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Abstract—Simulation of the musculoskeletal system has important applications in biomechanics, biomedical engineering, surgery

simulation, and computer graphics. The accuracy of the muscle, bone, and tendon geometry as well as the accuracy of muscle and

tendon dynamic deformation are of paramount importance in all these applications. We present a framework for extracting and

simulating high resolution musculoskeletal geometry from the segmented visible human data set. We simulate 30 contact/collision

coupled muscles in the upper limb and describe a computationally tractable implementation using an embedded mesh framework.

Muscle geometry is embedded in a nonmanifold, connectivity preserving simulation mesh molded out of a lower resolution BCC lattice

containing identical, well-shaped elements, leading to a relaxed time step restriction for stability and, thus, reduced computational cost.

The muscles are endowed with a transversely isotropic, quasi-incompressible constitutive model that incorporates muscle fiber fields

as well as passive and active components. The simulation takes advantage of a new robust finite element technique that handles both

degenerate and inverted tetrahedra.

Index Terms—Finite volume methods, constructive solid geometry, physically-based modeling.

�

1 INTRODUCTION

SIMULATION of anatomically realistic musculature and
flesh is critical for many disciplines, including biome-

chanics, biomedical engineering, and computer graphics,
where it is becoming an increasingly important component of
any virtual character. Animated characters must have skin
that deforms in a visually realistic manner. However, the
complexity of the interaction of muscles, tendons, fat, and
other soft tissueswith the enveloping skin andour familiarity
with this type ofmotionmake these animations difficult if not
impossible to create procedurally. In biomechanics and
biomedical engineering, accurate descriptions of muscle
geometry are needed to characterize muscle function.
Knowledge of such quantities asmuscle length, line of action,
and moment arm is essential for analyzing a muscle’s ability
to create forces, produce joint moments, and actuate motion
[32]. For example, many studies use knowledge of muscle
lengths [1] and moment arms [2] to analyze muscle function
for improving diagnosis and treatment of people with
movement disabilities.

In order to create realistic flesh deformation for

computer graphics characters, anatomy-based modeling

techniques of varying resolutions are typically applied.

These models are generally composed of an underlying
skeleton whose motion is prescribed kinematically (from
motion capture or traditional animation) and a model that
transmits motion of the underlying skeleton to tissue
deformation. The model for this interaction can have
varying levels of detail. For example, [25] maps joint
configurations to skin deformers that procedurally warp
the surface of the character. The work in [43] and [35] used
anatomically-based models of muscles, tendons, and fatty
tissue to deform an outer skin layer. The deformation of the
muscle and tendon primitives was based on muscle
characteristics such as incompressibility, but dynamic
effects were not included. An obvious improvement to this
approach is to include dynamic effects based on muscle
mechanics, as in [9], [22], [37], which incorporated
theoretical muscle dynamic models (e.g., the relation
between force, length, and velocity in muscle) using the
equations of solid mechanics to simulate muscle contrac-
tion. However, in [9], [37], computational complexity
restricted the application of their techniques to only a few
muscles at a time. Hirota et al. [22] simulated more tissues
in the knee, but the dynamics were simulated quasistati-
cally, ignoring the visually appealing effects of ballistic
motion and inertia.

Musculoskeletal simulations inbiomechanics typically fall
into two categories: simulations of simple models for many
muscles composing a large region of the body (e.g., the upper
limb or lower extremity) or highly detailed muscle models
that can only be simulated a fewmuscles at a time. Common
muscle models compute accurate muscle moment arms and
muscle/tendon lengths, but only resolve the average muscle
line of action [13], [18].However, it is difficult to represent the
path of a muscle with complex geometry because it requires
knowledge of how, as joints move, themuscle changes shape
and interacts with underlying muscles, bones, and other
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structures. These simplified models typically require the
construction of elaborate “wrapping” surfaces and “via
points” to resolve contact with other muscles and bones in
compensation for simplifying muscles as piecewise linear
bands. These simplified models of contact are difficult to
construct robustly as they require an a priori knowledge
of the contact environment that is not always available.
More detailed muscle models do not suffer from these
difficulties, but are burdened by computational complex-
ity. Typical examples are [44] and [19], which used modern
nonlinear solid mechanics to recreate the stress and
deformation, although only a few muscles with simplified
geometry were considered and the simulations were carried
out quasistatically to avoid the stringent time step restric-
tions characteristic of explicit schemes.

