both the damage of climate change and pro�ts reaped when
implementing renewable energy [8, 40–46]. Formore, see the
discussion on “Pricing Climate Change” in this paper.

Most models also underestimate the potential of tech-
nologies that diverge from the status quo and we want to
give one example to illustrate the magnitude of the problem.
We will use the photovoltaic (PV) predictions of the World
Energy Model (WEM) in the World Energy Outlook (WEO)
of the International Energy Agency (IEA). Although it is only
a partial equilibriummodel, we take it as an example because
it is probably the most in�uential energy model in the policy
domain [48].

�e output of the WEM is shown in Figure 1. NPS stands
for “New Policy Scenario” which assumes that a realistic
amount of commitments (e.g., to the Paris accord) are imple-
mented into new policies stimulating PV. �e thick black
line shows that annual additions of solar have been steeply
increasing (meaning new or bigger factories for solar panels).
We can see that each WEO accepts this past reality because
each new scenario has a higher starting point. However,
we also see that the WEO essentially predicts that no new
factories will be build. �is stagnation of the solar industry
is predicted over and over again, in every WEO PV scenario
since 2002 [47].

Since theWEM is a proprietarymodel, it hard to pinpoint
the cause of the problem. Johnsen points to erroneously high
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Figure 1: Reality versus IEA predictions: annual PV additions. In
gigawatt peak. Data from IEA WEO 2002-2016 NPS and REF sce-
narios [47].

prices; little learning due to little growth; and assumptions
about the absence of �exibility that reduce the value of PV
[49]. In 2017 the IEA conducted a study together with IRENA
[50]. Page 80 shows thatWEMNPS predicts that utility-scale
PV will cost USD 1/W in 2030. However, NREL reports that
this price was already reached in 2017 (in the US) and that
prices have been falling with 19% per year for the last 7 years
[34]. If that were to continue the price per watt in 2030 would
be seven cents instead of one dollar, and although that is
probably too optimistic, there is a big dierence with IEA
expectations. Furthermore, the IEA acknowledges that PV
has grown exponentially with—on average—43.3% per year
over the last 26 years. However, page 74 shows that WEM
NPS predicts linear growth from 228GW in 2015 to 1800GW
in 2050. A yearly production of well under 50GW would
su�ce to accommodate this growth. In reality, there was
already over 75GW annual production capacity in 2016 and
healthy growth is expected in 2017 [50]. �e IEA, once again,
implies that the PV sector will collapse instead of continuing
its exponential growth.

�is disconnection from reality could be due to, for exam-
ple, sponsor requirements or mental biases like con�rmation
bias [51], status quo bias [52], or system justi�cation bias [53]
but the way themodel works could also be a factor.We would
argue that, looking at Tables 1 and 2, most of the energy
transition management model requirements that we deduce
from the literature are implemented partially or not at all.�e
result is a model that is unable to envision and leverage the
exponential developments in solar energy.
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Table 1: Overview of requirements for energy transition management models.

Agents are detailed, heterogeneous,
and strategizing. �ey learn in

interaction with each other and the
environment. Behavior is de�ned
through interviews and surveys.
Exceptional individuals and

institutions can drive innovation.

Global level with technological
innovation through science, R&D, and

economies of scale. Also, climate
impacts and policies. Ability for rich
nations to invest in climate mitigation
in poorer nations (e.g., rainforests).

Technology is detailed, disaggregated,
decentralized, and validated by

domain experts. Agent adoption drives
endogenous, possibly exponential,
bottom-up feedback loops for, for

example, solar, wind, storage, and EVs.

National level with energy related
policy, subsidy, and taxes. Also, large
scale energy production/use, high
voltage grids, and mobility patterns.
Important level for modelling regime

resistance.

Ability to price externalities dierently
for dierent actors. Underlying
assumptions are explicit and user

adjustable, for example, discount rates,
Negishi welfare weights, chance of

catastrophe, and value of
health/ecosystems.

Local level with actors that drive
adoption and use of new energy

technology. Constrained by spatially
modelled physical infrastructure,
connecting subsystems like grids,
roads, buildings, machines, and

people.

Table 2: Characteristics of dierent types of systems and accompanying simulation techniques.

Equilibrium Dynamic systems Complex adaptive systems

Model
characterization

Static Dynamic Adaptive

System creation Top-down Top-down Bottom-up

Transition &
resistance

Invisible Observed as aggregate
Can be traced back to individual

agents

Dynamic parts of
model

Inputs Relationships & inputs
Actors, behaviors, relationships &

inputs

Dominant paradigm Equilibrium (CGE) SD and DES Agent based modelling (ABM)

Simulated system No simulation Prede�ned system System emerges during runtime

Strong feedback loops No Yes (especially SD) Yes

Spatial awareness Hard Yes (especially DES) Yes

Heterogeneous actors Hard Yes (especially DES) Yes

Emergent behavior No No Yes

Actors can interact No No Yes

Actors can learn No No Yes

3. Theories of Disruption

We have determined that equilibrium theory is not a useful
basis for transition management. What technologies are
more appropriate? We start with agent-based economics that
is quickly growing into a mature �eld within economics.
We expand that with theories on disruptive technological
innovation. Finally, we look at transitionmanagement: a body
of literaturewith a focus on accelerating the energy transition.
�us, we try to capture the perspectives of economists,
engineers, and social/political scientists.

�e Mecca of the economist lies in economic
biology . . . But biological conceptions are more
complex than those of mechanics (Alfred Mar-
shall, 1907)

3.1. Agent-Based Computational Economics. A�er the funda-
mental problems of equilibrium models became clear, some
economists started looking for new paradigms. �ey found
inspiration in biology and natural evolution where path
dependency is just as important (if not more so) than equi-
librium. An overview is found in Nelson [54]. Evolutionary
economics was then combined with a new approach from
the social sciences that took advantage of modern computing
power: agent-based modelling (ABM). �e result was a very
dierent, post-Walrasian, branch of economics called Agent-
Based Computational Economics (ACE) that uses ABM
instead of equilibrium models [55]. ACE is based on the
complex adaptive systems paradigm and grows economies
from the bottom-up, thereby bridging the divide separating
micro- andmacroeconomics [56–58]. It extends evolutionary
economics in four ways: agents are heterogeneous with
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individual memories and large autonomy; new interactions
are possible (e.g., predatory or cooperative instead of just
based on price and quality); evolutionary pressure acts on
individuals instead of entire populations which drives indi-
vidual behavior; and, �nally, the implementation is a virtual
economic world in the computer that functions without
intervention by the modeller [59]. Balint et al. [39] show that
ACE is making an especially pronounced contribution in the
areas of energy and climate change.

ABMs are used to �nd the most eective policies to
mitigate the macroeconomic eects of climate change. �ey
show that it is eective in combining an approach using sticks
(carbon taxes) with one using carrots (incentives to tech-
nology adoption) [60]. ABM enables us to reframe climate
change from a zero-sum game to a coordination problem
oering win-win solutions [61]. Dosi and Nelson show that
it is important to endogenize the Schumpeterian diusion
of low-carbon innovation [62]. When ABMs take that into
account, they show that subsidizing R&D into carbon-free
technologies leads to a swi� transition and higher economic
growth [63, 64]. Isley et al. [65] show how ABM can be used
to compare market-based emission reduction policies with
some having surprising and transformative results. Deter-
mining storage needed in schemes with more intermittency
is also an ideal candidate for ABM studies (e.g., [66]). And
when it comes to cap de�ning policies for �nancing green
innovation ABMs are also proving increasingly useful [67].

