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ABSTRACT
The growing gap between processor and memory speeds is moti-
vating the need for optimization strategies that improve data local-
ity. A major challenge is to devise techniques suitable for pointer-
intensive applications. This paper presents two techniques aimed
at improving the memory behavior of pointer-intensive applica-
tions with dynamic memory allocation, such as those written in
Java. First, we present an allocation time object placement tech-
nique based on the recently introduced notion of prolific (frequently
instantiated) types. We attempt to co-locate, at allocation time,
objects of prolific types that are connected via object references.
Then, we present a novel locality based graph traversal technique.
The benefits of this technique, when applied to garbage collection
(GC), are twofold: (i) it improves the performance of GC due to
better locality during a heap traversal and (ii) it restructures surviv-
ing objects in a way that enhances locality. On multiprocessors,
this technique can further reduce overhead due to synchronization
and false sharing. The experimental results, on a well-known suite
of Java benchmarks (SPECjvm98 [26], SPECjbb2000 [27], and
jOlden [4]), from an implementation of these techniques in the
Jikes RVM [1], are very encouraging. The object co-allocation
technique improves application performance by up to 21% (10%
on average) in the Jikes RVM configured with a non-copying mark-
and-sweep collector. The locality-based traversal technique reduces
GC times by up to 20% (10% on average) and improves the perfor-
mance of applications by up to 14% (6% on average) in the Jikes
RVM configured with a copying semi-space collector. Both tech-
niques combined can improve application performance by up to
22% (10% on average) in the Jikes RVM configured with a non-
copying mark-and-sweep collector.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors—Memory manage-
ment (garbage collection), run-time environments, optimization, com-
pilers; D.3.3 [Programming Languages]: Language Constructs
and Features—Dynamic storage management; D.4.2 [Operating
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1. INTRODUCTION
The growing disparity between processor and memory speeds is

motivating a strong need to optimize the memory behavior of pro-
grams. Numerous researchers have studied data locality, its impor-
tance and its effect on performance, and have investigated interac-
tions of programs with processor architecture as well as the mem-
ory system. While work on optimizing array-based applications
with regular access patterns has yielded excellent results, improv-
ing the performance of pointer-intensive workloads with dynamic
memory allocation still represents a serious challenge. Although
much progress has been made in the latter area, researchers seem
to agree that more work is needed to achieve desirable levels of
performance. Our work is an attempt to contribute to this impor-
tant effort.

The growing popularity of languages like Java [15] on a wide
variety of platforms, ranging from embedded systems to servers,
presents a particular challenge from two points of view. First, Java
programs tend to make extensive use of heap-allocated memory and
typically have significant pointer chasing, which puts pressure on
the memory subsystem [23]. Second, the dynamic nature of Java
(due to features like dynamic class loading) makes it impractical
to apply optimizations requiring whole program analysis and other
extensive analyses.

In this paper, we present two software-based techniques for cre-
ating and preserving data locality in pointer-based applications that
make heavy use of dynamically allocated memory and rely on au-
tomatic memory management, such as applications implemented
in Java. Our techniques are inherently simple and efficient, in that
they rely on a “macroscopic” view of the program rather than on
detailed program analysis. The first technique relies on identifica-
tion of frequently instantiated types, termed prolific types [22], of
the given program, and tries to co-locate objects of prolific type to-
gether at allocation time. The second technique relies on a novel
memory-friendly traversal algorithm during garbage collection (GC),
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which improves GC performance. When used with a copying col-
lector, this technique tends to further improve the data locality for
the remainder of program execution by bringing closely related ob-
jects even closer in memory. In spite of the apparent imprecision
of the analyses guiding these optimizations, we show that our tech-
niques are quite effective.

Thus, our techniques cover two natural points during program
execution when the placement of data can be improved: allocation
time and GC time. Rearrangement of data at GC time is inherently
useful only for relatively long-lived objects that survive GC. Im-
proving the locality of references to short-lived data clearly needs
to be done at or close to the object allocation time. Interestingly, our
allocation time technique targets objects of prolific types, which
tend to be short-lived [22].

Allocation time approach Our first technique is a novel ob-
ject co-allocation scheme, which relies on the notion of prolific
types [22] to place related objects close to each other in memory. It
has been observed that for most programs, a small number of ob-
ject types, referred to as prolific types for that program, account for
a large fraction of objects allocated at run time. Objects of prolific
types tend to have short lifetimes, which makes them a suitable tar-
get for frequent garbage collections. While the main focus of [22]
was to demonstrate applications of this concept for garbage collec-
tion, write barrier elimination, and reducing application memory
requirements, in this paper, we exploit the idea of prolific types for
making simple and effective object co-allocation decisions, which
benefit data locality.

Given the differences in the number of instances of objects of
prolific and non-prolific types, we postulate that it is more natural
to co-allocate two objects of prolific types that point to each other,
than to co-allocate an object of a non-prolific type with an object
of a prolific type. Since most allocated objects are those of prolific
types, focusing co-allocation efforts on objects of those types seems
to be a prudent choice.

Consequently, we devise a type affinity based object co-allocation
scheme in which related objects of prolific types are partitioned
into clusters of parents and children. We create and (with the help
of simple compiler analysis) inline specialized allocation routines
such that when a parent prolific object is created, enough space is
reserved right next to that object for its child (or children). When it
is time for a child object to be created, it is placed right next to its
parent rather than into some arbitrary memory block. Co-allocation
of parent objects and children objects that cross-reference each
other has a number of important benefits:

• It improves the spatial locality of reference by ensuring that
related objects that are connected via object references are
stored next to each other. Objects that point to each other are
often accessed contemporaneously [17]. Hence, this tech-
nique reduces the negative impact of pointer chasing.

• It reduces GC time, since co-allocated live objects form big-
ger clusters. Marking clustered objects increases the locality
of garbage collectors, whose locality is known to be worse
than that of applications [19].

• It often reduces memory fragmentation, particularly when
used in a system with a non-copying collector. At allocation
time, a space within a memory block that would otherwise
go unused can be taken by an object from a cluster of related
objects. At garbage collection time, since objects that are
born together tend to die together [17], and since memory
blocks occupied by dead co-allocated objects are consider-
ably larger than those occupied by individual objects, free-

ing those larger blocks would leave fewer small fragmented
blocks.

This co-allocation heuristic can potentially waste memory if the
corresponding child object is never allocated (we attempt to limit
such memory fragmentation, as discussed in Section 2.4). Also,
this approach would not improve locality if the parent and child
objects are not accessed contemporaneously. However, it seems to
work well in practice. Experimental results demonstrate that our
object co-allocation technique improves application performance
by up to 21% (10% on average) for the Jikes RVM [1] configured
with a non-copying mark-and-sweep collector. No improvements
are observed for the configuration with a copying collector, since
the memory allocator used in that configuration already leads to
good locality.