We present a framework that can be used to create
highly realistic virtual characters while still allowing for
biomechanically accurate simulation of large muscle
groups. We present a pipeline for creating musculoskeletal
models from the segmented visible human data set that
allows for the creation of highly detailed models of muscle,
tendon and bone. We demonstrate this by creating a
musculoskeletal model of the upper limb. Then, we embed
each high resolution muscle geometry in a nonmanifold,
uniform simulation mesh. The embedding mesh is com-
prised of identical, well-conditioned elements, thus sig-
nificantly relaxing the time step restriction, allowing us to
avoid quasistatic simulation. Since the elements in each
mesh are identical, we only need to store the material
coordinates of a single undeformed tetrahedron per muscle
as opposed to storing material information for every
element in the mesh. Contact is treated directly based on
muscle geometry as opposed to procedurally created, error-
prone wrapping surfaces. The inclusion of inertia forces
while performing the simulations in [37] illustrated the
importance of the tendonous connective tissue networks
that wrap muscle groups. In response to this phenomenon,
we incorporate the effects of these tissues in a contact/
collision algorithm that works between the high-resolution
geometry and the low-resolution simulation mesh.

2 RELATED WORK

Terzopoulos et al. [39], [38] simulated deformable materials,
including the effects of elasticity, viscoelasticity, plasticity,
and fracture. Although they mentioned that either finite
differences or the FEM could be used, they seemed to prefer
a finite difference discretization. Subsequently, [20] advo-
cated the FEM for simulating a human hand grasping a ball
and, since then, a number of authors have used the FEM to
simulate volumetric deformable materials.

Chen and Zelzer [9] used the FEM, brick elements, and
the constitutive model of [45] to simulate a few muscles,
including a human bicep. Due to computational limitations
at the time, very few elements were used in the simulation.
Wilhems and Van Gelder [43] built an entire model of a
monkey using deformed cylinders as muscle models. Their
muscles were not simulated, but, instead, deformed
passively as the result of joint motions. Scheepers et al.
[35] carried out similar work developing a number of
different muscle models that change shape based on the

positions of the joints. They emphasized that a plausible
tendon model was needed to produce the characteristic
bulging that results from muscle contraction. A recent trend
is to use the FEM to simulate muscle data from the visible
human data set, see, e.g., [46], [22], [14], [15].

In order to increase the computational efficiency, a
number of authors have been investigating adaptive
simulation. Debunne et al. [10] used a finite difference
method with an octree for adaptive resolution. This was
later improved in [12] using a weighted finite difference
integration technique (which they mistakenly referred to as
“finite volume”) to approximate the Laplacian and the
gradient of the divergence operators. Debunne et al. [11]
used FEM with a multiresolution hierarchy of tetrahedral
meshes and Grinspun et al. [21] refined basis functions
instead of elements.

3 MODEL CREATION

Geometrically accurate musculoskeletal models are desired
in graphics, biomechanics, and biomedical engineering.
However, the intricacy of the human anatomy makes it
difficult to procedurally create models of the musculature
and skeleton. As a consequence, researchers have turned to
volume data from actual human subjects as a source for
geometry. One such source is the visible human data set,
which consists of high-resolution images of millimeter-
spaced cross sections of an adult male [41]. We use a
segmented version of this data to create the muscle, tendon,
and skeleton geometry for our simulations. Using the
segmented anatomy information, we first create level set
representations of each tissue intended for simulation.
Unfortunately, the segmented data often contains imperfec-
tions or is unfit for creating a reasonable simulation mesh.
We repair each tissue using simple level set smoothing
techniques (see, e.g., [31]) and/or CSG operations. A
tetrahedralized volume is then produced for each muscle
(including tendon) and a triangulated surface is produced
for each bone (see Fig. 1). Both of these are created using the
implicit surface meshing framework of [27], [7].

