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ABSTRACT: The traditional method for developing electric 
network analysis computer programs is based on coding using 
a conventional computer language: FORTRAN, C or Pascal. 
The programming language of the EMTP (Electromagnetic 
Transients Program) is FORTRAN-77. Such a program has a 
closed architecture and uses a large number of code lines to 
satisfy requirements ranging from low level data manipulation 
to the actual solution mathematics which eventually become 
diluted and almost impossible to visualize. This paper pro- 
poses a new design idea suitable for EM" re-development in 
a high level programming context. It presents the creation of 
the transient analysis numerical simulator MatEMTP in the 
computational engine frame of MATLAB. This new approach 
to software engineering can afford a dramatic coding simplifi- 
cation for sophisticated algorithmic structures. 

eywords: EMTP, MATLAB, time-domain network analy- 
sis, software engineering 

In a conventional electric network simulator design, 
everything is based on line-by-line coding. Every component 
is implemented this way, as is the network analysis algorithm 
and any minor details of the overall computation and data 
manipulation process. The actual network model equations 
and network matrix operations are diluted in a large number 
of cryptic code lines created by specialized and experienced 
developers. Moreover, old-fashioned and historically sup- 
ported programming techniques inhibit modularity and are 
geared towards memory conservation. Models for any one 
component appear in more than one place in the code. This is 
the case of the EMTP [l] (Electromagnetic Transients Pro- 
gram) code. The low level design methodology of such a code 
explains its low renewal and enhancement rate. It is also pro- 
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hibitive to experiment with modern algorithmic ideas for 
eliminating solution limitations or for improving the computa- 
tional speed on changing computer architectures. 

Most network solution and modelling methods are simple 
to visualize and support mathematically, but their translation 
into an actual large scale working code is complex. Com- 
monly used programming languages are ill-suited to human 
abilities for dealing with complexity. Software built using 
such languages is often inadequate. Some other new lan- 
guages such as ADA, C++ and FORTRAN-90, provide pow- 
erful features for the formulation of appropriate abstractions 
[Z] for the desired application. But programming is always 
easier if a specialized language is already available for the cre- 
ation of similar applications. Specialized applications should 
use dedicated computational engines where the developer can 
build and compose with high level constructs. In addition to 
defining a new library of functions and overloading existing 
operators, such an engine must provide a minimal number of 
portable graphical data visualization and manipulation func- 
tions. It is obvious that programming a computational engine 
from scratch is a major effort. 

This paper proposes to use a widely used general purpose 
program available on most popular computer platforms as a 
computational engine: MATLAB 131. MATLAB has a large 
number of built-in functions and constructs covering a wide 
range of EMTP development needs and is expandable by 
means of optional toolboxes. The recent implementation of 
sparse matrix manipulation capabilities eliminates a major 
feasibility barrier. 

This paper presents the creation of MatEMTP: a transient 
analysis program in MATLAB M-files. It is based on a new 
formulation of the main system of network equations, 
designed to eliminate several topological data restrictions and 
capable of handling arbitrary switch interconnections. The 
existing EMTP is used for validation and as a reference for 
solution timings. 

2. SOLUTION METHOD 

The basic time-domain solution method implemented in 
MatEMTP is similar to the existing EMTP approach [4]. A 
large set of algebraic-differential equations is first trans- 
formed into a discrete algebraic equivalent and then solved 
over the requested interval [0, t,,,] . The solution is avail- 
able at discrete time-points (0, t l ,  t2, ..., tmax) . The design 
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utilizes a fixed integration time-step At as is the case for 
EMTP. 

The high level matrix manipulation capabilities of MAT- 
LAB stimulate algorithmic ideas based on matrix computa- 
tions. MatEMTP uses matrices and vectors for coding and 
solving network equations, closely replicating the underlying 
mathematics of network theory. The core code operates by 
defining a larger and more general matrix to represent net- 
work equations than is customary. 