Garbage collection time approach Our second technique is a
locality-based algorithm for traversing reachable objects at GC time,
which aims to achieve shorter GC delays (a critical requirement for
some applications). A key observation is that since all reachable
objects (which can be large in number) that reside in the region of
the heap being collected have to be visited, a traversal algorithm
that exploits the inherent locality of reachable objects will improve
the performance of the GC itself and that of the application. Since
there is little data reuse during a traversal (many reachable objects
will be visited only once), it is essential to ensure that the traversal
algorithm interacts well with the memory subsystem (e.g., exploits
locality with respect to a data cache, a data TLB, and hardware
prefetching).

Consequently, our locality-based traversal algorithm visits ob-
jects that reside close to each other in memory first before visiting
their distant children and siblings. At each step, the algorithm picks
a region of objects to traverse. When all objects within that region
are marked, it moves on to another region, again performing a local
traversal. This radically different traversal technique has several
useful properties:

• It will have inherently better memory behavior than other ex-
isting algorithms, which blindly traverse the graph of reach-
able objects (e.g., even if objects reside far apart) while ig-
noring the principles of both spatial and temporal locality.

• When combined with a copying collector, it can also improve
locality of the resulting data layout by ensuring that objects
that used to reside closely to each other stay or get closer to
each other in memory. It does not rely on monitoring mem-
ory accesses, nor does it incur overheads associated with con-
struction and sorting of a temporal relationship graph.

• It is well-suited for efficient traversal of both young and old
objects.

• In a parallel GC, by directing each GC thread to work on a
different region, it can substantially reduce overheads asso-
ciated with synchronization and false sharing during garbage
collection.

Our scheme is simple and can be used as a plug-in replacement
for any exhaustive graph traversal algorithm where the order of
traversal does not matter. Experimental results are very encour-
aging. The overhead of additional processing of pointer targets
is more than compensated by the improvement in locality during
traversal. The locality-based traversal scheme is shown to reduce
GC times by up to 20% (10% on average) and improve applica-
tion performance by up to 14% (6% on average) in the Jikes RVM
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configured with a copying semi-space collector. The combination
of object co-allocation and memory-friendly traversal can improve
application performance by up to 22% (10% on average) in the
Jikes RVM configured with a non-copying mark-and-sweep collec-
tor.

Organization The rest of the paper is organized as follows. Sec-
tion 2 discusses the allocation time technique for co-allocating ob-
jects of prolific types. Section 3 discusses our new technique for
traversing reachable heap objects at GC time. Experimental results
obtained from an implementation of both techniques are described
and analyzed in Section 4. Section 5 presents comparisons with
related work. Finally, we summarize the results of our work and
present ideas for future research in Section 6.

2. CREATING LOCALITY AT ALLOCATION
TIME

In this section, we present the details of our object co-allocation
scheme. Pointer-intensive applications, such as those written in
Java, tend to have poor locality of accesses to heap-allocated ob-
jects. Java objects are linked to each other via references and many
memory accesses traverse such links [23] (this behavior is called
pointer chasing). A program whose linked objects are scattered
around the heap will interact poorly with the memory system (e.g.,
it may cause data TLB thrashing). Co-allocating linked objects will
improve both temporal and spatial locality.

A major challenge is to find an efficient and effective heuris-
tic that will produce reasonably good co-allocation decisions. Our
technique is using the notion of prolific types to decide what objects
are to be co-allocated.

2.1 Prolific types
It has been observed that although Java applications may have a

large number of object types, a fairly small number of object types
produce a disproportionally large number of instances. Such types
are referred to as prolific types [22] and can be efficiently identified
via on-line or off-line profiling of allocation requests or sampling1.
The remaining object types, which do not produce many instances,
are termed non-prolific.

Prolific types have a number of useful properties and applica-
tions to memory management (e.g., garbage collection, write bar-
rier elimination, reduction of heap space requirements, object re-
cycling) [22]. The object co-allocation scheme presented here is
yet another application of prolific types.

While our experiments have been done on middle-sized pro-
grams, we believe the notion of prolific types is also applicable
to large programs. Recently, Chevalier et al. [7] have demonstrated
that it does indeed apply to large-scale Java applications (each ap-
plication had over 20K lines of code, not counting comments) and
large programs written in Haskell. What is even more important is
that the applications used in their study were very sensitive to input.
They also empirically validated various properties of prolific types
discussed in [22] (e.g., the number and the fraction of prolific types
is small, instances of prolific types tend to have short lifetimes – the
prolific hypothesis, instances of prolific types tend to be small, and
children of prolific types tend to be prolific). Further, they showed
that programmers can identify which types in a program are prolific
and non-prolific (without using profiling) and use that information
for program annotation – the prolificity annotation hypothesis. In
other words, their experiments suggest that the notion of prolific
types is quite intuitive to programmers.

1Misclassification of object types does not create a correctness
problem.

2.2 Type affinity based co-allocation
Considering our classification of objects into instances of pro-

lific and non-prolific types, we argue that objects of prolific types
should be allocated together with other objects of prolific types.
First, in looking for instances of objects which are likely to be
accessed together (such as objects connected via reference fields),
there is a greater chance of a one-to-one relationship between ob-
jects of prolific types than between prolific and non-prolific objects
(since there are many more prolific objects than non-prolific ob-
jects). Second, given the larger number of objects of prolific types,
greater performance benefits may be achieved by focusing the ef-
fort on co-allocating prolific objects.

2.3 The co-allocation algorithm
We formulate the problem of co-allocating objects of prolific

types as a graph partitioning (or node clustering) problem. Con-
sider a directed graph where nodes are object types labeled with
their names and their prolificacy (P or NP, corresponding to pro-
lific and non-prolific, respectively)2. A directed edge in this graph
corresponds to a reference field and is directed towards a node cor-
responding to the type of that field. An edge is labeled as P if it
connects two prolific types or as NP if it connects two non-prolific
types; otherwise, an edge is not labeled.

To solve the co-allocation problem, we partition this graph by
clustering together the related nodes of prolific types chained to-
gether via P-edges. Each such cluster is then treated as a unit of
allocation. The node in each cluster which is allocated first is des-
ignated as the “representative” node. When an object correspond-
ing to this representative type is created, enough space is reserved
for all objects in the cluster. The allocator keeps a record of where
the rest of the “constituent” objects are to be allocated.

Although we apply our algorithm only for co-allocation of ob-
jects of prolific types, objects of non-prolific types can also be co-
allocated together similarly, if desired (if they are found to be fre-
quently accessed and cause many data cache and data TLB misses).
In this case, we partition the graph by clustering the nodes of non-
prolific types connected to each other by NP-edges.

The empirical data we collected, by profiling more than a dozen
Java applications, suggest that because (i) scalar3 objects in Java
programs tend to be small (around 16-20 bytes without an object
header), i.e., have a small number of instance fields, and (ii) only
a small number of those fields are reference fields (generally less
than 3), there is usually a small number of choices regarding the
types of objects that can be co-allocated. These characteristics of
applications make it possible to use simple heuristics for graph par-
titioning.

2.4 Discussion and implementation issues
There are several issues that have to be dealt with.

• In some cases, a child object may be allocated before its par-
ent object. To handle this, an allocation routine can reserve
space for other objects in a cluster and record this fact. Be-
cause it happens rather infrequently, we do not optimize for
this case and do not reserve space for other objects.