Once the muscle, tendon, and bone geometries have been
created, we encode necessary additional information into
each muscle representation including material heterogene-
ity (tendon is stiffer than muscle and does not undergo
active contraction) as well as spatially varying muscle fiber
directions. Additionally, the kinematic structure of the
underlying skeleton must be created to drive skeletal
motion. Finally, boundary conditions are specified to attach
muscle and tendon to bone.

3.1 Level Set Extraction

Due to the large amount of noise and occasional inaccura-
cies present in the segmented data, creating our model
begins with examining and fixing such problems. We rely
on a dual explicit/implicit representation of the muscle
geometry to facilitate the repair process. We first create a
level set representation of each tissue we wish to simulate
using the visible human data. This data consists of gray-
scale images of 1.0 mm axial slices of the entire body with
individual tissues and bones assigned different values.
Information of this type naturally converts to Heaviside

318 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 11, NO. 3, MAY/JUNE 2005



descriptions of each individual tissue. The meshing algo-
rithm we use to create the explicit geometric representations
(tetrahedralized volume or triangulated surface) as well as
the level set procedures we use to smooth noisy data
require a signed distance function which we generate using
the fast marching method [40], [36].

After the level sets are generated, slice-by-slice contour
sculpting is used to repair problem regions. First, each slice
of a generated level set is viewed graphically to check for
and eliminate errors that would otherwise interfere with
either the anatomical accuracy of our model or the
algorithm for the subsequent meshing process. We then
use basic level set smoothing techniques such as motion by
mean curvature (see, e.g., [31]) to eliminate any further
noise automatically.

3.2 Meshing Bone and Muscle

Once the level sets are free of the inaccuracies and noise
present in the original data, we use them to construct a
triangulated surface representation of each bone and a
tetrahedralized volume representation of each muscle [27],
[7]. The tetrahedral mesh generation algorithm begins by
partitioning all of space with a body-centered cubic (BCC)
tetrahedral lattice and extracting the subset of the tetra-
hedra that intersect with the object volume defined by the
level set. Then, a red green mesh subdivision algorithm is
used to refine the initial mesh to an appropriate level of
detail, using both curvature and surface information as
refinement criteria. Extra care is taken with elements near
the boundary in order to obtain a well-conditioned

simulation mesh. Finally, using either a mass spring or
finite element model, the boundary nodes of the mesh are
compressed toward the zero isocontour of the signed
distance function. For the triangulated surfaces used for
the rigid bodies, this procedure is carried out with the
surface of the BCC lattice.

3.3 Tendon and Bone Attachment Designation

A major flaw in the segmented data set is that a large
amount of tendon tissue is absent. For example, the
segmented biceps data lacks any information about the
distal tendon and its proximal tendons are underresolved.
In order to add missing tendon tissue to each muscle mesh,
we make use of both explicit and implicit representations of
each muscle. While explicit representations allow for more
efficient and accurate graphical rendering of objects,
implicit representations are advantageous for Boolean
operations. Our method for regenerating missing tendon
tissue for a given muscle mesh makes use of simple CSG
methods on graphically positioned tendon primitives. After
a set of tendon primitives is positioned in relation to a
muscle mesh where its missing tendon tissue should be, the
union of the tendon primitives and the muscle mesh is
calculated and converted into a new level set (see Fig. 2).
This new level set then undergoes another iteration of the
editing, smoothing, and meshing processes described
above. Due to the efficiency of the level set creation and
tetrahedral meshing algorithms, the cost of this second
iteration is reasonable. The result of this step is an improved
tetrahedralized volume representation for each muscle that
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Fig. 2. Musculotendon mesh creation using CSG to repair errors in the bicepts tendons. Heterogeneous tendon tetrahedra are selected using the

