
380 IEEE Transactions on Power Delivery, Vol. 12, No. 1, January 1997

Creating an ~ ~ e c t r ~ m a g n e t ~ c Transients Program in MATLAB: MatEMTP

Jean Mahseredjian (IEEE member)
Institut de Recherche d'Hydro-Quebec (IREQ)

1800 Montee Ste-Julie
Varennes, Quebec, Canada J3X 1S1

ABSTRACT: The traditional method for developing electric
network analysis computer programs is based on coding using
a conventional computer language: FORTRAN, C or Pascal.
The programming language of the EMTP (Electromagnetic
Transients Program) is FORTRAN-77. Such a program has a
closed architecture and uses a large number of code lines to
satisfy requirements ranging from low level data manipulation
to the actual solution mathematics which eventually become
diluted and almost impossible to visualize. This paper pro-
poses a new design idea suitable for EM" re-development in
a high level programming context. It presents the creation of
the transient analysis numerical simulator MatEMTP in the
computational engine frame of MATLAB. This new approach
to software engineering can afford a dramatic coding simplifi-
cation for sophisticated algorithmic structures.

eywords: EMTP, MATLAB, time-domain network analy-
sis, software engineering

In a conventional electric network simulator design,
everything is based on line-by-line coding. Every component
is implemented this way, as is the network analysis algorithm
and any minor details of the overall computation and data
manipulation process. The actual network model equations
and network matrix operations are diluted in a large number
of cryptic code lines created by specialized and experienced
developers. Moreover, old-fashioned and historically sup-
ported programming techniques inhibit modularity and are
geared towards memory conservation. Models for any one
component appear in more than one place in the code. This is
the case of the EMTP [l] (Electromagnetic Transients Pro-
gram) code. The low level design methodology of such a code
explains its low renewal and enhancement rate. It is also pro-

96 WM 098-4 PWRD A paper recommended and approved by the IEEE
Transmission and Distribution Committee of the IEEE Power Engineering
Society for presentation at the 1996 IEEEPES Winter Meeting, January 21-
25, 1996, Baltimore, MD. Manuscript submitted August 1, 1995; made
available for printing December 5, 1995.

Fernando Alvarado (IEEE fellow member)
University of Wisconsin-Madison

Electrical & Computer Engineering
1415 Johnson Drive, Madison, WI 53706, USA

hibitive to experiment with modern algorithmic ideas for
eliminating solution limitations or for improving the computa-
tional speed on changing computer architectures.

Most network solution and modelling methods are simple
to visualize and support mathematically, but their translation
into an actual large scale working code is complex. Com-
monly used programming languages are ill-suited to human
abilities for dealing with complexity. Software built using
such languages is often inadequate. Some other new lan-
guages such as ADA, C++ and FORTRAN-90, provide pow-
erful features for the formulation of appropriate abstractions
[Z] for the desired application. But programming is always
easier if a specialized language is already available for the cre-
ation of similar applications. Specialized applications should
use dedicated computational engines where the developer can
build and compose with high level constructs. In addition to
defining a new library of functions and overloading existing
operators, such an engine must provide a minimal number of
portable graphical data visualization and manipulation func-
tions. It is obvious that programming a computational engine
from scratch is a major effort.

This paper proposes to use a widely used general purpose
program available on most popular computer platforms as a
computational engine: MATLAB 131. MATLAB has a large
number of built-in functions and constructs covering a wide
range of EMTP development needs and is expandable by
means of optional toolboxes. The recent implementation of
sparse matrix manipulation capabilities eliminates a major
feasibility barrier.

This paper presents the creation of MatEMTP: a transient
analysis program in MATLAB M-files. It is based on a new
formulation of the main system of network equations,
designed to eliminate several topological data restrictions and
capable of handling arbitrary switch interconnections. The
existing EMTP is used for validation and as a reference for
solution timings.

2. SOLUTION METHOD

The basic time-domain solution method implemented in
MatEMTP is similar to the existing EMTP approach [4]. A
large set of algebraic-differential equations is first trans-
formed into a discrete algebraic equivalent and then solved
over the requested interval [0, t,,,] . The solution is avail-
able at discrete time-points (0, t l , t2, ..., tmax) . The design

0885-8977/97/$10.00 0 1996 IEEE

381

utilizes a fixed integration time-step At as is the case for
EMTP.