• The size of a child object may not be known in advance.
For example, different instances of arrays of the same type

2The prolificacy of types is determined by on-line or off-line pro-
filing.
3Note that scalar object types (i.e., non-array object types) should
not be confused with primitive types such as boolean, char,
int and others which do not have object instances.
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may have different sizes (in contrast, all instances of a scalar
type have the same size). A heuristic can be used to iden-
tify the most common size of an array of the type in question
(this can be accomplished by on-line or off-line profiling).
This identification can be coarse grained (e.g., at the pro-
gram level) or fine grained (e.g., at the call site granularity).
In our implementation, we use the coarse grained heuristic.
Note that small differences between expected and actual ob-
ject sizes may not necessitate a switch to the fall back allo-
cation strategy. Memory allocators tend to reserve memory
blocks at a certain granularity, and minor differences in ob-
ject sizes are “absorbed” by extra space within a memory
block.

• In Java, object types form a hierarchy. Given the type of a
reference, the true type of an object pointed to by that refer-
ence may not be known at compile time; a subclass of some
prolific class may have more instance fields than its super-
class. Consequently, instances of that subclass would require
more space, making the optimization ineffective, although it
does not create a correctness problem. The problem is allevi-
ated by the fact that prolific types tend to be leaves in a class
hierarchy4. Consequently, a field whose type is some prolific
type T is likely to point to an object whose true type is T .

• Preserving the optimization in the presence of dynamic class
loading may require recompilation of methods using spe-
cialized allocation routines, in order to account for changes
in the sizes of object instances. However, recompilation is
likely to be infrequent and, in some cases, unnecessary (e.g.,
due to the minimum granularity at which a memory alloca-
tor allocates memory blocks). Again, dynamic class loading
does not create a correctness problem for this optimization.
Hence, we do not address this issue in our current implemen-
tation.

• Allocation patterns in applications may change with time and
may occasionally depart from those predicted by our analysis
A naive approach for pre-allocation of memory for objects
in a cluster may not perform well as it may cause notice-
able memory fragmentation. We limit such memory frag-
mentation in our implementation by employing an adaptive
strategy. We monitor whether pre-allocated space has been
consumed by its intended consumers (i.e., objects in some
cluster) and if it was not, no memory is preallocated until
an application begins to exhibit “exploitable” allocation pat-
terns.

• The information about the allocation sites is used to refine
the contents of clusters: only types whose allocation sites are
reasonably close to each other (e.g., one object is created in
a constructor of another) remain in a cluster.

• It is possible that class A has a pointer to class B, but during
the lifetime of an object of type A, it points to several differ-
ent instances of objects of type B. Such a dynamic behavior
does not create a correctness problem for our scheme. Note
that we perform object co-allocation as opposed to object in-
lining. Therefore, we do not remove a pointer from an object
of type A to an object of type B. We also leave individual ob-
ject headers intact. Consequently, object co-allocation (while
offering less benefits) is less restrictive than object inlining,

4We verified this trend by profiling more than a dozen applications
written in Java.

because it has to meet fewer constraints to ensure program
correctness.

2.5 Implementation
We have implemented this technique in the Jikes RVM [1]. We

modified the VM and implemented the capability to collect alloca-
tion profiles, store them into files, and retrieve allocation profiles
during future executions to perform object co-allocation.

We also implemented a module that analyzes the allocation pro-
file of an application and determines a co-allocation strategy (based
on the clusters of prolific types). In a large number of cases, clusters
consist of only a few objects of prolific types (usually two, because
of a small number of fields in objects of prolific types). Also, even
an L2 cache line in our target machine can usually accommodate
no more than two objects. These observations greatly simplify the
implementation of the co-allocation technique. The heuristic we
implemented performs partitioning by building clusters of two pro-
lific types such that a prolific type A has a field that points to a
prolific type B (for simplicity, we chose to ignore cases in which
type A is the same as type B).

We have made changes to the optimizing compiler, which imple-
ments a chosen co-allocation strategy and inlines appropriate mem-
ory allocation routines. A different routine is inlined for a different
member of a cluster: a parent vs. a child object, a scalar object
vs. an array. For a non-copying GC, we had to make changes to
the mark-and-scan routines and relevant data structures to ensure
that all co-allocated objects within a memory block get marked and
scanned. The original mark-and-sweep non-copying GC was not
designed to support object co-allocation (i.e., its implementation
assumes that only a single object can reside in a memory block).

The core memory allocation routines were left intact, and are in-
voked for non-prolific objects or whenever our scheme chooses to
fall back to the standard allocation method (e.g., when a child ob-
ject cannot fit into the space reserved for it). The memory allocator
used with the non-copying mark-and-sweep GC partitions the heap
space into equally sized meta-blocks, which are further partitioned
into smaller blocks of various fixed sizes. Block sizes are deter-
mined empirically by profiling allocation requests of a reasonably
large set of applications. Memory is allocated from the smallest
memory block that is big enough to satisfy a request. With this al-
locator, object co-allocation can place objects of the same or differ-
ent sizes into the same memory block (as opposed to two different
memory blocks residing far apart from each other in the address
space).

The allocator used with the semi-space copying GC allocates
memory by incrementing a pointer. Therefore, it is thought to have
better locality. With both GCs, large objects are placed in a separate
portion of the heap (termed a large object space), which is managed
in a mark-and-sweep fashion. Since most objects are small, mem-
ory allocations from the large object space are rare.

3. PRESERVING LOCALITY AT GC TIME
In this section, we describe our locality-based traversal tech-

nique. Since a traversal algorithm has to visit all reachable objects
that reside in the region of the heap being collected and since during
that traversal there will be little data reuse (many reachable objects
are likely to be visited only once), it is crucial to take into con-
sideration interactions between a GC and a memory system. The
basic underlying principles behind our traversal scheme are the fol-
lowing: (i) processing is relatively cheap compared to performing
data transfers and (ii) accessing memory sequentially (and access-
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ing memory within a fixed-size region) is cheaper than accessing
random memory locations. Consequently, our technique trades off
a small amount of computation to uncover and exploit inherent lo-
cality of data structures during a traversal (by ensuring that surviv-
ing objects are accessed in some regular order), thereby reducing
memory transfers and improving memory behavior of GC.

When used with a copying collector, this technique also im-
proves the locality of surviving objects. Many existing systems
attempt to improve locality of objects by bringing those objects
closer to each other at GC time. These systems typically collect in-
formation about memory accesses of an application and construct a
temporal relationship graph reflecting past application access pat-
terns to predict future access patterns. In contrast, we simply ex-
ploit the inherent locality of data structures. This leads to shorter
GC pauses, which are important in many application environments.

3.1 The traversal algorithm
The pseudocode for the locality-based traversal algorithm is shown

in Figure 1. (In the discussion below, the terms pointer and refer-
ence will be used interchangeably.) We partition the heap space into
contiguous pieces of memory referred to as chunks. Each chunk
has a chunk ID associated with it. The first step is to determine the
set of roots, in other words, live objects through which the rest of
the reachable objects can be found. Given the set of roots, the first
chunk to be collected is selected. This chunk is termed the current
chunk. All the root pointers into the current chunk are identified.
The set of these local pointers is referred to as LP. The set of all
other (non-local) pointers is referred to as NLP.