Fig. 1. Musculoskeletal model created from the visible human data set. Tendons are shown in pink. There are about 10 million tetrahedra in the

approximately 30 muscles depicted.



includes both the muscle tissue and all of its associated

tendon tissue.
To improve the accuracy of our model during simula-

tion, it is necessary not only to include tendons in the

tetrahedronmeshes, but also to differentiate betweenmuscle

and tendon tissue as well as to define muscle-bone attach-

ment regions. Therefore, we define subregions within each

muscle mesh to represent muscle tissue, tendon tissue, and

bone attachment regions. Tetrahedra designated as muscle

are influenced by muscle activations, whereas those desig-

nated as tendon remain passive during simulation. Further-

more, tendon tissue is an order of magnitude stiffer than

muscle tissue. Tendon often extends into the belly of certain

muscles, forming an internal layer of passive tissue to which

the activemuscle fibers attach. This layer of connective tissue

is known as an aponeurosis and can play a large role inmany

muscle functions [33], [16]. We take extra care to model this

layer when selecting the regions of the muscle/tendon

geometry to designate as tendon. Additionally, we rigidly

attach tetrahedrons in the origin and insertion regions of each

musclemesh to their corresponding bones. Tetrahedrons that

are designated as attached to bone are used to set Dirichlet

boundary conditions during simulations.
Our method for defining the subregions described above

involves graphically selecting portions of the mesh to be

tendon or bone attachment tetrahedra, leaving the remain-

ing tetrahedra designated as muscle. In general, we use

closed triangulated surfaces to select groups of tetrahedra

making use of anatomy texts for anatomical accuracy.

However, a good initial guess can be calculated by simply

using a proximity threshold of the tetrahedra to a particular

bone. We correct this guess by growing regions initially

selected based on mesh connectivity as well as by graphical

selection. See Fig. 3.

3.4 B-Spline Fiber Representation

Muscle tissue fiber arrangements vary in complexity from

being relatively parallel and uniform to exhibiting several

distinct regions of fiber directions. We use B-spline solids to

assign fiber directions to individual tetrahedrons of our

muscle simulation meshes, querying the B-spline solid’s

local fiber direction at a spatial point corresponding to the

centroid of a tetrahedron as in [29].
B-spline solids have a volumetric domain and a compact

representation of control points, qijk, weighted by B-spline

basis functions BuðuÞ; BvðvÞ; BwðwÞ:

Fðu; v; wÞ ¼
X

i

X

j

X

k

Bu
i ðuÞB

v
jðvÞB

w
k ðwÞqijk;

whereF is a volumetric vector functionmapping thematerial
coordinates ðu; v; wÞ to their corresponding spatial coordi-
nates. Taking the partial derivatives of Fwith respect to one
of the three material coordinates @F=@u, @F=@v, @F=@w
produces an implicit fiber field defined in the material
coordinate direction. In [29], one of these directions always
coincidedwith the local tangent of themuscle fiber located at
the spatial position corresponding to the material coordi-
nates. The inverse problem of finding the material coordi-
nates for a given spatial point can be solved using numerical
root-finding techniques to create a fiber query function

XðxÞ ¼
@FðF�1ðxÞÞ=@m

@FðF�1ðxÞÞ=@m
�

�

�

�

;

with m ¼ fu; v; wg depending on the parameter chosen and
the fiber directions normalized. The functionX describes an
operation that first inversely maps the spatial points back to
their corresponding material coordinates ðu; v; wÞ and then
computes the normalized fiber direction at that point.

We created these B-spline solids based on anatomy texts,
however, working with anatomy experts as in [29] or using
fiber information from scanning technologies would im-
prove accuracy. Additionally, using a fiber primitive
template as was done in [3] would also improve accuracy
and simplify the process.