The high level matrix manipulation capabilities of MAT-
LAB stimulate algorithmic ideas based on matrix computa-
tions. MatEMTP uses matrices and vectors for coding and
solving network equations, closely replicating the underlying
mathematics of network theory. The core code operates by
defining a larger and more general matrix to represent net-
work equations than is customary.

2.b Network eauations: the core code

The network component interconnecting equations consti-
tute the core code equations and must be defined before
accordingly programming the individual component models.
The following augmented sparse formulation is used:

where Yn is the standard n x n nodal admittance matrix
excluding switches, Va is the nVS x n node incidence matrix
of voltage sources, Sa is the ns x n node incidence matrix
of closed switches, OVs is an nVs x nVs null matrix, Ovss is
an flVs x ns null matrix, So is an ns x ns sparse binary
matrix used to nullify open switch currents, Vn is the vector
of unknown node voltages, I", holds the unknown voltage
source currents, IS holds unknown switch currents, In holds
known nodal current injections and v, stands for known
source voltages.

This new formulation is less restrictive than the standard
EMTP nodal analysis. It expands modified nodal analysis [51
by including explicitly the switch equations. Equation (1) is
used in both steady-state and time-domain solutions. The node
incidence switch matrix Sa is modified to avoid the reformu-
lation of Yn when the topology changes. MatEMTP can
model voltage sources not connected to ground, floating
switch nodes and branch to branch relations. All switch cur-
rents are automatically calculated and the explicit switch
matrix S a usage simplifies the detection of illegal switch
loops. A switch loop creates linearly dependent rows in the
switch matrix Sa. This dependency is deleted by removing
redundant closed switches.

The steady-state solution is a frequency domain solution.
Its objective is to initialize the time-domain solution when
steady-state conditions exist before transient analysis.
MatEMTP can handle a fundamental frequency and harmonic
initialization [6].

2.c ComDonent models

Network models consist of an interconnection of compo-
nent models. Component models interact with the core code
by inserting their frequency domain and time-domain equa-
tions into (1). Node incidence matrices are used for formulat-
ing the interconnection of component model equations.

For a passive component, the frequency domain requires a
complex admittance matrix at each solution frequency. Active
components insert their voltage or current phasors in the right
hand side of (1).

The time-domain solution is based on the discretization of
the component models. Although trapezoidal integration is the
default discretization method, other integration methods such
as Backward Euler are applied in individual model equations,
as long as compliance with core code requests exists. In addi-
tion to handling discontinuities [7], Backward Euler integra-
tion is useful for startup from user-defined initial conditions.

Several components of the same type (same model) usu-
ally exist in a given network. Fig. 1 shows the ith element of a
multiphase coupled component model. The following equa-
tion can be written for this component type during the time-
domain solution:

Ix = yxvktn + Ixh (2)
Bold characters denote matrices and vectors. Subscript h
stands for history terms. Matrix Yx is a sparse block-diagonal
admittance matrix containing individual matrices Y . I

m I
I X k

i + m- Im + 4+-
e

Figure 1: A coupled multiphase component model

If all component types possess their own sparse node-
incidence matrix Ma, equation (2) is inserted into (1) using
the following formulas:

before + M t Y
ynafter = Yn a x a

after before t - M I
a 'h

In In

(3)

(4)

3. THE MatEMTP CODE

3.a Main structure

The objective is to program MatEMTP using only MAT-
LAB M-files [3]. These files include standard MATLAB
statements and may also refer to other M-files. An M-file is an

382

ASCII script or function file. Since these files are run directly
in the MATLAB environment and there is no requested com-
pilation stage, MatEMTP inherits an open source code.

In inexperienced hands, the large number of available
MATLAB building functions and constructs, can result in
inefficient and cryptic code. Some experience is needed for
programming with a minimal number of code lines and for
minimal CPU time. The key to minimal CPU time is the vec-
torization of the solution algorithms. Other important rules to
follow for increased efficiency are: avoid extreme modularity;
use function files instead of script files; minimize the number
of logical statements for model and option selections; mini-
mize data initialization; avoid data storage pointers; preallo-
cate vectors and matrices of predictable size. Except for
memory preallocation, vectorization and the above outlined
rules actually improve code readability and simplicity. Blind
usage of dynamic memory allocation simplifies programming
but places a heavy burden on the MATLAB interpreter.