ABMs also give us a better picture of the costs of climate
change in a networkedworld [68].�ey showhow the burden
hits parts of the population especially hard [69]. �ey use
catastrophes like the �ooding of Louisiana a�er Hurricane
Katrina to show that losses increase nonlinearly due to
propagation eects [70]. Propagation eects are also studied
globally [71, 72]. Combining costs and mitigation into agent-
based integrated assessment models (IAMs) is a new �eld.
One of the �rst examples of combining complex economies
with climate models comes from the LAGOM model family
that is able to deal with dierent timescales for modules and
spatially distributed energy production and pollution [73–75]
but it is not yet an IAM. �e �rst fully �edged agent-based
IAM might be the Dystopian Schumpeter meeting Keynes
(DSK) model from Lamperti et al. [76].

Climate negotiation and coalition formation is an inter-
esting new �eld of study for which ABMs are especially
well suited [77–79]. Realistic ABMs that take dierent per-
spectives into account produce very dierent result than
equilibrium-based models with rational actors [80] and the
way the negotiations are structured have a large impact on the
results [81, 82]. Policies that return part of a carbon tax back
to conforming companies are found to survive longer [83]. As
we will see in the discussion on “Energy Transition Manage-
ment,” individual (instead of highly aggregated) actors and
technologies and new ways of interacting are vital for models
that aspire to explore novel energy transition pathways and
they can also increase stakeholder participation because the
model is a closer representation of the reality the stakeholders
recognize.

ABMs are now ubiquitous whenmodelling the electricity
sector [84–86] because of their higher explanatory power

in general [87, 88] and better ability to explore the eects
of increasing amounts of renewable energy in the mix [89–
91]. Multiagent systems can also be used to actually run a
decentralized power grid [92, 93].

An application of ABMs in ACE that is closely related to
the next section on Disruptive Technological Innovation is
predicting technology diusion [94], especially of renewable
technology [95–99].�e agent-heterogeneity that ABM facil-
itates is a central factor in technology diusion in general
[100], and environmentally benign technology speci�cally,
with “eco warriors” and early adopters functioning as launch-
ing customers [101]. While some income inequality speeds
up adoption, too much hampers it [102, 103]. �e interplay
between customers and �rms is also important [99]. Finally,
the diusion of knowledge among consumers is crucial for
the spread of diusion (contrary to the rational actor model).
An interesting side is that ABM gives a result that we have
observed in reality: moral persuasion is ineective [104] at
taking away this barrier while graded eco-labels are very
eective [105].

3.2. Disruptive Technological Innovation. Burning organic
matter has brought humanity hitherto unfathomable energy
[78] and prosperity [79] but nowwe aremaking the transition
to renewable energy [80]. �is will not be an incremental
upgrade but a transformative system level change in the
Schumpeterian tradition of creative destruction [106] with
superior technologies replacing inferior ones [107]. �e basic
reason is simple: while fossil technology is hardly improving
anymore [108], there are increasing [109] or even accelerating
[110–112] returns for renewable innovations regarding solar,
wind, batteries, and synthetic fuels [113].

�is improvement is usually modelled using learning
curves. Originally the concept was con�ned to learning
inside factories [114, 115] but they are now deployed in a
wider context [116]: many technologies exhibit a relatively
predictable exponential trajectory that is a more reliable
predictor of its development than mere (expert) opinions
because human beings (experts too) have a tendency to
assume linear trends.

�e most famous example is probably Moore’s law [117],
but, in energy, it is solar panels that steal the show. We
have seen that their price drops 21% for every doubling of
production [118]. �is has already resulted in a more than
hundredfold price decrease in the past 35 years. �e price
of wind energy has decreased tenfold in the same time [90].
Lithium batteries for electric vehicles do not go that far back
but their price has decreased tenfold in the last 17 years alone
[93]. So, the technology advantage is tilting dramatically
towards renewable technology. Will this continue?

Availability of energy is not the problem: the sun gives
us thousands of times more energy (through radiation) than
we need [81, 82] and the �rst derivative (wind energy) is
also abundant [83]. �e raw materials we need are not really
scarce either and since we can recycle—we are not burning
stu—we could continue with renewable energy until the sun
runs out. �e price reductions will also continue since we
have many, many doublings to go and renewable energy uses
much less raw material than fossil energy. For example, wind
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needs between 2 grams (airborne wind energy [85]) and 10
grams of material per kWh [86, 87] while a coal �red power
plant burns about 300 grams per kWh [88, 89]. And electric
vehicles running on this renewable energy use only 400 kg
of battery (falling to 100–200 kg) to replace over 15 tons of
crude oil over the lifetime of the car [91, 92]. So, if human
civilization continues it is likely that fossil technology will be
displaced.

However, in many areas renewable technology is still
inferior. How do we make sure the disruption does not stall?
Christensen et al. have put forward the theory of disrup-
tive technology to explain how an inferior new technology
can beat an incumbent one [119–121]. �ey posit that the
new technology might be inferior from the vantage point
of mainstream criteria, customers or �rms, but for some
customers there may be performance oversupply: they get
more performance along the traditional criteria than they are
willing to pay for. Since consumers o�en experience decreas-
ing marginal utility [122], performance oversupply could
even be the rule. Competing �rms can continue to increase
performance oversupply as a form of nonprice dierentiation
[123]. But the performance oversupply makes customers
attracted to products that give more attention to price or
to new criteria that have so far been considered secondary.
Incumbents o�en react too slow to this shi� because they are
resource dependent [124] on high-value customers that will
not accept the inferior new technology yet.

Adner extends disruptive innovation with a demand
based and emergent perspective [125]. He introduces func-
tional thresholds below which a consumer will not consider
the product and net utility thresholds that specify the highest
price consumers will pay and may be based on the customers
internal resources [126], capabilities [127], or human capital
[128]. Adner also develops a formal model describing how
technology A in market segment X will more easily disrupt
market segment Y if there is a large preference overlap
between the market segments. Adner states that he would
have liked to include asymmetries in �rm capabilities, market
segment size, and economies of scale.

A �nal dynamicwemustmention is the lock-in to interior
technological development trajectories. Arthur points out
that this has happened to, for example, our keyboard and
electricity grid and the type of nuclear reactors we use [109].
It uses the same dynamic of increasing returns but now
has the eect of giving an incumbent an ever-increasing
advantage, eectively creating amonopoly for a product (e.g.,
Google or Facebook) or technology (e.g., gasoline cars). Most
important in the context of this paper is humanity’s carbon
lock-in towards the use of more fossil fuels [129, 130]. Even
though we know it is destroying our habitat, the lock-in of
fossil technologies ismaintained by subsidies and the absence
of carbon pricing [131]. It is also spreading to developing
countries [132]. We must be able to model innovative ways
to break such lock-ins.