3.5 Skeletal Motion

Bones are naturally articulated by ligaments and other soft
tissues that surround them. However, we consider the
inverse problem: a kinematic skeleton that drives the
motion and contraction of the muscles and tendons
attached to it. The joint spaces used to create a realistic
kinematic structure involve intricate couplings of revolute
and prismatic components resulting from the geometric
complexity and redundancy of the muscles, tendons, and
ligaments that articulate the bones. Fortunately, there is
much existing literature dedicated to the joint structures in
the human body. We turned to the results of [17] to create
the kinematic structure of the upper limb. In [17], the visible
male was used to create a skeleton model of the right
shoulder, elbow, and wrist. Anatomical landmarks were
then used to identify joint centers and to set up local
coordinate frames for each of the bones. State of the art joint
models with 13 overall degrees of freedom were used to
describe the relative motion of the sternum, clavicle,
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Fig. 3. Bone attachment process for the subscapularis and scapula. Constrained tetrahedra are shown in yellow, tendon tetrahedra are shown in

pink. Bone attachment regions are determined by proximity and from anatomy texts.



scapula, humerus, radius, and ulna. Using the same virtual

anatomy, we were able to directly incorporate their results.
Additional work was done in [18] to create a muscle

model in the upper limb based on the Obstacle Set method

for computing musculo-tendon paths, see Fig. 4 (left). This

model for muscle length and moment arm computation

assumes constant cross-sectional stress and simplifies the

muscles to average lines of action. Basic geometric

primitives like cylinders and spheres are used as collision

objects to compute the paths of muscles as they collide with

bones and other tissues. With this infrastructure in place,

we use an inverse dynamics analysis with the results of [37]

to compute activations for the muscles in the right upper

limb. These techniques work with both motion capture and

traditional animation.

4 FINITE VOLUME METHOD

4.1 Force Computation

The Finite Volume Method provides a simple and

geometrically intuitive way of integrating the equations

of motion with an interpretation that rivals the simplicity

of mass-spring systems. However, unlike masses and

springs, an arbitrary constitutive model can be incorpo-

rated into the FVM.
In the deformed configuration, consider dividing up the

continuum into a number of discrete regions, each

surrounding a particular node. Fig. 5 depicts two nodes,

each surrounded by a region. Suppose that we wish to

determine the force on the node xi surrounded by the

shaded region �. Ignoring body forces for brevity, the force

can be calculated as

f i ¼
D

Dt

Z

�

�vdx ¼

I

@�

tdS ¼

I

@�

��ndS;

where � is the density, v is the velocity, and t is the surface

traction on @�. The last equality comes from the definition of

theCauchy stress��n ¼ t. Evaluationof theboundary integral

requires integrating over the two segments interior to each

incident triangle. Since �� is constant in each triangle and the

integral of the local unit normal over any closed region is

identically zero (from the divergence theorem), we have

I

@�1

��ndS þ

I

@�2

��ndS þ

I

@T1

��ndS þ

I

@T2

��ndS ¼ 0;

where @T1 and @T2 are depicted in Fig. 6 (left).
More importantly, we have

I

@�1

��ndS þ

I

@�2

��ndS ¼ �

I

@T1

��ndS �

I

@T2

��ndS;

indicating that the integral of ��n over @�1 and @�2 can be

replaced by the integral of ���n over @T1 and @T2. That is,

for each triangle, we can integrate over the portions of its

edges incident to xi instead of the two interior edges @�1

and @�2. Moreover, even if @�1 and @�2 are replaced by an

arbitrary path inside the triangle, we can replace the

integral over this region with the integral over @T1 and

@T2. We choose an arbitrary path inside the triangles that

connects the midpoints of the two edges incident on xi, as

shown in Fig. 6 (right). Then, the surface integrals are

simply equal to ���n1e1=2 and ���n2e2=2, where e1 and e2
are the edge lengths of the triangles. Thus, the force on node

xi is updated via

f iþ ¼ �
1

2
�� e1n1 þ e2n2ð Þ:
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Fig. 4. The leftmost figure shows the piecewise linear muscle models with wrapping surfaces to model muscle contact in inverse dynamics

calculations. Larger muscles have multiple contractile regions with individual activations and these must be embedded in the tetrahedron meshes for

simulation (rightmost figures).