By programming through matrix and vector operations the
MatEMTP code is naturally vectorized. To eliminate useless
testing, initialization procedures and repetitive dead code exe-
cutions, the ready-to-run structure of Fig. 2 is proposed. This
data adaptable structure relies on the input processor to inter-
connect the M-files. The input processor is a separate pro-
gram (also written with M-files) that decodes standard EMTP
data files [l] and creates the case.m file. This file is a pro-
cessed file of network data created from the external case data
format.

Figure 2: MatEMTP main structure

The model selector is a set of M-files created by the input
processor for connecting required case.m models to the main
program. All models are programmed in separate M-files that
obey to a set of predefined core code requests. A typical
request for a component model is “provide admittance
matrix” or “update history”. The creation of any new model
is as simple as programming a new M-file which is automati-
cally recognized and inserted into the appropriate code loca-

tion by the model selector.
The organizer is another M-file created by the input pro-

cessor that calls solution M-files according to selected options
and overall solution needs. Thus, MatEMTP is based on a data
dependent interconnection of individual code modules. Here
is a valid sequence of files called in by the organizer for solv-
ing a typical case casem:
10 matemtp.m: program startup and request for data case
2@ case.m: the actual case file, any name can be used
~ I J start.m: initial setups, initial conditions, initialization of

the time-domain solution
4@ time1oop.m: the time-domain loop for the simulation
The start.m script file initializes all network variables
(including automatic frequency domaiq initialization for any
subnetwork where active sources exist at t < 0).

Appendix A shows a section of code called from start.m
for linear harmonic initialization. The listing for timeloopm
shown in Appendix B demonstrates the advantages of pro-
gramming within the computational engine frame of MAT-
LAB.

Since all component models appear hidden to the main
MatEMTP code, the model selector can only communicate
through 3 built-in generic function files: msourcem,
mbranchm and mswitchm. A file mg1obal.m is used to trans-
fer data from the main code to model function files.

The simple test circuit of Fig. 3 demonstrates the above
outlined functionality. The contents of automatically gener-
ated test2iwh.m (this is now casem) are listed in Appendix C.
The names of model M-files used in this circuit are available
in an input processor library. The model selector consists of
the following files created by the input processor:
mgloba1.m: (called in from matemtp.m)

g v s i n e ; % s i n u s o i d a l v o l t a g e s o u r c e d a t a
g i s i n e ; % s i n u s o i d a l c u r r e n t s o u r c e d a t a
r l c g l o b ; %RLC model d a t a
s w 0 g l o b ; % o r d i n a r y s w i t c h model d a t a

msource .m:
f u n c t i o n m s o u r c e (i d o)
v s i n e (i d o) ; % s i n u s o i d a l v o l t a g e s o u r c e
i s i n e (ido) ; % s i n u s o i d a l c u r r e n t s o u r c e

mbranckm:
f u n c t i o n mbranch (i d o)
r l c m o d (i d 0) ; %RLC model

f u n c t i o n m s w i t c h (i d o)
sw0 (i d o) ; %ordinary s w i t c h m o d e l

mswitch.m:

As an example of model data connection file, here are the con-
tents of gvsine.m:
g l o b a l V a d j V s i n e i n Vmag V s t a r t V s t o p V p h i Vw;

383

0.552
d-

- - - - - - - -
Figure 3: Test case test2iwh.m

3.b Procramming the comnonent models

Every component model is located in a separate M-file and
responds to a standardized number of id0 values sent to it by
the core code. As an example, an i&=2 requests the insertion
of the component model admittance matrix into Y, .

To illustrate the simplicity of programming, here is a por-
tion of code from r1cmod.m:
if ido==2 %insert into Yn for steady-state
Yn=Yn+RLCadj'*sparse(l:nRLC,l:nRLC,

1 . / (RLCR+jz* (w*RLCL - RLCC/w))) *RLCadj;
elseif ido==5 %insert into Yn in time-domain

GRLC=sparse (1 :nRLC, 1 : nRLC,

Yn=Yn+RLCadj'*GRLC*RLCadj;
elseif . . .