2.b Network eauations: the core code 

The network component interconnecting equations consti- 
tute the core code equations and must be defined before 
accordingly programming the individual component models. 
The following augmented sparse formulation is used: 

where Yn is the standard n x n nodal admittance matrix 
excluding switches, Va is the nVS x n node incidence matrix 
of voltage sources, Sa is the ns x n node incidence matrix 
of closed switches, OVs is an nVs x nVs null matrix, Ovss is 
an flVs x ns null matrix, So is an ns x ns sparse binary 
matrix used to nullify open switch currents, Vn is the vector 
of unknown node voltages, I", holds the unknown voltage 
source currents, IS holds unknown switch currents, In holds 
known nodal current injections and v, stands for known 
source voltages. 

This new formulation is less restrictive than the standard 
EMTP nodal analysis. It expands modified nodal analysis [51 
by including explicitly the switch equations. Equation (1) is 
used in both steady-state and time-domain solutions. The node 
incidence switch matrix Sa is modified to avoid the reformu- 
lation of Yn when the topology changes. MatEMTP can 
model voltage sources not connected to ground, floating 
switch nodes and branch to branch relations. All switch cur- 
rents are automatically calculated and the explicit switch 
matrix S a  usage simplifies the detection of illegal switch 
loops. A switch loop creates linearly dependent rows in the 
switch matrix Sa. This dependency is deleted by removing 
redundant closed switches. 

The steady-state solution is a frequency domain solution. 
Its objective is to initialize the time-domain solution when 
steady-state conditions exist before transient analysis. 
MatEMTP can handle a fundamental frequency and harmonic 
initialization [6]. 

2.c ComDonent models 

Network models consist of an interconnection of compo- 
nent models. Component models interact with the core code 
by inserting their frequency domain and time-domain equa- 
tions into (1). Node incidence matrices are used for formulat- 
ing the interconnection of component model equations. 

For a passive component, the frequency domain requires a 
complex admittance matrix at each solution frequency. Active 
components insert their voltage or current phasors in the right 
hand side of (1). 

The time-domain solution is based on the discretization of 
the component models. Although trapezoidal integration is the 
default discretization method, other integration methods such 
as Backward Euler are applied in individual model equations, 
as long as compliance with core code requests exists. In addi- 
tion to handling discontinuities [7], Backward Euler integra- 
tion is useful for startup from user-defined initial conditions. 

Several components of the same type (same model) usu- 
ally exist in a given network. Fig. 1 shows the ith element of a 
multiphase coupled component model. The following equa- 
tion can be written for this component type during the time- 
domain solution: 

Ix = yxvktn + Ixh (2) 
Bold characters denote matrices and vectors. Subscript h 
stands for history terms. Matrix Yx is a sparse block-diagonal 
admittance matrix containing individual matrices Y . I 

m I 
I X  k 

i + m- Im + 4+- 
e 

Figure 1: A coupled multiphase component model 

If all component types possess their own sparse node- 
incidence matrix Ma,  equation (2) is inserted into (1) using 
the following formulas: 

before + M t Y  
ynafter = Yn a x  a 

after before t - M  I 
a 'h 

In In 

(3) 

(4) 

3. THE MatEMTP CODE 

3.a Main structure 

The objective is to program MatEMTP using only MAT- 
LAB M-files [3]. These files include standard MATLAB 
statements and may also refer to other M-files. An M-file is an 
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ASCII script or function file. Since these files are run directly 
in the MATLAB environment and there is no requested com- 
pilation stage, MatEMTP inherits an open source code. 

In inexperienced hands, the large number of available 
MATLAB building functions and constructs, can result in 
inefficient and cryptic code. Some experience is needed for 
programming with a minimal number of code lines and for 
minimal CPU time. The key to minimal CPU time is the vec- 
torization of the solution algorithms. Other important rules to 
follow for increased efficiency are: avoid extreme modularity; 
use function files instead of script files; minimize the number 
of logical statements for model and option selections; mini- 
mize data initialization; avoid data storage pointers; preallo- 
cate vectors and matrices of predictable size. Except for 
memory preallocation, vectorization and the above outlined 
rules actually improve code readability and simplicity. Blind 
usage of dynamic memory allocation simplifies programming 
but places a heavy burden on the MATLAB interpreter. 