Let us give an example touching uponmost of these issues
to show what we mean. For over a hundred years the only
practical rechargeable battery was a lead acid battery. But
when the laptop and mobile phone came along, research into
lightweight batteries intensi�ed and soon the lithium battery

was born.�is enables people to build electric sports cars like
the Tesla Roadster that changed the image of electric vehicles
for the better.

Tesla went on to produce the model S: an upmarket
electric car with good looks, range, and specs. �e Model
S has now started to displace many conventional car types
in the upper car segment. It is inferior in the sense that
it has limited range (450 km per charge), takes longer to
recharge (about 250 km in 30min), and oers a less premium
�nish. But customers—especially people interested in new
technology with access to either private parking or a public
charger close to their house—liked that it had unparalleled
acceleration (faster than the fastest production sports car)
and was silent and clean [133]. Once they owned the vehicle
they noticed how they loved charging at home (which they
did more than 90% of the time) and how the range was not
really an issue [133].

�e price of the batteries was still too high to make a
mid-level car but the success of the Model S enabled Tesla
to build a Gigafactory for batteries (together with Panasonic)
that brought prices down [134]. Government subsidies and
charging infrastructure are currently also vital [135]. But
prognoses show that electric vehicles will soon be cheaper
to own due to falling battery prices, low energy use, and
low maintenance [135, 136] a�er which displacement will
continue without subsidies. �is example contains a number
of dynamics that an energy transition management model
should be able to capture.

3.3. Transition Management. In our view, transition man-
agement enriches theories on agent-based economics and
disruptive innovation with political and sociological insights.
It also speci�cally addresses lock-in of fossil technologies.
Energy transition management was born from the obser-
vation that transitions to new technologies o�en fail to
materialize, even if they are bene�cial to society. In order
to change this, transition management researchers aim to
“develop appraisal and valuation techniques that could
inform a choice between dierent technologies” from the
vantage point of societal bene�t [137]. Later this technology
focus was extended to “interconnected systems of artefacts,
institutions, rules and norms” and especially on how to make
systems transition in response to environmental signals [138].

Recent overviews of the �eld are given by Sengers et al.
[139], Li et al. [140], and Holtz et al. [141]. According to Li
et al.: “Today’s most in�uential body of innovation-focused
transition research originates in the Netherlands, and is o�en
called the “Dutch approach”. Approaches that descended
from the Dutch school are transition management (TM),
strategic niche management (SNM), technological innova-
tion systems (TIS), and the multilevel perspective (MLP).”
�ese approaches are particularly suited for investigating
sociotechnical transitions in the energy supply, buildings, and
transport sectors, as they focus on means of supplanting the
incumbent system with radical alternatives, disruption of the
status quo, and the initiation of rapid change.

If this paper refers to transition management, this is
meant to include SNM, MLP, and TIS. All these approaches
focus on regime resistance from incumbents and how
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protected niches can function as incubators for bene�cial
innovation [142–144]. SNM [145, 146] draws on evolutionary
economics [147, 148] and had high ambitions (although the
originators concede that “we were certainly over-optimistic
about the potential of SNM as a tool for transition” [149]).
MLP [150] focusses on the fact that change is required
at multiple levels at the same time. As the name implies,
the study of technological innovation systems (TIS) [151] is
focused on technology instead of on the energy transition
as a whole [152, 153]. However, since the energy transition
is driven in part by these technological innovation systems,
their integration into transition management yields powerful
synergies [154, 155].

Transition management sets out to explore radically
new ways to meet societal needs for, for example, energy
or mobility [156, 157] and draws heavily on the ideas of
Malina and Kauman [158] regarding complexity [159]. It
combines many of the aspects of the other approaches and
gives special focus to individuals and organizations that are
aligned to both the innovative technology and the societal
goal (e.g., sustainability) since it is them (and not members
of the incumbent regime) that will drive the change [160,
161]. However, this requires “multiple explicit actors with
dierentiated selection criteria and behavioral parameters
that possess agency to shape transitions” [140]. An intriguing
new idea is to use the transition management perspective in
conjunction with crises to create “game changers” [162].

Currently, transition management models are usually
qualitative in nature. Drawing on Holtz et al. [141] we
conclude that quanti�ed transition management models are
needed because they improve internal consistency [163–165]
and enable validation of theory [166–168]. Models can also
enhance participatory processes [169, 170] while challenging
incorrect narratives [171] and bringing relevant factors into
scope [172, 173]. Finally, quanti�ed models would increase
the use of transition management by policy-makers which is
needed because currently it is used only rarely [141].

4. Modelling Requirements

In this section we present the requirements for energy transi-
tionmanagementmodelling that we deduce from the theory in
the previous section �rst about modelling actors, then about
modelling technologies, and �nally about carbon pricing.

4.1. Requirements for Actors

4.1.1. Detailed and Heterogeneous Actors. According to tran-
sition management (esp. MLP), there is a range of transition
pathways. Geels et al. [174–176] identify the following:

(1) Transformation: incumbents adjust some regime
rules under pressure of, for example, social move-
ments, for example, the adoption of carbon capture
and storage (CCS).

(2) Technological substitution: novelties are developed
before incumbents act and they are replaced within
the regime, for example, electric vehicles and large
scale solar.

(3) Recon�guration: a range of novelties is adopted by
incumbents and this deeply changes the regime, for
example, self-driving vehicles, supergrids, and smart
grids.

(4) De- and realignment: landscape pressure, uncer-
tainty, and multiple novelties lead to a new regime,
for example, solar plus storage replaces centralized
energy systems with autarkic micro grids.

We �nd that models that strongly aggregate and simplify
actors mostly capture the �rst type of pathway. Transition
management can capture all pathways by viewing transitions
as driven by speci�c innovators that are part of a niche and
resisted by speci�c incumbents that are part of a regime. But
this requires heterogeneous actors that aremodelled in detail.

Furthermore, the actors possess agency. �e transition
management view of agency could be characterized as fol-
lows: “Never doubt that a small group of thoughtful com-
mitted citizens can change the world. Indeed, it is the only
thing that ever has” [177]. In transition management it is the
actor that goes against the grain that is the nucleus for change
(together with technological breakthroughs), whether at the
global level (e.g., Henry Ford, Steve Jobs, or Elon Musk) or at
the local level (e.g., a community organizer or buyer of solar
panels and electric vehicles). At �rst the innovator is part of
a niche. A niche is created when the innovator is joined by
a group of actors that are open to the innovation. A�er a
while the bottom-up innovation can grow out of the niche to
become a new incumbent. �e implication of this idea is that
change is caused by (groups of) actors that diverge from the
mainstream. So actors especially that might act as innovators
or early adopters must be modelled in detail.

But not all actors are individuals. Important actors in the
energy transition are governments, knowledge institutions,
corporations, and NGOs [178, 179].

Dierent stages of the transition see dierent innovators
as its drivers. For example, solar cells were �rst developed for
satellites, then adopted for buoys and ships, then adopted by
households in sunny countries with high electricity prices,
and only now are they becoming the cheapest form of energy
in wholesale installations. In each phase the innovator was a
dierent actor.

�e importance of bottom-up modelling can also be
illustrated by the way we have adopted new technologies
like PCs, the Internet, mobile phones, and digital cameras.
Every one of these trends surprised incumbents [180] and
such trends are typically underpredicted by economic (top-
down) models [181]. A similar underestimation is currently
happening regarding PV, EV, and wind. If we switched
our perspective to the actors actually adopting the new
technology—because they perceive a bene�t—this would
remove the problem of underestimating change.