The programming of a transmission line model [4] usually
requires the implementation of pointers for holding and updat-
ing history. MatEMTP avoids this complexity by using a sin-
gle two dimensional sparse array for holding history and a
sparse rotation vector for extracting and storing history terms
at each time-point. This is best demonstrated by the following
self explanatory code lines taken from the lossless single
phase transmission line model (t1mod.m):
elseif ido == 6 %insert into In in time-domain
Tikh= (1-Tinter) . *Tikhist (:, 1) +

Tinter.*Tikhist(:,2); %k side history
Timh= (1-Tinter) . *Timhist (:, 1) +

Tinter.*Timhist(:,2); %m side history
In=In+Tadjk'*Tikh; %contribute to In
In=In+Tadjm'*Timh;

l./(RLCR+(2/Dt) .*RLCL + (Dt/2) .*RLCC));

elseif ido == I %update history
Tikh=Tadjk*Vn./TZc-Tikh; %ik=vk/Zc-ikh
Timh=Tadjm*Vn./TZc-Timh; %im=vm/Zc-imh
Tikhx=Tadjm*Vn./TZc+Timh; %ikh=vm/Zc+im
Timhx=Tadjk*Vn./TZc+Tikh; %imh=vk/Zc+ik
Tikhist=Tikhist*Trotate+

Timhist=Timhist*Trotate+
spconvert([(l:nT)', TNhist, Tikhxl); %store

spconvert([(l:nT)', TNhist, Timhxl); %store
elseif ...

The transmission line is connected between nodes k and m.
The following arrays and variables are calculated for ido=l in
tZm0d.m: n T is the total number of single phase lossless
transmission lines, T i n t e r is an interpolation vector
according to the propagation delay of each line, T N h i s t is a
vector holding the number of history cells required for each
line, T r o t a t e is the sparse rotation matrix, T a d j k and
T a d j m are sparse node incidence matrices found from the
main node incidence matrix T a d] of this line model. Only
minor modifications are needed to incorporate lumped
resistances for losses [4].

Since equations (2) to (4) are applicable to any number of
phases, programming of multiphase component models is
based on matrix manipulations similar to single phase models.

3.c User interface

MATLAB provides high level functions that enable a por-
table programming of a graphical user interface (GUI) for
MatEMTP. Fig. 4, for example, shows the GUI appearing dur-
ing the initial program startup procedure. It is used to modify
basic simulation data and options. The menu item Schematic
opens the schematic capture GUI shown in Fig. 5.

number of nodes: 3

Dt= 0.02

Tmax= 25 [mol

solution options

Figure 4: The initial data capture GUI of MatEMTP

'll II' - El
File clipboard Edit Qptions Simulation Slyle

Sin

Figure 5: The schematic capture GUI of MatEMTP

The GUI of Fig. 5 can be used for creating and modifying

384

an arbitrary multiphase circuit diagram. Clicking on a given
component opens the corresponding data capture panel. The

ULINK [8] toolbox. Any new component icon or subcircuits
can be created through block masking [8]. Available network
list generation functions allow the translation of a circuit dia-
gram into the actual data case M-file. It must be remarked that
the SIMULINK GUI was originally created for assembling

9 coupled pi-sections

programming of this GUI is based on the MATLAB-SIM- Q

=187.79 cos(2~60t)
- -

- - - - control circuits and its usage for circuit diagrams suffers from
visual limitations such as obligatory arrows and boxed blocks. Figure 7: Test case pi.m: energization of cable phase a.

the r e c e i v u . .

4. TESTCASES

The circuit diagram of this test case is shown in Fig. 3.
The standard EMTP cannot handle steady-state initialization
with different source frequencies in the same subnetwork, and
according to test2iwh.m (see Appendix C) the harmonic cur-
rent sources is1 and is2 are connected for t < 0 . Thus, EMTP
starts with wrong initial conditions (both current sources dis-
connected in the 60Hz initialization) and enters almost perfect
steady-state only after 8s of simulation time. MatEMTP
solves this case directly through its initialization algorithm
(Appendix A). Fig. 6 superimposes an EMTP waveform
delayed by 7.95s to the MaEMTP waveform. Both solutions
are undistinguishable.