By programming through matrix and vector operations the 
MatEMTP code is naturally vectorized. To eliminate useless 
testing, initialization procedures and repetitive dead code exe- 
cutions, the ready-to-run structure of Fig. 2 is proposed. This 
data adaptable structure relies on the input processor to inter- 
connect the M-files. The input processor is a separate pro- 
gram (also written with M-files) that decodes standard EMTP 
data files [l] and creates the case.m file. This file is a pro- 
cessed file of network data created from the external case data 
format. 

Figure 2: MatEMTP main structure 

The model selector is a set of M-files created by the input 
processor for connecting required case.m models to the main 
program. All models are programmed in separate M-files that 
obey to a set of predefined core code requests. A typical 
request for a component model is “provide admittance 
matrix” or “update history”. The creation of any new model 
is as simple as programming a new M-file which is automati- 
cally recognized and inserted into the appropriate code loca- 

tion by the model selector. 
The organizer is another M-file created by the input pro- 

cessor that calls solution M-files according to selected options 
and overall solution needs. Thus, MatEMTP is based on a data 
dependent interconnection of individual code modules. Here 
is a valid sequence of files called in by the organizer for solv- 
ing a typical case casem: 
10  matemtp.m: program startup and request for data case 
2@ case.m: the actual case file, any name can be used 
~ I J  start.m: initial setups, initial conditions, initialization of 

the time-domain solution 
4@ time1oop.m: the time-domain loop for the simulation 
The start.m script file initializes all network variables 
(including automatic frequency domaiq initialization for any 
subnetwork where active sources exist at t < 0 ). 

Appendix A shows a section of code called from start.m 
for linear harmonic initialization. The listing for timeloopm 
shown in Appendix B demonstrates the advantages of pro- 
gramming within the computational engine frame of MAT- 
LAB. 

Since all component models appear hidden to the main 
MatEMTP code, the model selector can only communicate 
through 3 built-in generic function files: msourcem, 
mbranchm and mswitchm. A file mg1obal.m is used to trans- 
fer data from the main code to model function files. 

The simple test circuit of Fig. 3 demonstrates the above 
outlined functionality. The contents of automatically gener- 
ated test2iwh.m (this is now casem) are listed in Appendix C. 
The names of model M-files used in this circuit are available 
in an input processor library. The model selector consists of 
the following files created by the input processor: 
mgloba1.m: (called in from matemtp.m) 

g v s i n e ;  % s i n u s o i d a l  v o l t a g e  s o u r c e  d a t a  
g i s i n e ;  % s i n u s o i d a l  c u r r e n t  s o u r c e  d a t a  
r l c g l o b ;  %RLC model  d a t a  
s w 0 g l o b ;  % o r d i n a r y  s w i t c h  model  d a t a  

msource .m: 
f u n c t i o n  m s o u r c e  ( i d o )  
v s i n e ( i d o ) ;  % s i n u s o i d a l  v o l t a g e  s o u r c e  
i s i n e  (ido) ; % s i n u s o i d a l  c u r r e n t  s o u r c e  

mbranckm: 
f u n c t i o n  mbranch  ( i d o )  
r l c m o d ( i d 0 ) ;  %RLC model  

f u n c t i o n  m s w i t c h ( i d o )  
sw0 ( i d o )  ; %ordinary s w i t c h  m o d e l  

mswitch.m: 

As an example of model data connection file, here are the con- 
tents of gvsine.m: 
g l o b a l  V a d j  V s i n e i n  Vmag V s t a r t  V s t o p  V p h i  Vw; 
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Figure 3: Test case test2iwh.m 

3.b Procramming the comnonent models 

Every component model is located in a separate M-file and 
responds to a standardized number of id0 values sent to it by 
the core code. As an example, an i&=2 requests the insertion 
of the component model admittance matrix into Y, . 