A way to gather the relevant actors and behaviors suitable
to transition management could be to conduct interviews,
focus groups, and surveys among human actors and orga-
nizations that could be instigators for change and to make
sure that the diversity of their behaviors and interactions
is captured in the model. An example would be smart-grid
users [182]. Representation and aggregation would only be
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acceptable if a valid line of reasoning suggests it does not
diminish the ability of nonstandard actors to instigate or
resist change. When the model is ready the modeller should
preferably return to the �esh and blood versions of the actors
represented in the model and gather their feedback on how
well they are represented.

4.1.2. Interacting and Learning Actors. A characteristic of
particular interest is how actors interact with each other and
the physical infrastructure.

In sociotechnical systems interrelations are important
and determine, for example, the success of innovative
entrepreneurs [183]. Innovation is spread by actors interact-
ing and learning from each other [184, 185]. Interactions with
the physical environment are just as important. For example,
people cannot put solar panels on their roof if they do not
have a roof and for some countries the adoption of land based
wind power is easy (like the USA) while for others o-shore
wind is more logical (like the UK and the Netherlands). In
transportation the importance of geographical locations and
infrastructure is even more obvious. For example, adoption
of electric vehicles is less for actors that depend on public
charging infrastructure that does not materialize. Finally,
actors can learn. An example of this is that people seem to
like electric vehicles better with experience [186].

An approach we would recommend is to copy a represen-
tative set of environments of interest (e.g., neighborhoods) in
which actors can “live” and interact in a realistic fashion. For
example, whenmodelling electric vehicle charging youwould
model houses, parking places, and charging stations and
give actors realistic buying, charging, and driving behaviors.
Realistic computerized neighborhoods can provide a scaold
for scenarios in which the modeller is forced to “face reality”
and it is bene�cial in interactions with domain experts
and policy-makers because it provides them a recognizable
interface.

4.1.3. Actors with Foresight and Strategizing. Transition man-
agement actors need foresight and strategy. For example, Karl
Benz had the foresight to develop the internal combustion
engine (but would have gone bankrupt if his wife had not
had the foresight that he needed buyers so she kidnapped the
prototype to make the world’s �rst “long distance car trip”
[187]). Henry Ford faced customers who had no idea what
an automobile was but he foresaw the age of the automobile.
Elon Musk has claimed at several occasions that he started
Tesla because he thought he could prove that electric cars
were cool, even though he considered the chances of success
for the company to be less than 10%.

A more statistically relevant example is investment in
solar panels. �e investment is now more than hundreds of
billions of euros which is only rational if the investors have
considered a longer time frame and exponential develop-
ments.

Regime actors can also use foresight to stave o challenges
to the status quo, for example, by sponsoring scientists that
support their view and by paying lobbyists and politicians
that help to keep/make the playing �eld uneven.

4.2. Requirements for Technologies

4.2.1. Realistic, Disaggregated with Endogenous Learning.
Transition management models require a “disaggregated
portfolio of technology options with dierent price and
performance characteristics that function within operational
boundaries and face resource constraints” [140]. In practical
terms, each individual technology should be modelled as a
separate bottom-up contender for adoption, including all the
characteristics determining its adoption such as the space
practically available and the measures needed to overcome
intermittency (like storage and smart charging of electric
vehicles).

Especially important is the inclusion of learning curves
as detailed in the previous theory section. Learning curves
can be exogenous or endogenous. An example is the analysis
of learning curves of batteries by Nykvist and Nilsson [188].
�ey present an exogenous feedback loop where the costs of
battery production are declining by 8–14% per year. �en his
endogenous feedback loop shows battery prices declining at
6–9%per doubling of production capacity.�e second curve is
called an endogenous feedback loop because it feeds on itself
within the model: an increase in battery sales would lead to a
corresponding decrease in the price of batteries which could
lead to an increase in battery sales, and so on. Models that
assume endogenous technical change frequently recommend
much more aggressive carbon abatement policies and see a
much quicker and less costly replacement of fossil fuels by
sustainable alternatives. A review of 25 well known models
concludes that the impact is signi�cant [189].

Feedback loops can be negative (dampening the reaction
of the system) or positive (quickly taking the system to
new states). Positive feedback loops are important because
“they generate a much richer variety of trajectories which
the system may follow” [190]. One objective of transition
management models is to enable policy-makers to spot and
then accelerate positive feedback they deem bene�cial, for
example, by protecting niches (when they have the potential
to provide powerful positive feedback) from regime resis-
tance until they are self-propelling.

Another aspect is the facilitation of bottom-up adoption
that leads to the emergence of new pathways. Top-down
models “tend to be more pessimistic than bottom-up models
about the costs of energy policies. �is is related to the
dierence in the scope and potential for energy e�ciency
improvements as well as the treatment of technological
change” [181]. Verbong andGeels [175] describe how dierent
pathways can lead to dierent solutions, for example, either to
micro grids, smart grids, or supergrids [176, 191]. By allowing
new pathways to emerge in a bottom-up manner, transition
models allow us to �nd better ways forward.

4.2.2. Use of Real World Technological Experts. When trans-
lating the real world into a model it is valuable to do it in
such a way that themodel is easy to understand for real world
experts. �en modellers (e.g., economists) and experts (e.g.,
engineers) could work together. Let us take PV as an example.

PV production is comprised of many subprocesses with
dierent rates of learning. In the case of PV, traditional
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cells bene�t from our ability to slice ever thinner silicon
wafers in an ever more e�cient fashion while thin �lm
technologies bene�t frombreakthroughs in printing cells on a
�exible substrate. Experts could help us judge those dierent
learning curves. �ey could also double-check them based
on predicted raw material usage. In the case of PV, a silicon
wafer thatmakes up a solar cell has aminimum thickness and
can never become cheaper than the silicon it is made o.�e
fragile wafers also require a rigid (e.g., glass) encapsulation of
a certain thickness.�at is whymany experts predict that thin
�exible �lm will win out over silicon wafers in the long run.
But things can change: when the price of silicon skyrocketed
a few years ago the PV industry developed newer and simpler
processes speci�cally for PV (instead of borrowing from
the processes used to make CPUs) that now produce solar
silicon signi�cantly cheaper than before. So, we have to keep
monitoring and updating our models. Using models that
closely resemble reality makes it possible to interact with
domain experts that can help us with that.

�is leads us to R&D. One could argue that Einstein’s
Nobel prize winning explanation of the photoelectric eect
paved the way and that our current computer models of
quantum gaps and the way we apply machine learning to the
simulation of digital composites are an important factor in the
constant PV breakthroughs. R&D has the advantage of being
relatively cheap (compared to scaling up production) but the
disadvantage of being relatively slow (especially fundamental
research at universities). �us, investing in more PV R&D
might be a very cost-eective way to increase learning rates
in the long run but it requires foresight. Experts could help us
to incorporate the possible impact of R&D in our models.

