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ABSTRACT

We present a linear three-dimensional modeling
paradigm for lips and face, that captures the
audiovisual speech activity of a given speaker by
only six parameters. Our articulatory models are
constructed from real data (front and profile
images), using a linear component analysis of about
200 3D coordinates of fleshpoints on the subject's
face and lips. Compared to a raw component
analysis, our construction approach leads to
somewhat more comparable relations across
subjects: by construction, the six parameters have a
clear phonetic/articulatory interpretation. We use
such a speaker’s specific articulatory model to
regularize MPEG-4 facial articulation parameters
(FAP) and show that this regularization process can
drastically reduce bandwidth, noise and quantization
artifacts. We then present how analysis-by-synthesis
techniques using the speaker-specific model allows
the tracking of facial movements. Finally, the results
of this tracking scheme have been used to develop a
text-to-audiovisual speech system.

1 INTRODUCTION
Most talking heads used for animation are based on
(textured) triangle meshes. Face, eyes, teeth and the
vocal tract walls can be modeled similarly. A large
number of triangles and vertices have thus to be
moved and deformed according to speech
articulation, facial expressions or other vocal
activities such as chewing or swallowing. The
anatomical properties of the skin tissue and of the
musculo-skeletal struct
ure of the face impose a much lower number of
geometric degrees of freedom (DOF) than the dozen
thousands of triangles describing the face. While
rigid objects have intrinsically 6 DOF, jaw has
typically 2 DOF in speech gestures. If any facial
movement results from the combined action of more
than 250 muscles, these muscles are not controlled
independently. Most facial models identify only a
few dozen DOF: from 46 in the FACS model that
describes muscular synergies to the 66 low-level
FAP in MPEG4/SNHC that code more limited
deformations of the facial surface. A second
problem is to relate these DOF with the
displacements of the nodes of the 3D meshes.
Because of the high computational complexity of
muscle-based tissue simulation and despite

impressive recent developments using finite
elements simulations [4], most talking face models
compute the surface deformation directly [8,5] using
heuristic transforms between action units and
surface motion. This intensive modeling work often
leads to a simple ‘similarity’ between human and
virtual actions. On the contrary, data-driven
approaches can be used for interpolating between
real postures, creating a ‘face-space’ controlled with
a small set of statistically significant parameters.

2 DATA-DRIVEN TALKING HEADS
Although 3D scanners, projected light stripe (or
moiré pattern) digitizers, prototype automated stereo
video photogrammetry systems, and arrays of laser-
based scanners tend to deliver more and more
precise 3D data, speech gestures are produced by
subtle movements of small regions of the face that
are beyond the performance of these systems: a
difference of a few millimeters in lip aperture may
produce drastic changes in acoustic regime – a
closed vowel, a fricative and an occlusive can be
produced within a range of a few mm2 – whereas
subtle wrinkles differentiate between different
smiling attitudes. It seems thus highly desirable to
have access to fleshpoints : they actually anchor the
surface or volume mesh into the observed flesh and
they characterize the mesh with a constant number
of variables whatever the actual geometry of the
organs. While motion capture systems using active
or passive markers (Vicon, Qualysis…) may provide
accurate kinematics of typically a few dozen of
markers, we describe here an approach that requires
more manpower but is more straightforward and
combines a dense stereo video photogrammetry
(recovery of more than 150 markers placed on the
lower face) with more speech-specific data
collection such as the use of a jaw splint and a lip-
specific geometric model for recovering fine details
of the movements of the essential speech organs.

2.1 Corpus and data collection
In the example here, the subject's face has been
marked with 168 glued colored beads (in the cheek,
mouth, nose, chin and front neck areas), as depicted
on Figure 1. Four video sets are recorded: (1) a
calibration set for estimating cameras’ parameters,
(2) a ‘jaw splint’ set for linking the jaw position to
visible beads, (3) a training set for building the
articulatory model and (4) a texture set for building



   
Figure 1: Sample images for (a) calibrating, (b) estimating jaw position and (c) characterizing speech articulation.

       

       
(a) Raw data (b) Residual data

Figure 2: Dispersion ellipsis of the 3D data for two subjects. Top: French speaker; Bottom: Arabic speaker.