To illustrate the simplicity of programming, here is a por- 
tion of code from r1cmod.m: 
if ido==2 %insert into Yn for steady-state 
Yn=Yn+RLCadj'*sparse(l:nRLC,l:nRLC, 

1 . /  (RLCR+jz* (w*RLCL - RLCC/w ) ) ) *RLCadj; 
elseif ido==5 %insert into Yn in time-domain 

GRLC=sparse (1 :nRLC, 1 : nRLC, 

Yn=Yn+RLCadj'*GRLC*RLCadj; 
elseif . . .  

The programming of a transmission line model [4] usually 
requires the implementation of pointers for holding and updat- 
ing history. MatEMTP avoids this complexity by using a sin- 
gle two dimensional sparse array for holding history and a 
sparse rotation vector for extracting and storing history terms 
at each time-point. This is best demonstrated by the following 
self explanatory code lines taken from the lossless single 
phase transmission line model (t1mod.m): 
elseif ido == 6 %insert into In in time-domain 
Tikh= (1-Tinter) . *Tikhist ( :, 1) + 

Tinter.*Tikhist(:,2); %k side history 
Timh= (1-Tinter) . *Timhist ( :, 1) + 

Tinter.*Timhist(:,2); %m side history 
In=In+Tadjk'*Tikh; %contribute to In 
In=In+Tadjm'*Timh; 

l./(RLCR+(2/Dt) .*RLCL + (Dt/2) .*RLCC)); 

elseif ido == I %update history 
Tikh=Tadjk*Vn./TZc-Tikh; %ik=vk/Zc-ikh 
Timh=Tadjm*Vn./TZc-Timh; %im=vm/Zc-imh 
Tikhx=Tadjm*Vn./TZc+Timh; %ikh=vm/Zc+im 
Timhx=Tadjk*Vn./TZc+Tikh; %imh=vk/Zc+ik 
Tikhist=Tikhist*Trotate+ 

Timhist=Timhist*Trotate+ 
spconvert([(l:nT)', TNhist, Tikhxl); %store 

spconvert([(l:nT)', TNhist, Timhxl); %store 
elseif ... 

The transmission line is connected between nodes k and m. 
The following arrays and variables are calculated for ido=l in 
tZm0d.m: n T  is the total number of single phase lossless 
transmission lines, T i n t e r  is an interpolation vector 
according to the propagation delay of each line, T N h i  s t is a 
vector holding the number of history cells required for each 
line, T r o t a t e  is the sparse rotation matrix, T a d j k  and 
T a d j m  are sparse node incidence matrices found from the 
main node incidence matrix T a d ]  of this line model. Only 
minor modifications are needed to incorporate lumped 
resistances for losses [4]. 

Since equations (2) to (4) are applicable to any number of 
phases, programming of multiphase component models is 
based on matrix manipulations similar to single phase models. 

3.c User interface 

MATLAB provides high level functions that enable a por- 
table programming of a graphical user interface (GUI) for 
MatEMTP. Fig. 4, for example, shows the GUI appearing dur- 
ing the initial program startup procedure. It is used to modify 
basic simulation data and options. The menu item Schematic 
opens the schematic capture GUI shown in Fig. 5. 

number of nodes: 3 

Dt= 0.02 

Tmax= 25 [mol 

solution options 

Figure 4: The initial data capture GUI of MatEMTP 

'll II' - El 
File clipboard Edit Qptions Simulation Slyle 

Sin 

Figure 5: The schematic capture GUI of MatEMTP 

The GUI of Fig. 5 can be used for creating and modifying 
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an arbitrary multiphase circuit diagram. Clicking on a given 
component opens the corresponding data capture panel. The 

ULINK [8] toolbox. Any new component icon or subcircuits 
can be created through block masking [8]. Available network 
list generation functions allow the translation of a circuit dia- 
gram into the actual data case M-file. It must be remarked that 
the SIMULINK GUI was originally created for assembling 

9 coupled pi-sections 

programming of this GUI is based on the MATLAB-SIM- Q 

=187.79 cos(2~60t) 
- - 

- -  - -  control circuits and its usage for circuit diagrams suffers from 
visual limitations such as obligatory arrows and boxed blocks. Figure 7: Test case pi.m: energization of cable phase a. 

the r e c e i v u  . .  