The next step is to take a pointer from LP. The object pointed
to by this local pointer is examined. If the object is marked as
visited, another pointer is taken from LP. Otherwise, the object is
marked as visited. All the pointers in that object are examined and
are classified as either local (if they point into the current chunk) or
non-local (otherwise). Depending on the category, they are added
to LP or NLP.

The above procedure is repeated until all pointers in LP are ex-
hausted. In that case, the next chunk to be collected is selected.
That chunk becomes the new current chunk.

The process is repeated until there are no more pointers in NLP
(this implies that there are no more pointers in LP). At this point,
all reachable objects have been visited and marked as such.

3.2 Discussion and implementation issues
For the most part, the discussion below follows the flow of the

algorithm shown in Figure 1.

• The chunk size determines the unit of data and the level
at which locality and performance is to be optimized. For
example, the chunk size can be set to the size of the ad-
dress space covered by the data translation look-aside buffer
(TLB)5. To optimize for virtual memory performance, the
chunk size should not exceed the size of physical memory
that can be used by a process. For simplicity and efficiency,
all chunks have the same size, which is a power of two. In
such a case, given an address A, determining a chunk ID
for address A can be done simply by shifting the address
log2(ChunkSize) bits to the right.

• When collecting roots, it is important to note those roots
through which objects may have been accessed most recently.
Those are likely to be pointers in the top-most stack frame

5We used this heuristic in our implementation.

LBT() {
Roots = RuntimeSystem.IdentifyRoots();
CurrentChunk = Roots.SelectTheFirstChunk();
LP = Roots.identifyLP(CurrentChunk);
NLP = Roots.identifyNLP(CurrentChunk);
done = LP.empty();

while(!done){

while(!LP.empty()) {
object = LP.next();
if(!object.visited()) {

object.visit();
LP.extractLP(object);
NLP.extractNLP(object);

} // if(!object.visited())
} // while(!LP.empty())

if (NLP.empty())
done = true;

else {
CurrentChunk = NLP.SelectTheNextChunk(LP);
LP = NLP.identifyLP(CurrentChunk);

} // else

} // while(!done)

} // LBT

Figure 1: Pseudocode for the locality-based traversal algorithm

and pointers in the processor registers. It may also be im-
portant (for performance) to differentiate between pointers
to old objects and pointers to recently allocated objects (e.g.,
much of recently allocated data may still reside in a processor
cache).

• Selecting which chunk to collect first can be done in a num-
ber of ways. For example, if the data still in a cache when
a GC is started are thought to be live, then the first chunk
to be collected could be the last chunk from which an appli-
cation allocated memory. Pointers into that chunk are likely
to be found in the top-most stack frame or among recently
updated or created static (class) fields. We have found that
this heuristic works well in practice and used it in our imple-
mentation. Alternatively, a fixed number of root pointers can
be sampled and the chunk into which most sampled pointers
point to is selected. Of course, in the simplest case, any root
pointer can be used to determine a chunk to be collected first.

• The next pointer to be selected from LP should be a pointer
to an object that is close to the one visited recently. This will
ensure that co-allocated objects (e.g., those sharing a cache
line or a page) will be visited by a garbage collector at about
the same time.

• Selecting a chunk to be collected next can be done in a simi-
lar manner (to the way the first chunk is selected) by inspect-
ing pointers in NLP. For example, sampling a small num-
ber of pointers in NLP can give a good estimate about the
chunk which contains many reachable objects. Alternatively,
a pointer into the chunk closest to the current chunk can be
used. We have found that the simplest approach, which is to
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select any non-local pointer, works fairly well and used it in
the implementation.

• It is expected that during a traversal, most pointers will be
local pointers, and the number of pointers in NLP will be
small. Our measurements indicate that this is indeed the case.

• If reachable objects are located sparsely in the heap (e.g., if
the number of objects in each of several recently processed
chunks is smaller than some threshold), a switch to the de-
fault traversal scheme can be made. However, the need for
such an adaptive strategy did not arise frequently.

3.3 Scalability issues in multiprocessors
In a multiprocessor system, it is important, from a performance

point of view, to ensure that only one processor is working on a
given chunk at a time. This has to be done at the beginning, when
each processor takes the first chunk, and later, whenever a new cur-
rent chunk is selected. If the system uses processor-local heaps, the
last chunk from which memory was allocated before GC should be
used as the first chunk to be processed, since some data from that
chunk may still be available in the processor local cache.

For performance, in a multiprocessor system, the set NLP is par-
titioned and distributed among chunks (i.e., one subset of NLP per
chunk); this distributed subset of NLP is then used to feed the LP
set of a respective processor when the LP set of the correspond-
ing processor becomes empty. More specifically, each GC thread
will have one queue associated with each chunk (one queue is used
for processing by a thread and others are used to distribute work
for other threads). Objects that are reachable but residing outside
a currently processed chunk are added to an appropriate queue for
later processing. A GC thread that empties its local queue associ-
ated with a currently processed chunk steals work from non-local
queues associated with that chunk (i.e., queues filled by other GC
threads). In this scheme, a GC thread needs to use synchroniza-
tion primitives only when it is accessing a queue associated with
a chunk other than the one it is processing (i.e., “work stealing”).
The GC threads terminate when all work queues are empty.

Partitioning GC work in this manner reduces the overhead of
false sharing during traversal of reachable objects since no two pro-
cessors can be visiting objects within the same chunk and within
the same cache line. In addition, synchronization is not necessary
when visiting objects within a current chunk. This leads to lower
cost for marking and, especially, for copying reachable objects (be-
cause it eliminates contentions).

Increasing the page size or the number of data TLB entries in a
processor would lead to wider TLB coverage. On a uni-processor
system with wide TLB coverage, the benefits from the locality
based traversal may be small. However, this technique is still appli-
cable for systems with multiple processors (each processor having
wide TLB coverage) due to the ability of the proposed technique to
reduce the overhead of synchronization and false sharing.

3.4 Implementation
The Jikes RVM implements a version of Cheney’s traversal with

a work queue (used in the base configuration). The work queue is
designed to ensure load balancing among parallel GC threads. Each
thread has local buffers (termed get and put buffers) from which it
takes references to objects that need to be scanned and into which
it stores references to objects that need to be scanned later. Empty
get buffers are refilled from the global work queue; full put buffers
are placed onto the work queue. We used a single GC thread in our
experiments.

We enhanced the standard work queue implementation with our
locality-based traversal technique. We added support for buffers
containing local and non-local pointers. The first chunk from which
a traversal is started is the last one from which memory was allo-
cated. During the traversal, the buffer with local pointers is used
until it is exhausted, at which point we select the next chunk that
needs to be scanned. Sampling of pointers to select the next chunk
to be scanned seemed to work only slightly better than picking the
first available non-local pointer (perhaps, because it was a good
choice anyway). The chunk size was set to the area covered by the
data TLB.