-90 1 I I I I I

4 0
t (ms) 30 0 10 20

Figure 6: MatEMTP and shifted EMTP solutions, Case 1

This test case is taken from an EMTP Workbook [9] . It
simulates the energization of a three-phase 1 5 mile 230kV
cable. The circuit diagram for phase a is shown in Fig. 7. The
cables are represented using 9 two-phase pi-sections. The
sheath is grounded at the sending end and at each pi-section.
A partial listing for pi.m is given in Appendix D. The simula-
tion results from EMTP and MatEMTP shown in Fig. 8 are
perfectly identical.

20
t (ms) l5 0 5 10

Figure 8: MatEMTP and EMTP solutions, Case 2

r , Ikm k w v o ' t a o ~ A

Figure 9: MatEMTP and EMTP solutions, Case 3

4.c Case 3

The objective of this case is to validate and test the perfor-
mance of MatEMTP distributed parameter line modelling
where a sparse matrix based history maintenance method has
been proposed. The line setup taken from [lo] is used for
corona modelling, each phase is subdivided into 500 sections
and a total of 1503 nodes is created. Only phase a is energized
with a surge voltage function [lo]. Simulation results are
shown in Fig. 9. Since MatEMTP does not yet possess a
corona model, corona branches are disconnected in EMTP
and a constant distributed parameter line model is used.
Zooming on these waveforms will show a minor At delay
between EMTP and MatEMTP, related to the programming of
the surge function in EMTP-TACS [l], MatEMTP is actually
more precise.

385

5. DISCUSSION

The short length of Appendices A and B indicates that
only a small number of code lines is needed to express solu-
tion procedures and elaborate sparse matrix manipulations
through readily available MATLAB functions and constructs.
This is a dramatic improvement over conventional coding for
performing similar tasks. Data output and plotting are easily
handled through available MATLAB functions.

The next step in this paper is to compare MatEMTP com-
putational performance against EMTP. The eratio is defined
as total MatEMTP elapsed execution time over EMTP execu-
tion time.

For Case 1 EMTP needs a much longer simulation time,
and the found eratio of 50.25 is in favor of MatEMTP.
This erutio is achieved only after modifying EMTP [ll] to
disable plot data storage before 7.95 seconds.

If the EMTP initilization time is excluded, the eratio
becomes 2.5 for At = 5Ops and 10 for At = lops .
MatEMTP CPU time is an almost linear function of the total
number of solution steps.

Case 2 has an erutio of z 7 . The case 3 eratio is z 6 . If
the number of line sections is dropped to 500 (by deleting
phases b and c) then eratio 5 5.7 . This relative insensitivity
to network dimensions is the result of both methodologies
using sparse matrix techniques.

A detailed analysis of MatEMTP CPU usage in the time-
step loop for the typical case of Fig. 3, shows the following
disposition: less than 15% for LU factorization and triangular
solution, close to 60% for updating the right hand side of
equation (1) and the remaining is for individual model
updates. Half of that 60% is drained by the source function
ms0urce.m. A promising possibility is the replacement of such
functions by compiled C language MEX-files [12], but this
should be applied only at the last stage of programming.
Another possibility is to resort to an automatic M-file com-
piler.

CONCLUSIONS

This paper has demonstrated an implementation of a com-
prehensive electromagnetic transients analysis program using
MATLAB as a computational engine.

Used algorithms provide results identical to those from the
EM". However, the proposed environment is implemented
in very few lines of code, is easily expandable, modifiable and
highly portable. It also eliminates EMTP modelling limita-
tions through a less restrictive formulation of main network
equations.

Although in a few cases the new environment is faster, in
general studies show that the conventional coding retains a
speed advantage ranging from 2.51 in the best case to 1O:l in
the worst case. Ideas for reducing this ratio have been pro-
posed.

The ultimate contribution of this paper is a dramatic illus-
tration of the possibilities afforded by this new approach to
software development.