    
 (a) closing / opening the jaw (b) retracting/advancing the jaw (c) spreading/rounding the lips

    
d) raising/lowering the lower lip (e) lowering/raising the upper lip (f) raising/lowering the throat

Figure 3: The six basic articulatory movements explaining 97% of the facial deformation observed for our French subject



beads-free cylindrical textures. While speaking the
speaker’s face and profile views are captured in
synchrony using mirrors and cameras. The 3D
positions of the beads are collected by stereo
reconstruction using a calibration procedure that
relates pixel coordinates to a 3D coordinate system
linked with the head: for this, we used a known
calibration object reliably linked to the subject's
head by a bite plane. Movements of the head and the
jaw are determined by selecting a set of beads
(typically 5) that are maximally correlated with
these movements but minimally correlated with the
facial movements.
In accordance with our modeling experience [2,3],
we recorded a training corpus of representative and
language-specific set of visemes consisting of
sustained hyperarticulated vowels and consonantal
closures in context. For French, we processed 10
oral vowels: [a] [E] [e] [i] [¤][O] [y] [�] [o] [u] and
8 consonants [p] [t] [k] [f] [s] [S] [{] [l] uttered in
the 3 symmetrical maximal vocalic context: [a] [i]
[u]. In a coordinate system linked with the bite
plane, every viseme is characterized by a set of 197
3D points including positions of the lower teeth
(LT) and of 30 points characterizing the lips shape.
These lip points are collected by manually fitting a
generic 3D model of lips [9] to each viseme: the 30
control points are adjusted so as the projection of the
3D model best overlap the lip area in the multi-view
images. The image definition is about 3 pixels/mm.
Beads have a diameter of 2mm. Their locations are
estimated with a precision of less than 1 mm.

2.2 Modeling facial movements
The 3D linear model results from a statistical
analysis of these 3D data (nb. of observations x 591
coordinates): successive applications of Principal
Component Analysis (PCA) performed on selected
subsets of the data generate the main directions that
are retained as linear predictors for the whole data
set. The mobile points P of the face (skin, lips or
more recently tongue points defined on a mobile
grid [3]) deviate from their average position B by a
linear composition of basic components M loaded
by factors α (so called here articulatory parameters):

MBP ⋅+= α (1)
Used on various speakers we always succeeded in
extracting 6 linear components M that explain more
than 90% of the data variance using the following
four iterative linear predictions on data residual: (a)
the first component of the PCA on the LT values
leads to the first "jaw" predictor. The second
component will be used later. (b) PCA on the
residual lips values (without jaw1 influence) gives
usually 3 pertinent lip predictors. (c) Second jaw
predictor serves as 5th one. (d) Residual values on
whole face data are used in a final PCA to produce
the 6th one.

We already tried this construction paradigm on
several speakers, in French as well as Arabic. In any
case, the process led to an efficient data reduction,
as shown on Table 1 and Figure 2. Joined videos
[nomo*.avi] show the nomograms of the six
articulatory parameters (see Figure 3), that can be
labeled a posteriori as: lips protrusion/opening/
raising, jaw opening/advancing and Adam's apple
moving.

Table 1: Cumulative reduction of the data variance (and
contribution of each parameter) for two speakers.
Parameter French speaker Arabic speaker

(197 points) (230 points)
Jaw1 30.52 (30.52) 14.80 (14.80)
Lips1 87.55 (57.03) 83.78 (68.99)
Lips2 92.08 (4.53) 88.46 (4.68)
Lips3 95.71 (3.63) 91.18 (2.72)
Jaw2 96.11 (0.40) 92.04 (0.86)
Skin1 96.94 (0.83) 93.25 (1.22)

2.3 Texturing the face
First, the points are linked in a surface by
connecting them through triangles, as seen on Figure
4. Extra (non articulated) points, collected from a
3D scanner, are added to generate a full head. To
look realistic, this surface is textured using real
photos (without beads) of the speaker. The mesh is
too sparse to capture every face-animation detail
(lips stretching, or wrinkles appearing between
mouth and cheeks especially). Such features cannot
be captured with a single texture, but are efficiently
rendered by texture blending/3D morphing, using a
small set of textures. The retained subset of textures
and the blending parameters (weights are
exponentially decreasing as a function of the
distance between the configuration to be displayed
and the mesh associated with each texture) have
been optimized on the learning corpus. Beads-free
textures of the visemes ([a], [afa] and [upu]) were
thus recorded. To permit synthesis for any
viewpoint, 3 cylindrical textures (see Figure 5) are
created by blending views of the speaker revolving
in front of the camera while holding the allophones.

  
Figure 4: Connecting the mobile points. An extended mesh.



Figure 5: A cylindrical texture for [afa].

Figure 6: Single (top) versus multiple (bottom) texture mapping.

Figure 7:The MPEG-4 Feature Points for the face.