4. EXPERIMENTAL RESULTS
In this section, we present results on the performance impact of

the type-based object co-allocation (OC) scheme and the locality-
based traversal (LBT) technique in the Jikes RVM for two con-
figurations: one with a non-copying mark-and-sweep GC, and the
other with a copying semi-space GC (along with their respective
allocators). We decided to start with these collectors because they
were simple and easy to work with. Most importantly, by study-
ing our techniques in the context of these basic collector, we hope
to get a better understanding of a potential performance impact of
our techniques. The allocators used in the VM were described in
Section 2.5. Because of its short allocation sequence, a copying
semi-space GC is a popular default configuration of the Jikes RVM.

Our intention is to demonstrate the advantages of the proposed
techniques in their “relatively pure” forms.6 The performance im-
pact in systems that are hybrids of the schemes with which our
techniques are being compared (e.g., a generational system with
a copying young generation and mark-sweep-compact old gener-
ation) may be smaller. However, we believe that the mark-and-
sweep old generation can also benefit from object co-allocation.
In some systems, the use of moving collectors, such as copying
generational collectors, is not possible. In such cases, non-moving
(mark-sweep or reference counting) collectors are used. The non-
moving collectors use free list pointer allocation, as opposed to
bump pointer allocation, and can benefit from object co-allocation.
In summary, the extent of performance benefits from our techniques
with other more complex garbage collectors, such as generational
collectors, is an open question, which will be a subject of future
work.

4.1 Benchmarks and the experimental setup
To evaluate the effectiveness of object co-allocation and locality-

based traversal techniques, we selected Java applications from the
industry standard benchmark suites (SPECjvm98 [26] and SPEC-
jbb2000 [27]) and from a suite of pointer-intensive applications,
jOlden [4].

The SPECjvm98 applications ran for four iterations. (Note that
during a single iteration, many SPECjvm98 applications allocate
over 100MB and up to 300MB of heap space [19].) Most of the
compilation activity was done during the first iteration. In the ta-
bles below, we report the best execution times (in seconds). After
the first run, performance variations from one execution to another
were insignificant. SPECjbb2000 ran for two minutes after the ini-
tial ramp up period. This application performs a variable amount of
work during a fixed period of time, which is reported as throughput
in terms of transactions per second. This application was run four

6The Jikes RVM collectors implement a separate large object space
(LOS) for objects that are bigger than 2KB. In programs that we are
considering, the number of large objects is not significant.
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Table 1: A VM configured with a non-copying GC. (Note: OC
- Object Co-allocation; LBT - Locality-Based Traversal.)

Base configuration
Benchmark Run time Av. GC time # of GCs GC time

compress 40.687 .433 19 8.233
db 78.642 .570 7 3.992
jack 40.123 .467 34 15.905
javac 37.077 .806 45 36.296
jess 29.102 .510 76 38.795
mpegaudio 25.821 .442 7 3.099
mtrt 19.304 .624 36 22.482
jbb 1390.1 .820 15 12.309
bh 32.069 .485 8 3.883
health 43.987 .979 1 .979
voronoi 9.846 .908 2 1.816

Configuration with OC
Benchmark Run time Av. GC time # of GCs GC time

compress 40.671 .429 19 8.151
db 65.251 .554 7 3.878
jack 38.017 .423 32 13.536
javac 35.239 .741 43 31.863
jess 27.915 .485 72 34.920
mpegaudio 25.798 .439 7 3.073
mtrt 17.458 .602 34 20.468
jbb 1481.3 .791 15 11.865
bh 26.617 .475 7 3.325
health 35.053 .935 1 .935
voronoi 8.341 .886 2 1.772

Configuration with LBT
Benchmark Run time Av. GC time # of GCs GC time

compress 40.781 .435 19 8.265
db 78.649 .574 7 4.018
jack 40.378 .478 34 16.252
javac 36.985 .796 45 35.820
jess 29.013 .505 76 38.380
mpegaudio 25.829 .453 7 3.171
mtrt 19.317 .631 36 22.716
jbb 1383.4 .829 15 12.435
bh 32.112 .491 8 3.928
health 43.757 .996 1 .996
voronoi 9.821 .903 2 1.806

Configuration with OC + LBT
Benchmark Run time Av. GC time # of GCs GC time

compress 40.673 .430 19 8.170
db 65.228 .536 7 3.752
jack 37.974 .404 32 12.946
javac 35.185 .694 43 29.871
jess 27.907 .472 72 33.984
mpegaudio 25.796 .438 7 3.066
mtrt 17.406 .575 34 19.581
jbb 1497.8 .784 15 11.760
bh 26.072 .434 7 3.038
health 34.441 .803 1 .803
voronoi 8.173 .773 2 1.546

Figure 2: Normalized run times (non-copying GC = 100%).
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Figure 3: Normalized GC times (non-copying GC = 100%).
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Table 2: A VM configured with a copying GC. (Note: OC -
Object Co-allocation; LBT - Locality-Based Traversal.)

Base configuration
Benchmark Run time av. GC time # of GCs GC time

compress 40.565 .379 20 7.580
db 81.118 .719 12 8.628
jack 37.587 .425 48 20.400
javac 37.766 .914 63 57.582
jess 25.615 .489 92 44.988
mpegaudio 25.024 .404 8 3.232
mtrt 23.798 .782 61 47.702
jbb 1513.7 1.039 25 25.975
bh 28.279 .469 9 4.221
health 35.016 .649 1 .649
voronoi 15.655 .968 4 3.872

Configuration with OC
Benchmark Run time av. GC time # of GCs GC time

compress 40.621 .381 20 7.620
db 81.235 .715 12 8.580
jack 37.992 .424 49 20.776
javac 37.814 .918 64 58.752
jess 25.702 .485 93 45.105
mpegaudio 25.037 .412 8 3.296
mtrt 23.829 .779 61 47.519
jbb 1497.4 1.043 25 26.075
bh 28.317 .471 9 4.240
health 35.112 .644 1 .644
voronoi 15.687 .970 4 3.881

Configuration with LBT
Benchmark Run time av. GC time # of GCs GC time

compress 40.498 .368 20 7.360
db 74.347 .683 12 8.196
jack 37.014 .413 48 19.824
javac 34.021 .765 63 48.195
jess 25.595 .472 92 43.424
mpegaudio 25.006 .402 8 3.216
mtrt 21.539 .654 61 39.894
jbb 1543.2 .996 25 24.900
bh 25.443 .405 9 3.647
health 30.251 .514 1 .514
voronoi 14.397 .788 4 3.152

Configuration with OC + LBT
Benchmark Run time av. GC time # of GCs GC time

compress 40.512 .371 20 7.420
db 74.829 .687 12 8.244
jack 37.263 .409 49 20.041
javac 34.843 .772 64 49.408
jess 25.605 .468 93 43.524
mpegaudio 25.011 .403 8 3.224
mtrt 21.758 .661 61 40.321
jbb 1531.5 1.015 25 25.375
bh 25.507 .412 9 3.708
health 30.348 .510 1 .510
voronoi 14.441 .793 4 3.172

Figure 4: Normalized run times (copying GC = 100%).
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Figure 5: Normalized GC times (copying GC = 100%).
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times and the best result was reported. Programs from the jOlden
suite were run four times; again, the best execution times were re-
ported.