Fig. 5. FVM integration regions. Fig. 6. Integration over a triangle.



In three spatial dimensions, given an arbitrary stress ��,
regardless of the method in which it was obtained, we
obtain the FVM force on the nodes in the following fashion:
Loop through each tetrahedron, interpreting ��� as the
outward pushing “ multidimensional force.” For each face,
multiply by the outward unit normal to calculate the
traction on that face. Then, multiply by the area to find the
force on that face and simply redistribute one-third of that
force to each of the incident nodes. Thus, each tetrahedron
will have three faces that contribute to the force on each of
its nodes, e.g., the force on node xi is updated via

f iþ ¼ �
1

3
�� a1n1 þ a2n2 þ a3n3ð Þ:

Note that the cross product of two edges is twice the area of
a face times the normal, so we can simply add one-sixth of
��� times the cross product to each of the three nodes.

4.2 Piola-Kirchhoff Stress

A deformable object is characterized by a time dependent
map � from undeformed material coordinates X to
deformed spatial coordinates x. We use a tetrahedron mesh
and assume that the deformation is piecewise linear, which
implies �ðXÞ ¼ FXþ b in each tetrahedron. For simplicity,
consider two spatial dimensions where each element is a
triangle. Fig. 7 depicts amapping� froma triangle inmaterial
coordinates to the resulting triangle in spatial coordinates.
We define edge vectors for each triangle as dm1

¼ X1 �X0,
dm2

¼ X2 �X0, ds1 ¼ x1 � x0, and ds2 ¼ x2 � x0. Note that
ds1 ¼ FX1 þ bð Þ � FX0 þ bð Þ ¼ Fdm1

and, likewise, ds2 ¼
Fdm2

so that F maps the edges of the triangle in material
coordinates to the edges of the triangle in spatial coordinates.
Thus, ifweconstruct2� 2matricesDmwith columnsdm1

and
dm2

, and Ds with columns ds1 and ds2 , then Ds ¼ FDm or
F ¼ DsD

�1

m . The matrix F is known as the deformation
gradient and conveys all the necessary information to
determine the material response to deformation since the
translational component of � does not induce any stress. In
three spatial dimensions,Dm andDs are 3� 3matrices with
columns equal to the edge vectors of the tetrahedra. Note that
D�1

m can be be precomputed and stored for efficiency.
Often, application of a constitutive model will result in a

second Piola-Kirchoff stress, S, which can be converted to a
Cauchy stress via �� ¼ J�1FSFT , where J ¼ detðFÞ. Using
this equality and the identity an ¼ JF�TAN, we can write

f iþ ¼ �
1

3
P A1N1 þA2N2 þA3N3ð Þ;

where P ¼ FS is the first Piola-Kirchhoff stress tensor, the
Ai are the areas of the undeformed tetrahedron faces
incident to Xi, and the Ni are the normals to those
undeformed faces.

Since the Ai and Ni do not change during the
computation, we can precompute and store these quantities.
Then, the force contribution to each node can be computed
as gi ¼ Pbi, where the bi are precomputed and the force on
each node is updated with f iþ ¼ gi. Moreover, we can save
nine multiplications by computing g0 ¼ �ðg1 þ g2 þ g3Þ
instead of g0 ¼ Pb0. We can compactly express the
computation of the other gi as G ¼ PBm, where G ¼
ðg1;g2;g3Þ and Bm ¼ ðb1;b2;b3Þ. Thus, given an arbitrary
stress S in a tetrahedron, the force contribution to all four
nodes can be computed with two matrix multiplications
and six additions for a total of 54 multiplications and
42 additions. A similar expression can be obtained for the
Cauchy stress, G ¼ ��Bs, where Bs is computed using
deformed (instead of undeformed) quantities. Unfortu-
nately, Bs cannot be precomputed since it depends on the
deformed configuration.