4. TESTCASES 

The circuit diagram of this test case is shown in Fig. 3. 
The standard EMTP cannot handle steady-state initialization 
with different source frequencies in the same subnetwork, and 
according to test2iwh.m (see Appendix C) the harmonic cur- 
rent sources is1 and is2 are connected for t < 0 .  Thus, EMTP 
starts with wrong initial conditions (both current sources dis- 
connected in the 60Hz initialization) and enters almost perfect 
steady-state only after 8s of simulation time. MatEMTP 
solves this case directly through its initialization algorithm 
(Appendix A). Fig. 6 superimposes an EMTP waveform 
delayed by 7.95s to the MaEMTP waveform. Both solutions 
are undistinguishable. 

-90 1 I I I I I 

4 0  
t (ms) 30 0 10 20 

Figure 6: MatEMTP and shifted EMTP solutions, Case 1 

This test case is taken from an EMTP Workbook [9] .  It 
simulates the energization of a three-phase 1 5  mile 230kV 
cable. The circuit diagram for phase a is shown in Fig. 7. The 
cables are represented using 9 two-phase pi-sections. The 
sheath is grounded at the sending end and at each pi-section. 
A partial listing for pi.m is given in Appendix D. The simula- 
tion results from EMTP and MatEMTP shown in Fig. 8 are 
perfectly identical. 

20 
t (ms) l5 0 5 10 

Figure 8: MatEMTP and EMTP solutions, Case 2 

r , Ikm k w v o ' t a o ~  A 

Figure 9: MatEMTP and EMTP solutions, Case 3 

4.c Case 3 

The objective of this case is to validate and test the perfor- 
mance of MatEMTP distributed parameter line modelling 
where a sparse matrix based history maintenance method has 
been proposed. The line setup taken from [lo] is used for 
corona modelling, each phase is subdivided into 500 sections 
and a total of 1503 nodes is created. Only phase a is energized 
with a surge voltage function [lo]. Simulation results are 
shown in Fig. 9. Since MatEMTP does not yet possess a 
corona model, corona branches are disconnected in EMTP 
and a constant distributed parameter line model is used. 
Zooming on these waveforms will show a minor At delay 
between EMTP and MatEMTP, related to the programming of 
the surge function in EMTP-TACS [l], MatEMTP is actually 
more precise. 
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5. DISCUSSION 

The short length of Appendices A and B indicates that 
only a small number of code lines is needed to express solu- 
tion procedures and elaborate sparse matrix manipulations 
through readily available MATLAB functions and constructs. 
This is a dramatic improvement over conventional coding for 
performing similar tasks. Data output and plotting are easily 
handled through available MATLAB functions. 

The next step in this paper is to compare MatEMTP com- 
putational performance against EMTP. The eratio is defined 
as total MatEMTP elapsed execution time over EMTP execu- 
tion time. 

For Case 1 EMTP needs a much longer simulation time, 
and the found eratio of 50.25 is in favor of MatEMTP. 
This erutio is achieved only after modifying EMTP [ll] to 
disable plot data storage before 7.95 seconds. 

If the EMTP initilization time is excluded, the eratio 
becomes 2.5 for At = 5Ops and 10 for At  = lops .  
MatEMTP CPU time is an almost linear function of the total 
number of solution steps. 

Case 2 has an erutio of z 7 .  The case 3 eratio is z 6 .  If 
the number of line sections is dropped to 500 (by deleting 
phases b and c) then eratio 5 5.7 . This relative insensitivity 
to network dimensions is the result of both methodologies 
using sparse matrix techniques. 