But although domain experts are vital, there is a catch.
Experts are just as critical of paradigm changing feedback
loops as ordinary humans and can have a stronger than
average status quo bias [52] and system justi�cation bias
[53]. Maybe that is why science is said to progress “one
funeral at the time” and why the science �ction writer
Clarke proclaimed his “�rst law” to be as follows: “When a
distinguished scientist states that something is possible, he
is almost certainly right. When he states that something is
impossible, he is very probably wrong” [192].�ese biases can
combine with groupthink that exacerbates con�rmation bias
[51] and are in turn exacerbated by shared information bias
[193], especially when the group is seeking consensus [193].
In short: experts tend to be conservative, especially in groups.

For this reason, themodel should follow the knowledge of
experts when capturing the dynamics and constraints of the
technology but predictions about the future should be based
on where the model leads us, and that will probably surprise
both us and the experts.

4.2.3. Externalities of Imperfect Markets. Externalities are
costs or bene�ts (usually costs) that are not internalized in the
transaction under review. For example, we know that burning
coal fuel and eating meat contributes to climate change but
the costs of climate change are not incorporated in the price of
coal or meat. �is means that producers can oer fossil fuels
and meat at low prices and that society as a whole picks up
the tab.

Governments could remove these market imperfections
by levying taxes, using a principle o�en called the polluter
pays. But this causes regime resistance, for example, from the
producers and consumers of fossil fuels and meat. We also
face a prisoner’s dilemma in the sense that industries in the
�rst country to adopt taxes would �nd it hard to compete
with industries from other countries that did not adopt the
taxes. So, taxes that are bene�cial on a global level can be
detrimental on the national level if some countries opt out.

Transition management models looking for bene�cial
pathways should assume neither a continuing status quo nor
perfectmarkets. Instead they should focus on the overall costs
and bene�ts of realistic interventions. �ese costs should
be attributed to individual actors on dierent levels (e.g.,
the planet, individual nations, and individual producers and
consumers) so that resistance and gain are visible on the level
of the relevant decision-makers. �is holds true for all parts
of a transition management model but is especially relevant
when modelling technological pathways.

For example, a pathway that assumes erasing subsidies
for meat or forcing people not to eat it is highly unrealistic.
But subsidizing tasty meat replacement products might be
achievable, especially in the early stages when production
volume is still low. Investing in R&D towards meat replace-
ments might be even more cost-eective and have a higher
chance of collecting the ROI locally. Such a pathway is
especially promising if the meat replacement technology has
the potential to become cheaper and tastier through the
existence of a positive feedback loop. �en it would be able
to replace regular meat, even in an imperfect market where
the costs to society are not internalized.

�us, well-cra�ed transition management models have
the potential to shi� the dialogue from ideological trench
warfare around bland win-lose solutions to an intellectual
game where the goal is to discover an achievable win-
win pathway. And because the pathway is constructed in
a bottom-up manner using recognizable building blocks
(instead of impenetrable mathematics) it could also be used
to create broader support for the investment opportunities
that are involved. It might even convince the meat producer
to enter the meat replacement business.

4.3. Requirements for Carbon Pricing. �e last set of require-
ments for models that guide the transition to renewable
energy pertain to pricing the damage done by fossil technolo-
gies. �is section should make the transition management
modeller aware of themost important assumptions regarding
what is o�en called the social cost of carbon (SCC).

We propose transition management models should be
able to use a dierent SCC, depending on the actor, for
example, a high price for actors focused on the state of the
art in science, a medium price for economists, a low price
for policy-makers based on what is politically palatable, and
a negligible price for companies that have the power to lobby
for exemptions. Incidentally this could also be a realistic way
to model regime resistance. In an ideal model (not an ideal
world), discount rates should be context sensitive and all
assumptions should be user con�gurable. We will illustrate
the importance of these points below.
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4.3.1. Economists versus Climate Scientists. A meta-analysis
of 800 estimates showed a “bias-corrected” SCC of between
0 and 134 dollars while “uncorrected” prices are o�en
much higher [194]. But narrowing it down shows that most
economists agree that 37 dollars is a safe lower bound and
this is what many policy-makers strive for [195]. �e actual
price on the EU ETS market at the time of writing was 4
dollars. Why this is important can be illustrated by a simple
example. Producing one kWh of electricity from a coal �red
power plant emits around one kg of CO2 [196]. A CO2 price
of 37 dollars per ton would thus lead to a SCC of 3.7 cents
per kWh. �is would almost double the wholesale price of
electricity from coal.

And, actually, the economists are probably underesti-
mating the SCC. Nordhaus (possibly the most in�uential
economist in the �eld) noticed a deep divide between climate
scientists and economists regarding the SCC. He conducted
a survey [197] and concluded that “At one extreme are
mainstream economists who view the prospect of greenhouse
warming with little concern, con�dent that human societies
will adapt handily to such changes. At the other extreme,
natural scientists worry about irreversible impacts on natural
systems. �ey warn of unpredictable extreme events, such as
shi�ing ocean currents ormigratingmonsoons. [Concerning
damage] natural scientists’ estimates were 20 to 30 times
higher.”

Climate scientists include tipping points and other non-
linear relationships in their analysis [198] which creates a
discontinued risk pro�le akin to what is used to calculate the
�re insurance for a house [8, 40]. �is, combined with the
limited availability of data, leads statisticians like Ikefuji et al.
to apply Weitzman’s “Dismal �eorem” [199] which gives the
risk pro�le a relatively “fat tail” like a Student’s � distribution
[200]. �e result is an SCC of hundreds of dollars [201–
203]. Economists like Nordhaus dispute the applicability of
the Dismal �eorem [204] and treat climate change as a
continuous cost subject to cost-bene�t analysis (e.g., the
price of electricity) to arrive at a much lower SCC. So, the
question becomes: who do we trust to estimate the risks of
climate change: climate scientists or economists? If we trust
the climate scientists or even if we choose a middle ground
between them and the economists, the SCC would be so high
that fossil fuels would instantly be prohibitively expensive.

4.3.2. Discounting the Future, Hardwiring Inequality, and
Pricing the Priceless. �e extent to which future damage is
taken into account depends on the discount rate [205]. �e
impact is most easily demonstrated by an example. Assume
a damage of a hundred euros to people living one hundred
years from now. Howmuch should we invest today to prevent
that future damage? Many important economists [206–208]
argue that we should not burden future generations with our
excesses. �ey thus argue for a discount rate of 0% and want
to invest a hundred euros now. Stern [8] would advocate for a
compromise at 1.4% (higher than what governments pay for
a loan but much lower than what banks ask of a company)
leading to an investment of twenty-�ve euros. Nordhaus [209]
argues that this is an ordinary market transaction and that a
prudent rate is 4.3%, which would mean investing little more

than one dollar. Some consensus seems to be building towards
distinguishing between the interest rate on risk capital and
a social-welfare-equivalent (e.g., the 1% rate on obligations)
for use in SCC [210, 211]. �is last approach would validate
Stern’s SCC of roughly two hundred euros. If you look at
the previous illustration you will see that this would make
electricity from coal �ve times more expensive. We concur
withKaplow et al. [212] that the discount rate is too important
to leave to the modeller because this one assumption can
completely alter the output of themodel.We contend that the
discount rate should be user con�gurable and in the case of
static output (like a paper report) there should at least be a
sensitivity analysis present that shows readers what happens
when dierent discount rates are applied.