3 DECODING SPEECH MOVEMENTS
MPEG-4 SNHC standardizes the way to encode
animation of 3D talking faces. We show here that a
MPEG-4 stream can be decoded and rendered by
our data-driven articulatory models, restoring fine
details of facial deformations (see Figure 8).

3.1 The MPEG-4 Facial Articulatory
Parameters (FAP)

For the “face” object, MPEG-4 (see Figure 7)
standardizes a set of 84 Feature Points (FP), whose
rest positions are defined in a neutral position. The
facial movements are driven by Facial Animation
Parameters (FAP). FAP values are measured in
anthropomorphic units (proportional to measures
such as eye separation distance and mouth rest-
width) to ease the animation of any clone. Each of
the 66 low-level FAP encodes one displacement,
either in X, Y, Z or as a rotation angle, of a subset of
the FP. Few 3D FP positions are explicitly specified
by 3 FAP values: most of the FP coordinates are
thus implicitly related to several FAP.
The standard allows for situations where only a
subset of the FAP values are known by the decoder
(either explicitly received, or computed by applying
the transmitted interpolation rules). It is the
decoder’s responsibility to extrapolate some
reasonable FAP values or a plausible face
appearance. The standard gives the example of
extrapolating the moves of the rightmost part of a
face from the left one, or the deformation of the
outer lips from the inner shape. But the way to do it
is intentionally left undefined by the standard.
Also the generic face that any decoder should
include is never defined. A finely meshed face
would include extra points that also need to be
moved. A major challenge for the decoder is to
move all the face points on the basis of a FAP that
encodes the movement of a sparse set of points. Ad-
hoc rules are often applied to generate the full set of
displacements. Better results arise from
biomechanical simulations or spring-mass networks,
but stable models are hard to build and may involve
too many computations for a real-time simple
decoder.
In the following section, we explore a way to get
fast and realistic results, by using a hidden model to
recover the most probable appearance of the
speaking faces.

3.2 Regularizing MPEG-4 FAP
The data reduction previously performed suggests
that the articulatory model can accurately capture
the FAP redundancy for speech. They are 36 FAP
related to speech movements. They drive 36
corresponding coordinates C of the speaker-specific
articulatory model.
As mentioned before, MPEG-4 allows for
transmitting only a subset R of these FAP. We
propose below a method for computing values of the
entire C set from C(R).
The reconstruction error of C(R) by a vector of
articulatory parameters • depends linearly on •:

C(R)-M  B  Err(P) RR ⋅+= α (2)



where BR and MR are restrictions of the articulatory
model to the R coordinates. The error is easily
minimized in the least square sense by solving this
simple linear system:

( ) )(
1 RRtRRt BRMMM −⋅⋅⋅=

−
α (3)

The matrix to invert is always sized nxn (n equals to
the number of articulatory parameters, n=6 here),
whatever the number of known FAP values. It only
depends on the subset of FAP considered, not on
their actual values. The recovered articulatory
parameters give the most probable face appearance
(see Figure 9) as well as values of the unknown FAP
(by applying equation (1)). Of course, facial
expressions would project more accurately on
models that cope also with expressions, using more
than 6 parameters.
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Figure 8: From MPEG-4 FAP to articulatory parameters:
regularizing facial movements using the articulatory model.

Figure 9: The same FAP set driving the clone of the speaker and
another target clone.

3.3 Results
Accompanying videos show the results of applying
this scheme to FAP streams: both clones seem to
simultaneously articulate the same utterance. One
clone is effectively the one of the source speaker
that actually recorded the audiovisual stimuli, and
the reconstruction just follows the tracking stage
explained in §4. The other clone decodes the same
FAP using its own articulatory model. The two
clones have unlike postures (as lips' rest position on

Figure 9, where the French speaker has a more
protruded upper lip), but thanks to the FAP-units
system and our model-based decoding, movements
look synergetic (lip rounding, jaw opening...) and
important geometric goals for speech are preserved,
e.g. with lips closing correctly.

Figure 10: Raw FAP reconstruction accuracy as a function of
bit-rate (controlled by the most simple linear quantization
scheme provided by MPEG-4) for different subsets of FAP
effectively transmitted (from top to bottom of the legend: 2, 8,
12, 16 or 32). The reconstructed FAP are obtained by the
regularization technique described in §3.2. The raw FAP have
been obtained by tracking a 36s sequence (cf §4.2).