A detailed analysis of MatEMTP CPU usage in the time- 
step loop for the typical case of Fig. 3, shows the following 
disposition: less than 15% for LU factorization and triangular 
solution, close to 60% for updating the right hand side of 
equation (1) and the remaining is for individual model 
updates. Half of that 60% is drained by the source function 
ms0urce.m. A promising possibility is the replacement of such 
functions by compiled C language MEX-files [12], but this 
should be applied only at the last stage of programming. 
Another possibility is to resort to an automatic M-file com- 
piler. 

CONCLUSIONS 

This paper has demonstrated an implementation of a com- 
prehensive electromagnetic transients analysis program using 
MATLAB as a computational engine. 

Used algorithms provide results identical to those from the 
EM". However, the proposed environment is implemented 
in very few lines of code, is easily expandable, modifiable and 
highly portable. It also eliminates EMTP modelling limita- 
tions through a less restrictive formulation of main network 
equations. 

Although in a few cases the new environment is faster, in 
general studies show that the conventional coding retains a 
speed advantage ranging from 2.51 in the best case to 1O:l in 
the worst case. Ideas for reducing this ratio have been pro- 
posed. 

The ultimate contribution of this paper is a dramatic illus- 
tration of the possibilities afforded by this new approach to 
software development. 

APPENDIX A 

MatEMTP linear initialization module: steady1in.m 
The following is a listing of steady1in.m: 

Wall= [ J ; 
msource(5); %put a l l  source ws in Wall 
Wall=sort (Wall) ; , 

Vn init=zeros (n, 1) ;%preallocate n node voltages 
IVs=zeros (nVs, 1) ; %preallocate IVs 
IS=zeros (nS, 1) ; %preallocate IS 
nfreq=size(Wall,l); %the number of ws to do 
ifreq=l; wdone=[]; 
while ifreq <= nfreq 

- 

w=Wall (if req) ; 
if w -= wdone 
steadyl; % ( s e e  code below) 
wdone=w; 
mbranch(3); %accumulate steady-state at t=O 

end 
ifreq=ifreq+l; 

end 
Vn=Vn-init; %solution at t=O 

The following lines are from steadyl .m : 
%steady-state module step for the frequency w 
Yn=sparse (n, n) ; %Build Yn 
mbranch(2); %contribution to Yn by branch models 
Ytmp=[Yn Vadj'; Vadj sparse(nVs,nVs)]; 
Stmp=sparse(l:nS,l:nS,Sactive)* 

Sz =sparse(l:nS,l:nS,-Sactive); 
Yaug=[Ytmp Stmp'; Stmp Sz 1; 
% 
In=zeros(n,l); %n is the number of nodes 
msource(3); %put sources in Vs and In f o r  w 
Itmp=[In; Vs]; 
Iaug=[Itmp; zeros(nS,l) ] ; %account for switches 
Vaug=Yaug\Iaug; %compute unknown phasors 
Vn=Vaug (1: n) ; %nodal phasor voltages 
Vn - init=real (Vn) +Vn-init; %at t=O accumulate 
IVs=real(Vaug(n+l:n+nVs))+IVs; %v source currents 
IS=real(Vaug(n+nVs+l:n+nVs+nS))+IS; %switch currents 

[Sadj sparse (nS, nVs) ] ; %active switches 

APPENDIX B 

MatEMTP time-domain solution module: time1oop.m 

Yn=sparse(n,n); %Initialize the conductance matrix 
mbranch (5) ; %Contributions to Yn 
Ytmp=[Yn Vadj'; Vadj sparse(nVs,nVs)]; 
Saug=[Sadj sparse(nS,nVs)]; %account for switches 
reBuild=l ; 
Vs=zeros (nVs, 1) ; %eliminate alloc functions 
% 
for itime=l:tmax %start of main loop 