Another obscure part of SCC calculations is Negishi
welfare weights.�is mechanism basically assures that money
cannot leave rich countries to be put to work in poor
countries where it would save more lives [213]. Although
this corresponds to political reality it is good that the user
of the model is aware of this, for example, because it can
alert her or him to cost-eective win-win solutions that are
now routinely forgotten like protecting ecosystems in their
country of origin.

�e problem of pricing goes beyond the discounting
of poor and future people and ignoring catastrophes. Eco-
nomics primarily deals with putting a price on goods humans
produce and consume and in those cases pricing is relatively
clear. But how to put a price on the destruction of ecosystems,
loss of biodiversity, depletion of aquifers, deserti�cation of
fertile ground, and the relocation of people? Are pandas
worth more than bees? Are European woods worth more
than rainforests? Must the calculation be based on tourist
industry earnings or can things have an intrinsic dignity as

Immanuel Kant proposed? Howmany km2 of rainforest have
to disappear before we admit to a link between biofuels and
land use change?�ese are fundamental questions that relate
to norms and values that can only be judged subjectively but
are currently decided by modellers that hide them from the
policy discussion.

Table 1 summarizes the requirements that have been
established so far in the paper.

5. Modelling Methods

So far, we have denounced equilibrium models, reviewed
theories, and deduced requirements. Now it is time to
describe how better models actually work.

�ere are myriad ways to characterize what is happening
in energy modelling [28, 214–216]. Even the classi�cation of
the underlying simulation methods is diverse [217, 218]. We
will take the perspective of Borshchev and others [218–220]
to create a narrative describing howmodelling techniques for
sociotechnical systems has become more realistic over time
with the help of computers.

5.1. From Static to Dynamic Systems. Energy transition
management models focus on “transition pathway dynam-
ics: assessment of normative goals; radical alternatives to
incumbent status quo technology or behavior options; time
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horizons su�cient for exploring long-term sociotechnical
change; and path dependencies” [140]. We saw that equilib-
riummodels cannot produce such pathways. System dynam-
ics (SD) oers a big step forward. SD models consist of an
ordered set of dierential and algebraic equations that model
stocks (also called states) connected by �ows (signals: inputs
and outputs) [221]. �is approach became practical a�er the
advent of computers. Originally SD was implemented on
analog computers where op-amps represented the dierential
equations but it soon turned to digital computers [222].

As described under technologies, some of the most inter-
esting dynamics in transition management occur when the
model contains endogenous learning curves for technology.
For example, the adoption of PV leads to economies of scale
that make it cheaper, which leads to more adoption, and so
on. In static modelling this is a problem because it can lead to
so-called algebraic loops for which an analytical solution can
only be found using nonlinear optimization. �is problem
o�en occurs in energy models [223]. If time derivatives are
added to the model, as is the case with SD models, the
feedback mechanisms can easily be incorporated.

SD models are widely used in biology, chemistry, and
engineering [224] with notable examples in mechatronics
[225], multibody vehicle dynamics [226], and the spread of
disease [227] and also in the social sciences with notable
examples being marketing [228]; policy analysis [229];
project management [230]; and learning [231, 232]. Many
people know SD from the study “Limits of Growth” that drew
attention to the ecological problems caused by humanities
ever-increasing use of natural resources [233, 234]. SD has
also been widely applied to energy models [235–241]. Within
transition management it is mainly used in the context
of technical innovation systems [152, 155, 242–245]. But
uptake is lagging behind original expectations. In 2007
Forrester—one of the founders of SD—sketched a picture
in which SD had to leave its current plateau and climb new
mountains. He was especially disappointed by the lack of use
in economics and the public sector [246].

A relevant characteristic for transition management is
that SD models contain stocks. For example, in a country the
existence of roads, houses, fertile ground, and aquifers that
provide sweet water can be modelled as stocks that represent
value. Even so� factors like a shared culture and trust in gov-
ernment and democracy are stocks vital to wealth that could
in theory bemodelled.Monitoring stocks is especially impor-
tant for environmental models. For example, the build-up of
pollutants or greenhouse gasses, the depletion of aquifers, or
the eects of land use change due to the use of biomass.

A�er adding the dynamic of time, we should add the
dynamic of space. In energy systems the spatial distribution of
energy production, transportation, and use is highly relevant
[139, 247–250]. For example, electricity is produced by power
plants, windmills, and solar panels at certain locations,
transported by a geographically distributed power grid that
poses practical costs and constraints and used by agent and
machines like residents and electric vehicles that can all be a
bit dierent.

If this was all the dynamism we were a�er we could use
discrete event simulations (DES). As the name implies, DES

processes the simulation one event at a time [251] and it is
well known for things like complex and spatially distributed
queuing problems and Goldratt’s theory of constraints [252].
Simply put: if you want to model an assembly line or airport,
DES is probably your �rst choice.

DES is more recent than SD because it is even more
dependent on computers: calculating every event and con-
stantly updating the state and position of every product is
computationally intensive, especially since models can no
longer be reduced.

In most developed countries the geographic layout of
these subsystems has been described and is now publicly
available in the form of shape�les. We can create a spatial
environment with many layers that connect events in space.
Let us give an example. Electric vehicles can use the road layer
to determine how long they have to travel. �e building layer
tells us where the residents live andwe choose a parking place
close to that location. �e grid layer gets activated as soon as
the electric vehicle starts charging, and so on. In this way a
many-layered GIS �le enables us to create complex, realistic,
integral models with relative ease.

Realistic geographic environments are also valuable when
themodeller interacts with domain experts or policy-makers.
Running the model on a recognizable geographical substrate
is visually stimulating, makes it easier to understand what is
happening in the model, supports the detection of unrealistic
behaviors, and creates trust in the model results.

5.2. From Dynamic to Complex Adaptive Systems. But this is
still not enough. Researchers now know that many domains,
and certainly energy and mobility, need to be studied as
complex adaptive systems (CAS) [253]. �e �rst thing to
understand about CAS is that the system itself is constantly
adapting. Youmustmodel the system in a bottom-upmanner
using autonomous actors and their behaviors in space and
time, and as the actors interact with each other and their
physical environment, systemic order emerges. (�is cannot
be modelled in system dynamics or discrete event simulation
[254].) Although top-down control of this order is absent,
it is adaptive in the sense that individual and collective
behavior can mutate and self-organize in order to create a
system that can be more robust [255] and resilient [256] than
comparable systems with top-down control. �e Internet is a
good example [257].

Biology was among the early adopters since CAS was
able to portray ecologies with complex behavior emerging
from simple rules. Wilson used it to popularize sociobiology
[258], Dawkins to explain sel�sh genes [259], and Goodwin
and Saunders to improve developmental biology [260]. In
chemistry Prigogine used CAS to increase our understanding
of dissipative structures and irreversibility [261]. In particle
physics, famous adherents were Feynman and Gell-Mann
[262]. CAS was even used successfully in philosophy [263].
Holland and Reitman used CAS to create genetic algorithms
[264] while Holland also wrote one of the best introductions
to CAS [265, 266] and created the o�en used de�nition of
“systems that have a large number of components, o�en called
agents, that interact and adapt or learn” [267].
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Although early ideas pointing to CAS can be found in
sociology [268] the uptake in the social sciences was slow
[269] and it took until 1996 for it to be applied to social
systems by Epstein andAxtell [270] andAxelrod [271, 272]. In
economics Tesfatsion played a pivotal role from 1998 onwards
[59] while 2006 was a “golden year” with the handbook on
Agent-Based Computational Economics [55] and powerful
arguments by Foster [58] and Beinhocker [273].