The hidden model also increases the robustness of
the FAP encoding scheme to compression. A
quantitative study has be performed in the special
case where FAP are coded and decoded with the
same model. We quantify how reconstructed FAP
degrade in the MPEG-4 frame-based signal
compression scheme (adaptive arithmetic-coding of
the quantized temporal-difference values).
Figure 10 shows the influence of the subset of the
transmitted FAP on the FAP peak-to-peak signal-
noise ratio (PSNR) and the bandwidth (see [10,
p.399] for comparison). We compare a reference
experiment (x) where the 36 FAP of the lower face
(cheek, chin, mouth and nose groups) are all
transmitted and not filtered through the model. All
experiments show a decrease in quality when
bandwidth is reduced, but most of model-based
decoding procedures produce a better PSNR than
the reference because they use the linear model to
reconstruct the 36 original FAP from reduced
subsets.

4 TRACKING SPEECH MOVEMENTS
In this section, we address the issue of estimating
the 3D facial movements from images of the
modeled speaker. The speaker was filmed by either
one or two cameras, calibrated to take perspective
projection into account. We first present our



matching technique to recover the clone control
parameters from one image. This framework is then
evaluated and validated with experimental results
both on the “learning” visemes (used for building
the articulatory model) and video sequences, in
learning and teleconferencing conditions.

4.1 Optimization procedure
The 3D clone has 12 degrees of freedom: it is
controlled by 6 global parameters describing head
movement and by the 6 articulatory speech
parameters. To determine the best-fitting parameters
of the model, we search a 12-dimensional space to
optimize the match of the real and modeled images.
We suppose here that our rendering is sufficiently
video-realistic to use a render-feedback loop in an
analysis-by-synthesis scheme. For the iterative 3D
recovery, the distance between the posture and the
image is computed as the difference between the
projection Is of the model, synthesized using the
current set of parameters P, and the analyzed image
Ia. To lower the dependence on experimental
conditions, a function f is first applied to each RGB
data (see below). The generic error function is thus
defined as:

( ) ( )∑
∈

−=
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1ε (4)

where N is the number of pixels (u,v) covered by Is.
Optimal parameters that minimize ε are computed
using the downhill simplex algorithm. Advantages
of simplex are mainly (a) that it makes no
assumptions on ε (no derivatives are required), (b)
due to its set of vertices, it performs at low cost the
exploration of ε's topology. Other methods, such as
Levenberg-Marquardt or various pseudo-gradient
descents, were tried but gave bad results in training
conditions and required more evaluations of ε.

4.2 Experimental results
Tracking in training conditions
Here, tracking benefits from the glued beads on
speaker's face, enhancing texture details, and from
both face and profile view, evidencing the 3D nature
of the information. Division by luminance is used as
function f in (4).
First part of evaluation was performed on the
visemes. Using the head movement precisely
estimated during the modeling, only articulatory
parameters were tracked, using the neutral posture
as the initial state. As it can be seen in Figure 11,
tracking succeeded in recovering the reference
articulatory parameters issued during the
construction of the model. Recovery is however less
accurate for the two parameters jaw2 and skin1.
Image error is almost constant at a residual noise
value, with lower values for the 3 visemes [a], [afa],
[upu] which are the textures used for synthesis.
Considering 3D RMS error, the worst visemes are

the [uCu] family. Optimization’s efficiency could
however be improved by choosing automatically
better starting values and directions using for
example an initial evaluation of a subset of maximal
articulations. Note that 3D RMS error is non-zero
for the parameters issued from modeling, reflecting
the model span (96% explained variance).
Video sequence tracking was the second part of
evaluation. Tracking of head movement and
articulatory posture was performed at 50Hz on a
video sequence of 36s [bise.avi]. The best fitting
parameters for a given frame were used as the initial
simplex centroid for the following one.
A sample of the tracking results is shown in Figure
12. Parameters evolve quite smoothly, in accordance
with phonetic knowledge: for [y], we observe a clear
protrusion (lips1) together with a small jaw
retraction in this sequence of frontal articulations.
On average, the error function was called 214 times
per frame upon convergence, clearly far from real-
time but acceptable for off-line compression (e.g.
MPEG-4 encoding) or for training visual models as
described in next section.
Tracking in natural conditions
Finally, we performed tracking in natural conditions
without beads nor make-up. The speaker was filmed
in a tighter shot by only one head-mounted camera:
just the articulatory parameters were tracked. Input
images had poor contrast and very different
lightening compared to the full-face photo-realistic
textures.

Figure 11: Two top rows: estimated (+) and actual articulatory
parameters (x) are compared for each viseme. Bottom row: error
plots for each viseme. The errors considering neutral
articulation are given for comparison (o). Note the lowest image
errors for the visemes providing the three blended textures. In
each graph, the top 3 worst visemes are shown.