4.3 Comparison with FEM

Using constant strain tetrahedra, linear basis functions Ni,
etc., a Eulerian FEM derivation [5] leads to a force
contribution of

gi ¼

Z

tet

��rNi
Tdv:

A few straightforward calculations lead to

G ¼

Z

tet

��D�T
s dv ¼ ��D�T

s v ¼ ��B̂Bs

using our compact notation. Here, v is the volume of the
deformed tetrahedron and B̂Bs ¼ vD�T

s .
Now, consider DT

s Bs from the FVM formulation. Since
the rows of DT

s are edge vectors and the columns of Bs are
each the sum of three cross-products of edges divided by 6,
we obtain a number of terms that are triple products of
edges divided by 6. Each of these terms is equal to either 0
or �v and the final result is DT

s Bs ¼ vI. That is, Bs ¼
vD�T

s ¼ B̂Bs and, in this case, of constant strain tetrahedra,
linear basis functions, etc. (see, e.g., [30], [28]), FVM and
FEM are identical methods.

D�T
s is the cofactor matrix of DT

s divided by the
determinant and since DT

s is a matrix of edge vectors, its
determinant is a triple product equal to 6v. That is, B̂Bs ¼
vD�T

s computes the volume twice even though it cancels
out, resulting in a cofactor matrix times 1=6. Thus,Bs can be
computed with 27 multiplications and 18 additions, for a
total of 54 multiplications and 42 additions to compute the
force contributions using the Cauchy stress.

Muller et al. [28] point out that a typical FEM calculation,
such as in O’Brien and Hodgins [30], requires about
288 multiplications. Instead, they use QR-factorization, loop
unrolling, and the precomputation and storage of 45 num-
bers per tetrahedron to reduce the amount of calculation to
a level close to our 54 multiplications. However, in the
second Piola-Kirchhoff stress case that they consider, we
only need to store nine numbers per tetrahedron (as
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Fig. 7. Undeformed and deformed triangle edges.



opposed to 45). Moreover, in the Cauchy stress case that
they do not consider, it is not clear that their optimizations
could be applied without an expensive calculation to
transform back to a second Piola-Kirchhoff stress. On the
other hand, using the geometric intuition we gained from
FVM that led to the cancellation of v (that other authors
have not noted [30], [28]), we once again need only
54 multiplications and this time do not need to precompute
and store any extra information at all.

4.4 Invertible Finite Elements

Motivated by our geometric FVM formulation, Irving et al.
[23] introduced a strategy that allows one to robustly
treat inverted or degenerate tetrahedra via a new polar
SVD technique that expresses the deformation gradient in
a space that makes it a diagonal matrix. In this doubly
rotated space, one can readily extend any constitutive
model into the degenerate and inverted regime in a
fashion that results in smooth force behavior that opposes
degeneracy and inversion.

To extend constitutive models to degenerate elements,
[23] makes use of the newly proposed polar SVD of
F ¼ UF̂FVT , where U and V are rotation matrices and F̂F

is a diagonal matrix. The inverting elements framework is
applied in the following fashion: First, VT rotates the
tetrahedron from material coordinates into a coordinate
system where the deformation gradient is conveniently a
diagonal matrix. Similarly, UT rotates the tetrahedron from
spatial coordinates into this same space. Typically, re-
searchers work to find the polar decomposition that gives
the rotation relating material space to world space.
Removing this rotation produces a still-difficult-to-work-
with symmetric deformation gradient. In contrast, the polar
SVD gives two rotations, one for the material space
tetrahedron and one for the world space tetrahedron. After
applying these, the deformation gradient has a much more
convenient diagonal form. In practice, the polar SVD is used
to find the diagonal deformation gradient, to apply the
constitutive model and the FVM forces in diagonal space in
standard fashion, and then map the forces on the nodes
back to world space using U. The beauty of working in a
space that has a diagonal deformation gradient is that it is
trivial to extend constitutive models to work for degenerate
and inverted elements.