Properties of complex systems that emerge from the
interplay between underlying processes [274] are highly
relevant to transition models [174]. Transition management,
SNM, and MLP view the transition to renewable energy and
sustainable transportation as “a radical, structural change of a
societal (sub)system that is the result of a coevolution of eco-
nomic, cultural, technological, ecological, and institutional
developments at dierent scale levels” [159] which require
a complex adaptive multilevel multidimensional systems
approach [158, 275, 276].

Complex adaptive systems can change their ontology. In
transition management this is indicated by the term deep
uncertainty [277–279]. Examples are the introduction of a
radically new technology (e.g., electric vehicles) that replaces
an old technology or the rise of a new kind of actor (e.g.,
prosumers). �is is something that is relatively easy to model
in agent-based simulation but (almost) impossible to dousing
other methods.

5.3. Agent-BasedModelling. Wealready spoke at length about
Agent-Based Computational Economics. But how do agent-
based models work exactly?

First it is good to appreciate that complex adaptive
systems are counterintuitive for primate brains due to non-
linearity, feedback, time delays, and interdependencies [231].
Various empirical studies have demonstrated the severity
of the problem [280–284]. Fortunately, there are ways to
simulate complex adaptive systems using a computer [270,
285, 286] so now we can begin to understand them [287].

Models that accomplish this are called agent-basedmodels
(ABMs). Although one could theoretically trace ABM back
to the Von Neumann machine, the �rst real ABM (using
coins on a board) was Schelling’s segregation model from
1969 [288]. A�er some experiments in the 80s by, among
others, Axelrod and Reynolds it was Holland and Miller who
used the term “agent” for the �rst time in 1991 [289] and it
was only in 1996 that Epstein and Axtell [270] and Axelrod
[271] explicitly introduced ABMs to the social sciences.
Axelrod and Epstein both called it a third way of doing
science [272, 290]: generative and bottom-up and distinct
of the usual inductive or deductive approaches. In recent
years an increasing number of reviews note their promise for
advancing the social sciences [291, 292]. And, as we already
saw, ABM is increasingly used in economics.

ABM is now well accepted in empirical social research
[293] and the preferred modelling method for sociotechnical
systems [294, 295]. Recent reviews note that ABM is now
widely used, for example, in health [296] and more specif-
ically oncology [297]; epidemiology [298]; chronic [299]
and noncommunicable diseases [300]. Other reviews look at
their use in organizational science [301]; emergency response

[302]; land use [303, 304]; manufacturing [305]; ecosystem
management [306]; and marketing [228, 307].

Energy systems are a particularly fertile area for ABM
with reviews in the �elds of energymodelling in general [253,
308–310], smart grids [311–313], electricity markets [314–316],
distributed generation [317], and transportation [318–321]. A
recent review of transition management models found one
DES, six SDs, and seven ABMs [140] which is remarkable
considering that in the modelling world at large DES and SD
are still much more common than ABM.

�e reasoning of these agents is becoming increasingly
complex. In most cases we �nd task oriented actors to be
the most e�cient and easy to understand implementation
but many authors advocate explicitly programming dierent
agent states [219] and some like to rely on the belief-intent-
desire model [322–324]. Niches, incumbents, and regime
resistance can be modelled with relative ease but should
ideally not be represented by aggregates but by the individual
actors that they consist of in reality. It is also relatively
easy to model disaggregate technologies (including endoge-
nous learning curves) and radical innovation, driven by
entrepreneurs and policy-makers with strategy and foresight
but slowed down with regime actors possessing the same.

5.4. Multilevel Agent-Based Models. Finally transition man-
agement models need to be multilevel. In the multilevel
perspective (MLP) that we already described, the upper level
is o�en called the landscape, the intermediate level the regime,
and the bottom level the niche [150, 191, 325, 326].

On the global level we have issues like climate change, the
Paris treaty, and technological developments.�e latter are of
special interest to transition management models, for exam-
ple, price developments in silicon solar cells, o-shore wind,
heat pumps, NCM batteries, and electric vehicles. We also
have R&D breakthroughs about to get out of the laboratory
like metal-air batteries, solar fuels, airborne wind energy, and
the application of “wonder materials” like graphene. All these
developments have the power to shape what happens at other
levels by making renewable technologies more attractive to
actors on lower levels.

�ere are many possible intermediate levels, for example,
a cooperation that together buys solar panels and heat pumps;
or an industry site or municipality that decides to develop an
integral energy plan for dealing with heat, electricity, a wind
park, and electric mobility, making the combined business
case much easier; or a country that decides to promote
EVs and change rules and regulations to enable self-driving
vehicles.

On the bottom level we have, for example, small com-
panies, households, and persons that can develop, buy, and
use solar panels, heat pumps, and electric vehicles. �ey can
also invest or divest in technologies. �eir decisions drive
the energy transition on all levels but are in�uenced by
developments on higher levels.

We could theoretically model every actor in the world
but that would be impossible to program and compute. By
choosing a multilevel approach we can choose representative
actors on every level and scale, for example, with one actor
per global policy and technology, a couple of countries
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and municipalities on the intermediate level, and maybe a
thousand individuals on the bottom level.

In Table 2 we give an overview of the types of systems and
their characteristics as discussed in this paper.

6. Building a Model

We have shown the requirements and methods needed for
transition models, but how do you actually build them? �is
question might appear too practical for a scienti�c paper,
until you realize how little valuable advice is available in the
literature and how important this step is for the successful
development of a model. �is chapter aims to make the
knowledge gap in the literature a little smaller.

6.1. Learn from Professional Programmers. Every scientist
has a habit of undertaking rigorous literature study but the
tools and development trajectories are o�en chosen less
rigorously. We think that, in this respect, modellers should
learn from people who are able to work in large teams to
develop models containing millions of lines of codes: pro-
fessional programmers.�ere are strong similarities between
object oriented (OO) programming and ABM and it is no
coincidence that the dozens of ABM frameworks we know
are all written in OO languages. Terms in an OO language
like Java o�en have an equivalent in ABM, for example,
object/agent, class/species, and method/action [327]. �at is
fortunate because OO is now the de facto standard in large
so�ware projects because it makes codemanageable and does
not create “spaghetti code” [328]. We would suggest that,
similarly, ABM is optimal for most modelling challenges
because it does not produce “spaghetti models.” So, ABM
might be the right approach not only for modelling complex
adaptive systems but also for other large modelling projects.
Using ABM as an organizing principle akin to OO makes it
easier to divide the model into independent agents (akin to
objects) and to hide their inner workings (using encapsula-
tion). One could even encapsulate entire models. Agents can
be hotlinked and used in cosimulations.