Figure 12: Tracking of the sequence “…se disputaient…”.

Figure 13: Left: lips enhancement applied on image from head-
mounted camera. Right: a tracking result.

In such complex conditions, we focused the tracking
on lips, because they are conspicuous in the image,
and contain most of the information about the whole
facial movements, which the articulatory model
describes. A pre-processing stage (function f in (4))
was inserted in the analysis framework to enhance
contrast between lips and non-lips (skin). f converts
RGB values of each pixel into its probability to
belong to the ‘lip’ class (see Figure 13 for a result of
the enhancement of lips contrast). We derive this
probability from linear discriminant analysis (LDA)
using a collection of lip pixels and skin pixels
surrounding the lip vermilion. An LDA is performed
on the first image of the sequence. Another LDA on
the textures is also needed. Experimental results on
several video sequences gave satisfaction: temporal
trajectories of articulatory parameters are smooth
and the recovered face shapes were phonetically
consistent. Tracking results can be seen on Figure
13 and as an attached movie [capuchon.avi].

5 SYNTHESIZING VISIBLE SPEECH
Most rule-based visual synthesis use Cohen-
Massaro coarticulation model [6]: context-sensitive
realization of phoneme-specific visual features
results essentially from a coproduction model,
where phonemic activations overlap and merge
features according to a simple barycentric blending
procedure. We implemented here a more speech–
specific coarticulation model proposed by Öhman
for vocal tract articulation [7]: rapid overlapping

consonantal closures with intrinsic articulatory
parameters C(p) are superimposed on a slowly
varying vocalic gesture V(p,t)1 according to:

( )C(p)-t)V(p,k(t)(p)wt)V(p,  t)S(p, c ××+= (4)
where wc(p) is the so-called coarticulation index of
consonant C. At closure (k(t)=1), when wc(p) is
close to 1, resulting shape S(p) equals C(p) i.e. an
articulatory configuration with no vocalic
coarticulation. A wc(p) closed to 0 indicates a
consonantal closure highly coarticulated with the
underlying vocalic gesture V(p). For example, as it
can be seen in Figure 14, coarticulation index for lips1
(lips protrusion/spreading) is close to 0 for most
consonants. Using the consonantal targets of the
same consonant C coarticulated with different
vowels V (in a symmetric context VCV to consider
V(p,t) constant), C(p) and wc(p) are computed using
a simple linear regression.

Figure 14: Comparing observed and computed (using Öhman’s
prediction scheme) consonantal targets for [Z] coarticulated with
6 different vowels. Three profiles are superposed: the adjacent
vowel (dark gray), target observed in the corpus (light gray) and
computed target (black). The differences between observed and
computed targets are so small that the tracings can not be
distinguished from each other. The last plot gives the target
consonant coarticulated with the ten prototypical vocalic
visemes for French. The + sign gives the jaw position (LT). Jaw
is always closed and lips are always open and protruded for [Z].

For the timing model, k(t) in (4) was fitted to a
double sigmoid function anchored on consonant
boundaries, whereas we used the MEM model [1] to
describe the anticipatory timing of vocalic
movements: delays between acoustic vocalic onsets
and articulatory transitions are computed as a
function of the obstruence interval. Figure 15
illustrates the whole generation process. Coupled
with the ICP text-to-speech synthesizer, this
audiovisual text-to-speech system will be soon
evaluated using a standard benchmarking procedure
well established at ICP involving intelligibility of
VCV stimuli in noise.

                                                          
1 p is the index for the parameter and t for the time



Figure 15: Generating “la jolie structure” using the Öhman’s
suppositional model. The slowly varying vocalic gesture (thin
line) is superposed with more rapid consonantal closures (thick
lines). The lips1 trace shows the anticipatory protrusion well
before the onset of the first [y].

6 CONCLUSIONS
Data-driven models described here provide efficient
tools for the analysis, coding and synthesis of
videorealistic talking faces. These methods not only
capture relevant geometric DOFs for modeling
visible speech and relating them to underlying
articulation, but also respect speaker-specific
articulatory strategies. We promote here a data-
driven methodology for creating talking heads that
should not only provide a flexible synthesis tool for
studying audiovisual speech perception but should
also be a powerful analysis tool for analyzing
audiovisual production and thus guaranty that our
talking heads possess some of the biological
properties of their human counterparts.
Further investigation should be carried out to assess
our modeling work. Work is in progress for
incorporating other data-driven models of the speech
organs (tongue, velum, larynx…) into a common
articulatory control. We are also investigating how
speech and expressions share the articulatory DOFs.
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