All applications ran with a 64MB heap (except for SPECjbb2000:
128MB; compress, jess, mpegaudio, mtrt: 32MB). SPEC applica-
tions are self-timed. The timing results reported by SPEC applica-
tions include GC time. It was difficult to accurately separate GC
times due to each iteration. Therefore, for the sake of consistency,
garbage collection times are reported for the entire execution of
these applications (e.g., all four executions of SPECjvm98 and the
entire execution of SPECjbb2000).

Experiments were performed on a system with a 333MHz Pow-
erPC 604e processor running AIX 4.3.3. Both on-chip L1 instruc-
tion and data caches in the processor were 32K, 4-way associa-
tive, with 32-byte cache blocks. The off-chip unified L2 cache had
256K, was direct-mapped, and had 64-byte cache blocks. Split in-
struction and data TLBs had 128 entries each and were 2-way as-
sociative. The page size on this system was 4KB. The system was
configured with 3GB of RAM. There was no significant paging
during our experiments.

4.2 Non-copying GC
For the first set of experiments (Table 1), we configured the VM

with a non-copying mark-and-sweep GC (the first base configura-
tion) and ran all the benchmarks. For each application, we recorded
the best execution time in seconds (throughput for SPECjbb2000,
in terms of ops/second), GC time, and the number of GCs. Then
we experimented with three variations of this base configuration:
(i) with object co-allocation (OC) enabled; (ii) with locality-based
traversal enabled (LBT); and, finally, (iii) with both OC and LBT
enabled. For each variation, we computed normalized execution
time and GC time (normalized with respect to the base configura-
tion). These data are shown in Figures 2 and 3. We also computed
the geometric means of normalized times, shown in the last three
bars.

Configuration w/OC It appears that OC by itself has a notice-
able positive impact on application run times. The performance
improvements are likely to be due to the fact that the base configu-
ration has poor locality to start with. Note that in the base config-
uration, objects that point to each other but have different sizes are
likely to be allocated from different chunks (partitioned into small
blocks of fixed sizes); thereby they are likely to be far apart from
each other in memory. With OC, objects of prolific types are placed
into the same block and are likely to reside on the same page, which
can reduce data TLB misses (and page faults). Because prolific ob-
jects are small, there is also a high chance of two or more objects of
prolific types sharing the same L2 cache line, which leads to lower
cache miss rates if those objects are accessed contemporaneously.

The applications that benefit a lot from OC are those that have
poor memory behavior. Among those, the applications that allocate
many objects show the greatest improvements. In programs with
these characteristics, our technique can accurately identify prolific
types and perform OC optimizations for objects of those prolific
types more successfully.

It is notable that for some applications (e.g., jack, javac, jess,
mtrt, bh), OC also reduces the number of GCs. Object co-allocation
reduces memory fragmentation, which is an inherent characteristic
of non-copying GCs. Lower memory fragmentation leads to fewer
cases when a GC has to run to reclaim space occupied by unreach-
able objects.

Also, OC has some impact on the GC time. Performing mark-
and-sweep over clusters of co-allocated objects improves locality
even with a built-in traversal algorithm.

Configuration w/LBT Since the locality of objects is poor in the
original configuration, LBT, which is designed to exploit available
inherent locality during a traversal, has difficulty to find enough
locality (which would otherwise reduce GC time). Also, because
LBT is only used at GC time (which it does not improve in this con-
figuration), it does not noticeably impact overall execution times of
applications.

Configuration w/OC+LBT It seems that the synergy of both OC
and LBT has the greatest impact. As discussed earlier, OC by it-
self creates better data locality which leads to reduced run times,
lower memory fragmentation, and shorter GC pauses. LBT appears
to be exploiting locality created by OC which is demonstrated by
noticeably shorter GC pauses. Shorter GC pauses lead to further
reductions in run times of applications.

The bottom line Poor data locality of the non-copying configu-
ration is easily improved with help of OC by creating good locality
at allocation time. Indeed, in a non-copying configuration, the OC
technique is approximating the allocation behavior of a configu-
ration with a copying GC. Namely, it tries to ensure that objects
created temporally together are also placed spatially close to each
other.

Further performance improvements are obtained by utilizing LBT
along with OC. Thereby, locality created by one technique (namely,
OC) is exploited later by another technique (i.e., LBT).

4.3 Copying GC
For the second set of experiments (Table 2), we configured the

VM with a copying semi-space GC (the second base configura-
tion), repeated all experiments, and computed normalized execu-
tion times and GC times (shown in Figures 4 and 5) with respect to
the second base configuration. The computed geometric means of
normalized times are shown in the last three bars.

Configuration w/OC OC by itself does not seem to impact the
execution times of applications. The already fairly good locality of
new objects, most of which are of prolific types, delivered by the
memory allocator used with the copying GC (which places all new
small objects contiguously in memory), is perhaps the reason for
such a behavior. Particularly, since we co-allocate objects many of
which probably would have been close to each other anyway.

Any changes to locality introduced by the OC technique are not
“visible” to the built-in traversal algorithm. Hence, the GC times
are not impacted either.

Configuration w/LBT Given a fairly good locality of objects in a
copying configuration, the LBT technique is able to pick up on that
and exploit this inherent locality. As a consequence, GC times are
noticeably reduced. It appears that those applications that have a
lot of live data to be traversed at GC time tend to benefit a lot from
LBT.

In addition to direct minor impact on application run times by
performing a better traversal, LBT has a major indirect impact on
performance by creating a better data layout. By copying objects
(many of which are, perhaps, old ones and some of which are re-
cently created young ones) in a such a way so that objects that used
to reside near each other, still reside close to each other in another
semi-space, it is able to preserve locality present in the original
layout.

Configuration w/OC+LBT Since OC does not improve perfor-
mance of this configuration (the locality of new objects is fairly
good), it is expected that adding OC to the configuration that im-
plements LBT does not reduce application run times and GC times.
To the contrary, the work done for OC shaves off some of the per-
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formance benefits of LBT.

The bottom line Increasing locality of new objects in a copying
configuration is hard: the locality of new objects is fairly good and
OC does not seem to help. However, LBT is capable of exploiting
the locality inherently present in this configuration by traversing
objects in the local-first order and preserving the original layout
while copying objects. The end results are reduced GC times and
application run times.

5. RELATED WORK
The related work falls into two categories: (i) research on object

co-allocation and placement and (ii) traversal algorithms.

5.1 Object Co-allocation and Placement
Due to the difficulty of making good allocation decisions at compile-

time, much of the work described in the literature has been devoted
to profile-based approaches.

Profile-driven approaches Calder et al. [5] used a rich set of
profiling information to create cache-conscious data layout and to
reduce conflict misses. The placement of data was guided by a
temporal relationship graph (TRG) constructed from profiling data
(collected off-line).