APPENDIX A

MatEMTP linear initialization module: steady1in.m
The following is a listing of steady1in.m:

Wall= [J ;
msource(5); %put a l l source ws in Wall
Wall=sort (Wall) ; ,

Vn init=zeros (n, 1) ;%preallocate n node voltages
IVs=zeros (nVs, 1) ; %preallocate IVs
IS=zeros (nS, 1) ; %preallocate IS
nfreq=size(Wall,l); %the number of ws to do
ifreq=l; wdone=[];
while ifreq <= nfreq

-

w=Wall (if req) ;
if w -= wdone
steadyl; % (s e e code below)
wdone=w;
mbranch(3); %accumulate steady-state at t=O

end
ifreq=ifreq+l;

end
Vn=Vn-init; %solution at t=O

The following lines are from steadyl .m :
%steady-state module step for the frequency w
Yn=sparse (n, n) ; %Build Yn
mbranch(2); %contribution to Yn by branch models
Ytmp=[Yn Vadj'; Vadj sparse(nVs,nVs)];
Stmp=sparse(l:nS,l:nS,Sactive)*

Sz =sparse(l:nS,l:nS,-Sactive);
Yaug=[Ytmp Stmp'; Stmp Sz 1;
%
In=zeros(n,l); %n is the number of nodes
msource(3); %put sources in Vs and In f o r w
Itmp=[In; Vs];
Iaug=[Itmp; zeros(nS,l)] ; %account for switches
Vaug=Yaug\Iaug; %compute unknown phasors
Vn=Vaug (1: n) ; %nodal phasor voltages
Vn - init=real (Vn) +Vn-init; %at t=O accumulate
IVs=real(Vaug(n+l:n+nVs))+IVs; %v source currents
IS=real(Vaug(n+nVs+l:n+nVs+nS))+IS; %switch currents

[Sadj sparse (nS, nVs)] ; %active switches

APPENDIX B

MatEMTP time-domain solution module: time1oop.m

Yn=sparse(n,n); %Initialize the conductance matrix
mbranch (5) ; %Contributions to Yn
Ytmp=[Yn Vadj'; Vadj sparse(nVs,nVs)];
Saug=[Sadj sparse(nS,nVs)]; %account for switches
reBuild=l ;
Vs=zeros (nVs, 1) ; %eliminate alloc functions
%
for itime=l:tmax %start of main loop

. . . p r i n t i n g and p l o t t i n g f u n c t i o n s . . .
t=t+Dt;
In=zeros (n, 1) ; %currents may add
msource (4 ; %contribution to Vs and In

386

mbranch(6); %contribution to In from history
Iaug=[In; V s ; zeros(nS,l) I;
%
if (reBuild) %process switches and LU if rebuild
Stmp=sparse (l:nS,l:nS, Sactive) *Saug;
Sz=sparse(l:nS,l:nS,-Sactive) ;
Yaug=[Ytmp Stmp'; Stmp Sz];
[LL, UU] =lu (Yaug) ;

end;
tmp=LL\Iaug; Vaug=UU\tmp;
Vn=Vaug (1 : n) ; %extract nodal voltages
IVs=Vaug(n+l:n+nVs); %voltage source currents
IS=Vaug(n+nVs+l:n+nVs+nS); %switch currents
%
mbranch(7) ; %update history terms
mswitch(7); %update switch status, signal reBuild

end %of main l o o p

APPENDIX C

MatEMTP data file for the test case o f Firr. 2
The following is a listing of test2iwh.m, manual comments

have been added for readability:
Dt=10e-06; tmax=ceil(0,05/Dt); %this is 50ms
storedata=O; %indicates hard disk store when 1
steadystate=l; %request for steady state when 1
%
n=6; %number of nodes
%
BUS=['BUSl ';'BUS12 ';'BUS13L1;'BUS13S';'BUS1S
';'SRC I ;] ; %node names
%
%RLC model
RLCad]=sparse (8, n) ;
RLCadj(l,G)=l; RLCadj(l,l)=-1;
RLCad] (2,1)=1; RLCadj (2,2)=-1;

RLCad] (8 , 3) =l;
%
RLCout=[5;]; %current output for 5
RLCR= [0 ; 0. OS; 0; 0; 0; 22.61 ; 0.5; 0;] ;
RLCL=[0.006;0.002;0;0;0.006; 0.01972;O;O;l;
RLCC=[0;0;8e-07; 8e-07;0;0;0;le-06; 1 ;
%
%Sine current source model
Isineadj=sparse (2, n) ;
Isinead j (I,??) =1; Isinead j (2,l) =1;
Imagn=[2.001; 1.1; 1 ; Iphl=[lO.O; 5.0; 1 ;
Istart=[-l.O; -1.0; I; Istop=[Inf; Inf; 1 ;
Iw=2*pi*[l80.0; 360.0; I ;
%
%Ordinary switch model
Sadj=sparse (2,n) ;
Sadj(l,3)=-l; Sadj(l,4)=1;
Sadj (2,3)=-1; Sadj (2,5)=1:
Sclose=[17.E-3; 22.E-3; 1;
Seps=[O; 0; 1 ; Sopen=[Inf; Inf; 1;
%
%
%Sine voltage source model
Vadj=sparse (1, n) ;
Vadj (1,6)=1;
Vsinein=[l;l; Vmag=[56.34; I ; Vphi=[O.O; 1 ;
Vstart=[-1.0; I ; Vstop=[Inf; I ; Vw=2*pi*[60.0;1;

. . . .