. . . p r i n t i n g  and p l o t t i n g  f u n c t i o n s  . . . 
t=t+Dt; 
In=zeros (n, 1) ; %currents may add 
msource (4 ; %contribution to Vs and In 
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mbranch(6); %contribution to In from history 
Iaug=[In; V s ;  zeros(nS,l) I; 
% 
if (reBuild) %process switches and LU if rebuild 
Stmp=sparse (l:nS,l:nS, Sactive) *Saug; 
Sz=sparse(l:nS,l:nS,-Sactive) ; 
Yaug=[Ytmp Stmp'; Stmp Sz]; 
[LL, UU] =lu (Yaug) ; 

end; 
tmp=LL\Iaug; Vaug=UU\tmp; 
Vn=Vaug (1 : n) ; %extract nodal voltages 
IVs=Vaug(n+l:n+nVs); %voltage source currents 
IS=Vaug(n+nVs+l:n+nVs+nS); %switch currents 
% 
mbranch(7) ; %update history terms 
mswitch(7); %update switch status, signal reBuild 

end %of main l o o p  

APPENDIX C 

MatEMTP data file for the test case o f Firr. 2 
The following is a listing of test2iwh.m, manual comments 

have been added for readability: 
Dt=10e-06; tmax=ceil(0,05/Dt); %this is 50ms 
storedata=O; %indicates hard disk store when 1 
steadystate=l; %request for steady state when 1 
% 
n=6; %number of nodes 
% 
BUS=['BUSl ';'BUS12 ';'BUS13L1;'BUS13S';'BUS1S 
';'SRC I ; ] ;  %node names 
% 
%RLC model 
RLCad]=sparse (8, n) ; 
RLCadj(l,G)=l; RLCadj(l,l)=-1; 
RLCad] (2,1)=1; RLCadj (2,2)=-1; 

RLCad] ( 8 , 3 )  =l; 
% 
RLCout=[5;]; %current output for 5 
RLCR= [ 0 ;  0. OS; 0; 0; 0; 22.61 ; 0.5; 0; ] ; 
RLCL=[0.006;0.002;0;0;0.006; 0.01972;O;O;l; 
RLCC=[0;0;8e-07; 8e-07;0;0;0;le-06; 1 ;  
% 
%Sine current source model 
Isineadj=sparse (2, n) ; 
Isinead j (I,??) =1; Isinead j (2,l) =1; 
Imagn=[2.001; 1.1; 1 ;  Iphl=[lO.O; 5.0; 1 ;  
Istart=[-l.O; -1.0; I; Istop=[Inf; Inf; 1 ;  
Iw=2*pi*[l80.0; 360.0; I ;  
% 
%Ordinary switch model 
Sadj=sparse (2,n) ; 
Sadj(l,3)=-l; Sadj(l,4)=1; 
Sadj (2,3)=-1; Sadj (2,5)=1: 
Sclose=[17.E-3; 22.E-3; 1; 
Seps=[O; 0; 1 ;  Sopen=[Inf; Inf; 1;  
% 
% 
%Sine voltage source model 
Vadj=sparse (1, n) ; 
Vadj (1,6)=1; 
Vsinein=[l;l; Vmag=[56.34; I ;  Vphi=[O.O; 1 ;  
Vstart=[-1.0; I ;  Vstop=[Inf; I ;  Vw=2*pi*[60.0;1; 

. . . .  