Choosing your agents is similar to choosing your objects
in object oriented programming. �e right choice depends
on the modelling situation and/or question. However, we feel
we can provide some general guidelines, especially since we
advocate the use of ABM as a container for other modelling
approaches. From a modelling perspective agents should
make independent decisions [271, 329, 330]. Humans (e.g.,
consumers) and institutions or organizations (e.g., house-
holds, governments, or energy producers) are logical choices.
But agents do not have to be self-conscious. For example, an
electric power line could be an agent that “decides” when it
is overloaded, thus causing a blackout. From a programming
perspective, agents should be viewed as chunks of code that
can be developed independently. Using OO principles such
agents should have well de�ned interfaces that are used to
initiate behaviors. In this way new agents can be added to the
model without impacting the other code in the model.

Of course, it is important to choose a good program-
ming framework and because agent-based modelling (ABM)
is such a recent phenomenon, those frameworks are still

immature. �ere are literally dozens of competing ABM
frameworks in which the modeller is basically programming
directly in an object oriented (OO) language like Java [331].
However, we found that using a dedicated language devel-
oped speci�cally for ABM can greatly enhance productivity
[332] (we estimate a factor of ten) andmakeABMmore acces-
sible to modellers without a computer science background.
A language developed for a speci�c application is called a
“domain speci�c language.” MATLAB and R are examples of
tools (but notABMtools) that use a domain speci�c language.
�e best-known framework using a language especially
developed for ABM is called Netlogo. However, we chose
the GAMA-platform because it combines the ease of use of
Netlogowith thematurity of Java (e.g., building on Eclipse). It
also has advanced spatial capabilities (e.g., read and “agentify”
shape�les). Like Netlogo it is free and open source which
enables users to extend the domain speci�c language. Some
ABM frameworks are specialized even further (e.g., for smart
grids [333]) but we would warn against their use because it
inhibits the development of integral models [176].

A key lesson from open source projects is that making the
underlying code directly downloadable provides much better
error detection and makes it much easier to collaborate on
models. For scienti�c projects and public policy, especially in
the important and o�en politicized case of energy models,
the transparency provided by open source models might
be even more important [334]. We would go as far as
to say that downloadable models are like peer-review for
the 21st century. Combining agent-based and their inherent
modularity with open source also makes it much easier to
create large integrative models. It is worrisome that policy
recommendations are o�en provided by consulting �rms that
do not disclose their funding or provide their underlying
model. If transitionmanagement modellers are serious about
unleashing bottom-up change and governing the energy
transition [335] they should lead by example and share their
code online.

6.2. Create Hybrid Models When Needed. Many authors
point to the added capabilities from ABM over equation
based models [298, 336] and more speci�cally equilibrium
models [20, 55, 217, 337]. Simply put: complex systems can
be implemented in ABMs but not in equilibrium models.
However, it is possible to include equilibrium models in
ABMs. �at it is possible does not mean it is advisable and
making an ABM that expresses the equilibrium paradigm
is probably just a bad idea [19]. However, comodelling
simulations are increasingly common [338, 339] andwe could
imagine scenarioswhere equilibriumdriven agents are part of
a larger complex adaptive model [55, 337, 340].

Implementing the stocks and �ows of system dynam-
ics (SD) in an agent-based model (ABM) is much more
straightforward: simply create an agent for every stock and
�ow. In most cases you could also model just the stocks
and include the �ows as behaviors of the agent minding
the stock. Heterogeneity can now be added by splitting up
stocks into separate agents. For example, instead of one
agent representing a shoal of �shes we might create separate
agents that represent a single �sh. Some �shes might then
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be dierent than others and might be dierently processed
(e.g., by releasing accidentally netted dolphins). Even more
realism can be added by giving each agent a unique location
in space. For example, instead of one “�ow agent” signifying
“�shing” the model could contain multiple agents signifying
“�shing boats.” �e amount of �sh caught could depend
on the concentration of �sh in that part of the ocean.
One application where SD and ABM can be combined is
integrated assessments [341, 342].

Similarly implementing discrete event stimulation (DES)
in an ABM is easy. Both are inherently location based and can
work with maps on which the entities in the simulation have
a clearly de�ned position. In DES the events are implemented
using active entities that have a �xed position in space.
Instead of theoretically continuous �ows of SD, DES uses
discrete passive entities that are processed by the active
entities. Products that are processed by humans andmachines
at an assembly line is a typical example. When implementing
DES in ABM you would simply instantiate each active entity
as an agent with behaviors and each passive entity as an agent
without behaviors. However, in ABM the passive entities
could also be made active. For example, when modelling a
queue of people, an ABM would enable you to give some of
them behavior like walking away, talking to each other, or
starting a row.

�e idea of combining SD, DES, and ABM is so logical
that the �rm Anylogic markets its product as a tool that can
use all three paradigms [286] but as we showed this is possible
in any ABM.

6.3. Create Quanti�ed Narratives. Agent-based models make
it easy to add geographic layers, agents, behaviors, and
variables. �e advantage is that we can avoid the falsi�ed
simpli�cations of equilibrium theory but it also creates a
confusing amount of freedom. We think the solution is the
use of clear quanti�ed narratives. Narratives can contain a
rich tapestry of variables in a way that is meaningful and
memorable to the human brain, and transition management
already has a tendency to tell stories [146]. We propose
combining the narrative approaches used in the famous
Shell scenario studies [343] with the quantitative transition
management models as described in this paper that clarify,
validate, and quantify the narrative.

Another reason to use the quanti�ed narrative approach
is that it enables us to explain what the model is doing
to experts and policy-makers. �at is needed because the
integral and multidisciplinary models that we have to create
in order to �nd the best pathways and interventions towards
renewable energy require a lot of expertise. Fortunately,
ABMs represent reality in a way that is easy to understand
for domain experts and with quanti�ed narratives it is also
possible to explain what the model is doing. We think every
ABM should be checked by experts to get face validity. �is
might not seem like a rigorous test but as we have seen
with the example of the IEA prediction of solar power this
is a test that many of the most in�uential models cannot
pass.

7. Outlook

�e transition from fossil fuels to renewable energy is a
complex global challenge. Technologies like o-shore solar,
airborne wind, battery storage, smart grids, and shared self-
driving electric vehicles are developing quickly. �ey are
driven by R&D, investors with foresight, users that function
as early adopters, and learning curves that can become self-
sustaining. Transition theory also draws attention to the
ways in which innovators in niches compete with incumbent
regimes and how this can lead to entirely dierent system
con�gurations.

Such developments might lead to a range of very dierent
pathways. Global warming might accelerate and this might
either unite or divide humanity. Realistic carbon pricing or
the price reduction of renewables might lead to stranded
fossil assets and an early collapse of the fossil system. �e
energy system could become local and decentralized with
users becoming producers that share energy and storage
on demand. Mobility might become a service that replaces
fossil cars by small, shared, self-driving vehicles. Develop-
ing countries without existing infrastructure might leapfrog
developed countries and so on.

�e modelling approach described in this paper
should—at least in theory—be able to capture these dynamics
in quantitative models.�e agent-based modelling paradigm
could also facilitate comodelling, where multidisciplinary
teams of experts work together using a suite of new or existing
models. Combined with object oriented programming
techniques—that already allow us to collaborate on millions
of lines of code—we might be able to create powerful
models that uncover pathways towards a sustainable energy
future that is both more realistic and more interesting than
what is currently oered. We hope this paper will inspire
some students, teachers, researchers, policy-makers, and
entrepreneurs to do just that.
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