%
Vnout=[2; 3; 4;); %output request of node voltages

APPENDIX D

Partial listinp for the test case : pi.m
...
%PI section model
PIadj=sparse (54,n) ; %node incidence matrix
PIadj (1,3) =l; PIadj (1,4)=-1; %first pi-section

PIadj (2,5)=-1;
...
PIR=sparse (5 4 , 5 4) ; %resistance matrix
PIL=sparse (54,54) ; %inductance matrix
PIC=sparse (54,54) ; %capacitance matrix
%
for k=1:2:54
PIR(k:k+l,k:k+l)=[.25387 .10212; .lo212 .69831];
PIL(k:k+l, k:k+l) = [. 56461 .13758;

.13758 .13139]*1e-03;
PIC(k:k+l,k:k+l)=[.7268 -.7268

end
-.7268 3.4012]*le-06;

REFERENCES

Electric Power Research Institute, EMTP Development
Coordination Group, EPRI EL-641 2-L: Electromagnetic
Transients Program Rule Book, Version 2
G. Bray and D. Pokrass: Understanding Ada, A Software
Engineering Approach. John Wiley & Sons, 1985
MATLAB, High-Performance Numeric Computation and
Visualization Software. The Mathworks, Inc. MATLAB
User's guide, August 1992
H. W. Dommel: Electromagnetic Transients Program ref-
erence manual (EMTP Theory Book). Bonneville Power
Administration, August 1986.
C. W. Ho, A. E. Ruehli and P. A. Brennan: The modified
nodal approach to network analysis. Proc. 1974 Interna-
tional symposium on circuits and systems, San Francisco,

X. Lombard, J. Mahseredjian, S. Lefebvre and C. Kieny:
Implementation of a new harmonic initialization method
in the EMTP. IEEE Trans. on Power Systems, Summer
Meeting 94, paper 94 SM 438-2 PWRD
B. Kullicke: Simulation program Netomac, Difference
conductance method for continuous and discontinuous
systems. Siemens Research and Development Reports,
Vol. 10, pp. 299-302, 1981, no. 5
SIMULINK, Dynamic System Simulation Software. The
Mathworks, Inc. (April 1993
F. Alvarado: EM" Workbook II. University of Wiscon-
sin at Madison. EL4651, Volume 2, June 1989

pp. 505-509, April 1974

[1O]C. Gary, A. Timotin, D. Critescu: Prediction of surge

387

propagation influenced by corona and skin effect. Proc.

[l IlJ. Mahseredjian: The EMTP SUN and CRAY UNIX ver-
sions. Rapport IREQ-93-065, March 1993, Hydro-
Quebec

[121 MATLAB, High-Performance Numeric Computation and
Visualization Software. The Mathworks, Inc. External
Interface guide, January 1993

IEE, 130-A, pp. 264-272, July 1983.

BIOGRAPHIES

Jean Mahseredjian (M) received the B.Sc.A., M.Sc.A.
and Ph.D. in Electrical Engineering from Ecole Polytechnique
de Montrhl (Canada) in 1982, 1985 and 1990 respectively.
At present he is a researcher at Institut de Recherche d'Hydro-
Qukbec and an associate-professor at Ecole Polytechnique de
Montrhl.

Fernando L. Alvarado (F) was born in Lima, Peru in
1945. He received the BEE and PE degrees from the National
University of Engineering in Lima, Peru, the MS degree from
Clarkson College (now Clarkson University) in Potsdam,
New York, and the Ph. D. degree from the University of
Michigan in 1972. Since 1975 he has been with the University
of Wisconsin in Madison, where he is currently a Professor of
Electrical and Computer Engineering.