Chilimbi et al. [9] demonstrated that a generational copying col-
lector can be successfully used to implement cache-conscious place-
ment of “old” long-lived objects and improve locality of pointer-
based data structures. Their system collected profiling information
about data access patterns to old objects (in programs written in
Cecil), constructed a TRG of data accesses, and then used the TRG
to reorganize those objects during major collections with the help
of their copying algorithm.

Yardimci and Kaeli [31] presented two approaches for profile-
guided allocation of heap objects in the context of C programs.
In the first approach, cache miss profiling information was used
along with a modified malloc library to place objects in appropri-
ate regions in such a way so as to reduce conflict misses in the L1
data cache. In the second approach, they used profiling informa-
tion to build TRGs for accesses to heap objects. The TRGs were
then used to guide allocation of contemporaneously accessed ob-
jects into neighboring regions in the heap and data cache so as to
increase spatial locality (and to avoid mapping those objects to the
same portion of a cache).

Seidl and Zorn [21] used off-line profiling and call site infor-
mation to predict the reference frequency and lifetime of objects.
Their object placement strategy was shown to decrease the usage of
virtual memory pages in several allocation-intensive C programs.
They used off-line profiling to classify objects into frequently- and
infrequently-referenced (as well as into short-lived and other) and
allocate objects belonging to the same category into the same heap
segment.

User-driven approach Chilimbi et al. [8] demonstrated that good
data organization and layout can improve the locality and perfor-
mance of pointer-intensive programs. They describe a cache-conscious
heap allocator (called ccmalloc), which uses programmer-supplied
hints (inserted into the source code of C programs) and attempts
to co-allocate contemporaneously accessed data on the same cache
line. A hint is a pointer to a data structure that is likely to be ac-
cessed contemporaneously with a data structure to be created. In-
sertion of a “good” hint requires detailed knowledge of the pro-
gram’s code and its behavior, and is impractical for large-scale pro-
grams.

Compiler-driven approach Dolby and Chien [11, 12, 13] have
introduced object inlining for C++ programs, an optimization which
uses whole program analysis to inline-allocate objects (with certain
properties) within their respective containers. Object inlining elim-
inates many object references and reduces object allocation costs.
When applicable, object inlining is more effective than object co-
allocation. However, object co-allocation is a more widely appli-
cable and general technique, which (unlike object inlining) does
not require legality checks based on complex compiler analysis
because object co-allocation does not eliminate inter-object refer-
ences and individual object headers.

Our work Unlike [9], our scheme does not make a direct use of
a GC (generational or non-generational ones) to implement cache-
conscious object placement and co-allocation, nor does it involve
copying objects to perform reorganization. We focus the efforts
on all newly created objects at the time of their birth and not on
old long-lived objects [9]. Consequently, our scheme may be well-
suited for environments without a GC or with a non-copying GC,
which cannot move objects around. Also, unlike that scheme, our
scheme does not “preserve” garbage and collects all unreachable
objects. Although we collect profiling information (which was also
done in [5, 9, 21, 31]), our profile is, in fact, not as rich and is
very inexpensive; its size is independent of the number of mem-
ory accesses and other program characteristics. In our scheme, ob-
ject placement is not driven by temporal affinity. Hence, we do
not construct a TRG, which may be big. Consequently, we do not
sort a TRG which can be an expensive operation. Instead, we use
type affinity and the notion of prolific types [22], and base object
placement decisions exclusively on the prolificacy of types. Un-
like [8], our technique is fully automatic and does not require any
involvement from a programmer; this feature makes our scheme
attractive for optimizing large-scale software systems. Unlike [11,
12, 13], which use an expensive whole program analysis, which
is somewhat impractical for runtime compilation in Java, the com-
piler analysis employed by our scheme is simple, which broadens
the applicability of our scheme. Compared to object inlining,
object co-allocation does not need to satisfy the same set of strin-
gent constrains to ensure program correctness because it does not
change the underlying structure and the layout of individual ob-
jects. To the best of our knowledge, this is the first reported effort
on locality-conscious allocation-time object placement in the con-
text of Java; most previous work was performed in the context of
languages like FORTRAN, C, C++, and Cecil.

5.2 Traversal Algorithms
Traversal algorithms for finding reachable objects can be classi-

fied into basic and hybrid ones. To assure that no live object (re-
siding in the heap region being collected) is reclaimed, a traversal
algorithm has to find all reachable objects. The key differences
among the algorithms are in the order they visit objects. The or-
der of traversal has implications for storage requirements and data
locality.

Basic traversal algorithms A traversal based on a depth-first
search (DFS) is one of the simplest ones to implement. However,
because it requires an additional data structure to maintain a poten-
tially large stack of objects to be scanned, it has not been popular.
Copying objects using a DFS-based traversal has been shown to im-
prove data locality of shallow and wide data structures (albeit only
slightly according to [30]). For deep data structures, this traversal
tends to place siblings far apart from each other, which may not be
desirable; thereby reducing locality.

A breadth-first search (BFS) or a level-order traversal is one of
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the most popular algorithms for finding reachable objects. A BFS-
based algorithm tends to place siblings and distant cousins closer
to each other (which may improve spatial locality) but may sepa-
rate them from their parent nodes especially if the root set is very
large. In addition, it places upper-level objects, which may be used
for indexing into the rest of the data structure, closer to each other,
which may have a positive performance impact. Cheney [6] de-
scribed a version of a BFS traversal that does not require auxiliary
storage space for the queue. In his scheme, objects copied into the
To-space act as a queue. The head and the tail of the queue are
denoted with two pointers: scan and free.

Hybrid traversal algorithms Moon [20] discussed several GC
techniques in a Lisp system with a large virtual memory, includ-
ing one technique which improves the locality of objects copied by
a GC into a target space. Moon’s algorithm is a modification of
Cheney’s scheme [6] and works in an “approximately depth-first
fashion.” It always scans a partially-filled page at the end of the
To-space first and tries to bring a parent and a child objects closer
to each other (as a DFS-based algorithm would) even if they reside
far apart (e.g., on different pages), which may cause more paging
activity during a GC. When a page is filled, it continues scanning
from an object pointed to by the scan pointer. Unfortunately, this
algorithms may need to rescan some objects more than once, which
may not be desirable. According to Wilson et al. [30], a true DFS
traversal is likely to be better than Moon’s approximate DFS.

Wilson et al. [30] presented a technique for improving page-level
locality of persistent runtime-related objects (i.e., the system heap
image which included a compiler and development tools) in a large
Lisp system with a generational copying GC. The focus of their
study was page locality of “old” live objects as opposed to the lo-
cality of objects created by executing programs. They noted that the
cache-level locality is different and is dominated by references to
young objects. Their technique is based on static-graph restructur-
ing and aims to group data structures according to their hierarchi-
cal organization. First, they group upper-level objects on the same
page and then apply the same grouping recursively to the objects
in the remaining subgraphs. Their technique also takes into con-
sideration poor locality effects of linear traversal of hash tables and
treats hash tables specially during a traversal. Their hierarchical
decomposition algorithm (based on Cheney’s [6] algorithm) is re-
lated to the one developed by Moon [20] but avoids the redundant
scanning. Their technique yields the most benefit with tree-like
data structures and when most objects are pointed to by only one
other object. Although this may be true for functional languages
like Lisp, it is not always the case for programs written in Java
where objects tend to cross-reference one another. They note that
the locality of data “outside the system image, created during pro-
gram execution” is an area for future work. Our paper addresses
exactly this problem.