% 
Vnout=[2; 3; 4;); %output request of node voltages 

APPENDIX D 

Partial listinp for the test case : pi.m 
... 
%PI section model 
PIadj=sparse (54,n) ; %node incidence matrix 
PIadj (1,3) =l; PIadj (1,4)=-1; %first pi-section 

PIadj (2,5)=-1; 
... 
PIR=sparse ( 5 4 , 5 4 )  ; %resistance matrix 
PIL=sparse (54,54) ; %inductance matrix 
PIC=sparse (54,54) ; %capacitance matrix 
% 
for k=1:2:54 
PIR(k:k+l,k:k+l)=[ .25387 .10212; .lo212 .69831]; 
PIL(k:k+l, k:k+l) = [ .  56461 .13758; 

.13758 .13139]*1e-03; 
PIC(k:k+l,k:k+l)=[ .7268 -.7268 

end 
-.7268 3.4012]*le-06; 
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Discussion 

V. Rajagopalan, Z. Yao, and E. Lecourtois (Chaire de 
recherche industrielle Hydro-QuCbec-CRSNG, UniversitC 
du QuCbec, Trois-Rivikres, QuCbec, G9A 5H7, Canada): 

The authors describe an interesting link between MATLAB and the EMTP programs to 
create an interacuve MatEMTP program Our expenence with both the EMTP and 
Matlab-SIMULWK sofiware programs indicates that the user-friendly graphical inte~ace 
SIMULINK provides a much better environment for the linkmg of EMTP We have 
developed an extensive library of models in SIMcnINK environment called SIMUPELS 
[ 11 for the power electromc converters, transformers, and electrical machines, models for 
distributlon lines and other system components are avdable in SIMUBEEP [2], 
SIMUBEEP i s  used for the study of propagabon of disturbances in distribution systems 
During simulation in SIMULINK, it is possible to write the results on files and read results 
from files In this way, a complex model such as a converter-fed electrical machme can be 
studied in S I M U L m  using three phase circuits with its complete topology and the 
required results can be written on files particularly for the current drawn from distribution 
lines These results mght be converted in to ASCII files and the results can then be used, 
if necessary, with the EMTP simulator with the complex loads modeled as current 
sources Will the authors comment on their experience with SIMULINK simulator 7 
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We must first indicate that this paper did not present a link 
between MATLAB and EMTP, it rather describes a stand- 
alone program named MatEMTP that can perform EMTP type 
simulations entirely in MATLAB. MatEMTP is written 
through MATLAB M-files and its only links with the standard 
EMTP (DCG-EPRI version) are its ability to decode the 
EMTP data file syntax by means of a translation module (also 
implemented in MATLAB), and the fact that functionally 

identical (but fully vectorized) solution techniques are used by 
MatEMTP. 

We agree with the discussers that the SIMULLNK building 
blocks can be successfully applied to the simulation of electri- 
cal circuits through the state variable approach. However such 
an approach is inherently slower than the sparse modified 
nodal analysis method proposed in this paper (see equation 
(1)). Our experience indicates that the current version (1.3~)  
of SIMULINK becomes significantly slow when more than 50 
state variables are involved. This is not the case of MatEMTP 
which has been shown to maintain its performance for very 
large cases. There are also other shortcomings for represent- 
ing the network portion of a simulation in a state-variable 
environment, such as the exact representation and initializa- 
tion of nonlinear functions, the recalculation of topological 
trees for ideal switch modelling, the solution of transmission 
line functions and time-step delays for some feedback loops. 
The state-variable representation is far less intuitive and 
depleted from the physical realities of electric circuits. 

It is our opinion that the powerful graphical user interface 
of SIMULINK should be connected to MatEMTP for sche- 
matic capture and control system simulation. Interfacing con- 
trol system simulation in SIMULINK with the MatEMTP 
network equations is similar to the interconnection of EMTP- 
TACS (Transient Analysis of Control Systems) module with 
the EMTP network solution module. Also, whenever state- 
variable modelling is more advantageous it can be created in 
SIMULINK and called in by MatEMTP acting as the main 
circuit simulation engine. It has been shown in this paper that 
in addition to control circuit diagrams SIMULLNK can be 
used for drawing electric circuit diagrams. A background pro- 
cess can convert such diagrams into nodal analysis equations. 
It must be pointed out however, that the lack of the notion of 
an electric node in SIMULINK (1.3~)  severely limits the clar- 
ity of electric circuit diagrams and remains more appropriate 
for the original task of interconnecting control system blocks. 
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