388

Discussion

V. Rajagopalan, Z. Yao, and E. Lecourtois (Chaire de
recherche industrielle Hydro-QuCbec-CRSNG, UniversitC
du QuCbec, Trois-Rivikres, QuCbec, G9A 5H7, Canada):

The authors describe an interesting link between MATLAB and the EMTP programs to
create an interacuve MatEMTP program Our expenence with both the EMTP and
Matlab-SIMULWK sofiware programs indicates that the user-friendly graphical inte~ace
SIMULINK provides a much better environment for the linkmg of EMTP We have
developed an extensive library of models in SIMcnINK environment called SIMUPELS
[11 for the power electromc converters, transformers, and electrical machines, models for
distributlon lines and other system components are avdable in SIMUBEEP [2],
SIMUBEEP i s used for the study of propagabon of disturbances in distribution systems
During simulation in SIMULINK, it is possible to write the results on files and read results
from files In this way, a complex model such as a converter-fed electrical machme can be
studied in S I M U L m using three phase circuits with its complete topology and the
required results can be written on files particularly for the current drawn from distribution
lines These results mght be converted in to ASCII files and the results can then be used,
if necessary, with the EMTP simulator with the complex loads modeled as current
sources Will the authors comment on their experience with SIMULINK simulator 7

References

[l] M Gheorghe, D 0 Neacsu, APittet, Z Yao and V RaJagopdan, “ S W E L S
Simulation of Power Electromc Systems in the MATLAB-SIMULW Environment”,
Research Report 4E/95, CPEE, Universite du Quebec a Trois-Rvieres, Quebec, G9A
5H7, Canada, Nov 1995
121 E Lecourtois, D Neacsu, Z Yao and V Rapgopalan, “S-EEP Simulation of A
Test Bench for the Study of Propagation of Disturbances in Electrical Distribution
Systems”, Research Report 7Fi95, CPEE, Universite du Quebec a Trois-Rmeres, Quebec,
G9A 5H7, Canada, Jan 1996

Manuscript received February 8, 1996.

J. Mahseredjian and F. Alvarado: We thank the discuss-
ers for their interest in our work.

We must first indicate that this paper did not present a link
between MATLAB and EMTP, it rather describes a stand-
alone program named MatEMTP that can perform EMTP type
simulations entirely in MATLAB. MatEMTP is written
through MATLAB M-files and its only links with the standard
EMTP (DCG-EPRI version) are its ability to decode the
EMTP data file syntax by means of a translation module (also
implemented in MATLAB), and the fact that functionally

identical (but fully vectorized) solution techniques are used by
MatEMTP.

We agree with the discussers that the SIMULLNK building
blocks can be successfully applied to the simulation of electri-
cal circuits through the state variable approach. However such
an approach is inherently slower than the sparse modified
nodal analysis method proposed in this paper (see equation
(1)). Our experience indicates that the current version (1.3~)
of SIMULINK becomes significantly slow when more than 50
state variables are involved. This is not the case of MatEMTP
which has been shown to maintain its performance for very
large cases. There are also other shortcomings for represent-
ing the network portion of a simulation in a state-variable
environment, such as the exact representation and initializa-
tion of nonlinear functions, the recalculation of topological
trees for ideal switch modelling, the solution of transmission
line functions and time-step delays for some feedback loops.
The state-variable representation is far less intuitive and
depleted from the physical realities of electric circuits.

It is our opinion that the powerful graphical user interface
of SIMULINK should be connected to MatEMTP for sche-
matic capture and control system simulation. Interfacing con-
trol system simulation in SIMULINK with the MatEMTP
network equations is similar to the interconnection of EMTP-
TACS (Transient Analysis of Control Systems) module with
the EMTP network solution module. Also, whenever state-
variable modelling is more advantageous it can be created in
SIMULINK and called in by MatEMTP acting as the main
circuit simulation engine. It has been shown in this paper that
in addition to control circuit diagrams SIMULLNK can be
used for drawing electric circuit diagrams. A background pro-
cess can convert such diagrams into nodal analysis equations.
It must be pointed out however, that the lack of the notion of
an electric node in SIMULINK (1.3~) severely limits the clar-
ity of electric circuit diagrams and remains more appropriate
for the original task of interconnecting control system blocks.

Manuscript received April 2, 1996.