Chilimbi et al. [9] presented a cache-conscious copying algo-
rithm which utilizes profiling information in the form of a TRG and
relies on Cheney’s [6] copying algorithm to accomplish its task.
First, they pick an edge in a TRG with the highest weight; then,
they perform a greedy DFS traversal of an entire TRG by following
edges with the highest affinity weights. During this traversal, they
copy objects associated with the selected affinity edges into the To-
space. Once all objects corresponding to nodes in the TRG have
been copied, Cheney’s algorithm is invoked to process all point-
ers into the From-space. Finally, all root objects that still reside in
the From-space are copied and processed by Cheney’s algorithm
(the last step is necessary as not all root objects may be part of the
TRG or reachable from the TRG). As noted in [9], the downside
of this scheme is that by copying objects in the TRG first, it will

retain unreachable garbage objects until the next major collection.
A major collection usually occurs after several minor collections;
this implies that some dead objects may remain in a system for an
extended period of time.

Appel and Bendiksen [2] show that a traversal of live objects
can be done in a “vector” mode on vector supercomputers. They
explain that non-copying and copying collectors can be expressed
as breadth-first searches in which a queue of objects to be scanned
(such as the one in Cheney’s scheme [6]) is processed in parallel.
This processing is accomplished with the help of vector instructions
performing scatter and gather operations.

Boehm [3] describes a prefetch-on-grey technique (to be used
during heap traversal) and shows the benefits of prefetching for re-
ducing GC pauses.

Our work Our algorithm can be viewed as a distant cousin of
Cheney’s algorithm [6], but unlike his algorithm, ours takes into
account the locality of objects during traversal and preserves this
locality should the objects have to be copied. Unlike Moon’s al-
gorithm [20], ours tries to avoid chasing pointers between objects
residing far apart from each other and traverses closely-residing ob-
jects first, and does not perform a DFS-like traversal the way it is
described in his paper. Unlike the scheme developed by Wilson
et al. [30], ours does not treat hash tables specially and applies a
locality-based traversal to all objects (not just those residing in the
system heap). In contrast to the scheme proposed by Chilimbi et
al. [9], ours does not rely on a TRG, does not retain garbage, and
can work with non-generational collectors. Also, our scheme, un-
like the one developed by Courts [10], is purely software-based and
does not require any special-purpose hardware. Our traversal has
good scalability properties for parallel GCs. Finally, our work is
the first attempt to exploit the synergy and interactions of alloca-
tion time object placement and a locality-conscious heap traversal.

6. CONCLUSIONS
We presented two simple yet effective software-based techniques

for improving and preserving data locality in pointer-intensive ap-
plications, such as those written in Java. Given current technolog-
ical trends and growing memory latencies, such techniques, which
let applications utilize hardware caches and TLBs more effectively,
will become increasingly important.

The first technique is a new object co-allocation and placement
technique based on the prolificacy of object types. Unlike existing
object placement techniques, ours does not rely on a generational
GC, application traces, sophisticated whole program compiler anal-
ysis (which is less practical in the context of Java due to dynamic
class loading), or programmer involvement. In contrast, it is fully
automatic and is simple to implement. This technique has the most
impact in a configuration with a non-copying GC that tends to have
poor locality to start with (compared to inherently better locality of
configurations using a copying GC). Applied to a set of Java pro-
grams, our technique yields up to a 21% performance improvement
(10% on average) in the Jikes RVM configured with a non-copying
mark-and-sweep collector.

The second technique is a locality-based GC traversal algorithm,
which attempts to do both (i) reduce GC time by taking into account
object locality, and (ii) when incorporated into a copying collector,
enhance the data locality of copied objects. Compared to other
known techniques, ours does not rely on special-purpose hardware,
does not retain garbage, can be applied to objects other than per-
sistent objects in the system image, and can be used with non-
generational collectors. For parallel collectors, our scheme will be
able to reduce the overhead due to synchronization and false shar-
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ing, thereby improving the scalability of multiprocessor GCs. Our
algorithm is simple and easy to implement; it can be a plug-in re-
placement for an existing graph traversal algorithm. Experimental
results are encouraging. We show that our traversal algorithm can
reduce GC times in Java programs by 20% (10% on average) and
improve application performance by up to 14% (6% on average) in
the Jikes RVM configured with a copying semi-space collector.

Notably, the synergy of both object co-allocation and locality-
based traversal techniques results in up to 22% (10% on average)
performance improvement in the Jikes RVM configured with a non-
copying mark-and-sweep collector. To the best of our knowledge,
it is the first reported result on the benefits of combining allocation
time object placement and a memory-friendly heap traversal.

Future work This work opens up a number of directions for fu-
ture research. Given that co-allocation of objects of prolific types
proved itself to be successful, the next logical step is to experiment
with co-allocation of objects of non-prolific types and measure an
additional performance impact. Similarly, it is worthwhile to ex-
plore co-allocation of frequently referenced virtual method tables,
accesses to which may be responsible for a non-trivial fraction of
data TLB misses [23]. Coarse grain information about “hot” fre-
quently accessed reference fields in objects (e.g., on a per-class ba-
sis) can be used to refine and tune co-allocation decisions.

We plan to investigate performance benefits of our graph traver-
sal algorithm for parallel applications from the domain of high-
performance computing, such as Java Grande applications [16, 24]
and measure the reduction in synchronization and false sharing
overheads during garbage collection. We also plan to experiment
with large applications using multi-megabyte heaps and asses the
impact of our technique on virtual memory performance.

We would like to study the impact of our techniques on other col-
lectors, such as copying generational and hybrid collectors (e.g., a
copying collector in the young generation and a mark-and-sweep
collector in the old generation). The bottom line performance im-
provements with these collectors may be lower than those with sim-
ple collectors. However, we still expect to see performance bene-
fits. For example, the non-copying old generation can benefit from
object co-allocation, which improves locality. In addition, genera-
tional schemes, whose goals are to reduce individual garbage col-
lection pauses, can further benefit from the locality-based traversal.

There are indications that generational collectors employed in
production JVMs can also benefit from the locality based traversal.
For example, it has been commonly accepted that commercially im-
portant server-side workloads, such as the SPECjAppServer2001
application [25], formerly ECperf [14], need to run with a large
young generation (0.7GB - 1.0GB) and large heap sizes (1.6GB -
3.5GB) to achieve high throughput [18]. Similarly, the SPECjbb2000
application [27], another important server workload, is often exe-
cuted with a very large nursery (1.8GB - 3.1GB) and a large heap
(3.8GB) to achieve the highest possible throughput [28, 29]. Clearly,
the young generation of this size cannot fit into any modern L2 or
even L3 caches. In addition, without large page support, the region
of memory occupied by the young generation cannot be covered
even by a large data TLB. Therefore, we believe that the locality
based traversal would be beneficial in such a setting.
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