We display the robustness of the inverting FVM
algorithm which was developed from the geometric FVM
framework. An exceptionally soft torus is dropped to the
ground and crushed flat by its own weight. The Young’s
modulus is then substantially increased, causing it to jump
from the ground and into the air, demonstrating that
simulation can proceed despite large numbers of inverted
and degenerate elements. The results are shown in Fig. 8.

The simulation environment for large muscle groups can
be quite volatile. In regions like the shoulder girdle, muscles
are constantly in contact with other muscles, tendons, and
bones. In addition, the kinematic skeleton subjects them to
an extreme range of boundary conditions. An additional
complication comes from the errors in modeling the
complex structure of the glenohumeral and sternoclavicular
joints that determine the motion of the clavicle, scapula and
humerus relative to the sternum. Errors inherent in

modeling these joints can cause spurious configurations of
the musculature that can cause tetrahedra in the computa-
tional domains involved to invert. Perfectly recreating the
joint kinematics in the region might alleviate these issues,
however, it is prohibitively difficult. Rather, we employ the
inverting FVM/FEM framework. This algorithm allows
elements to arbitrarily invert and return to more reasonable
configurations later in the simulation, enabling simulations
to progress that would have otherwise ground to a halt.

5 CONSTITUTIVE MODEL FOR MUSCLE

Muscle tissue has a highly complex material behavior—it is
a nonlinear, incompressible, anisotropic, hyperelastic ma-
terial and we use a state-of-the-art constitutive model to
describe it with a strain energy of the following form:

W I1; I2; �; ao; �ð Þ ¼ F1 I1; I2ð Þ þ U Jð Þ þ F2 �; �ð Þ;

where I1 and I2 are deviatoric isotropic invariants of the
strain, � is a strain invariant associated with transverse
isotropy (it equals the deviatoric stretch along the fiber
direction), ao is the fiber direction, and � represents the
level of activation in the tissue. F1 is a Mooney-Rivlin
rubber-like model that represents the isotropic tissues in
muscle that embed the fasicles and fibers, UðJÞ is the term
associated with incompressibility, and F2 represents the
active and passive muscle fiber response. F2 must take into
account the muscle fiber direction ao, the deviatoric stretch
in the along-fiber direction �, the nonlinear stress-stretch
relationship in muscle, and the activation level. The tension
produced in a fiber is directed along the vector tangent to
the fiber direction. The relationship between the stress in
the muscle and the fiber stretch has been established using
single-fiber experiments and then normalized to represent
any muscle fiber [45]. This strain energy function is based
on [42] and is the same as that used in [37].

This model does have some notable limitations. Muscle
undergoes history-dependent changes in elasticity, such as
strain hardening, and has a force/velocity relationship in
addition to force/length dependence [45], [34]. Addition-
ally, we neglect any model for anisotropic shear behavior
relative to the fiber axis. Our model includes only what is
necessary to produce bulk length-based contraction along
the muscle fiber directions. Given the large number of
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Fig. 8. Deformable torus simulated with the inverting FVM. A torus with

near zero strength collapses into a puddle. When the strength is

increased, the torus recovers.



colliding and contacting muscles we wish to simulate, the
effects of these phenomena on the bulk muscle deformation
are subtle at best. However, when focusing on more specific
behavior in a more localized region of muscle, e.g.,
nonuniform contraction of the biceps, as in [33], it would
be useful to add the effects of these phenomena. Note that
our framework readily allows for a more sophisticated
constitutive model such as that proposed in [4].

The diagonalized FEM framework of [23] is most
naturally formulated in terms of a first Piola-Kirchoff stress.
A stress of this type corresponding to the above constitutive
model has the form

P ¼ w12F� w2F
3 þ ðp� pfÞF

�1 þ 4JccT ðFfmÞfm
T

Jc ¼ detðFÞ�
1

3; Jcc ¼ J2

c ; I1 ¼ JccC; � ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

fm
TCfm

q

w1 ¼ 4Jccmatc1; w2 ¼ 4J2

ccmatc2; w12 ¼ w1 þ I1W2

p ¼ KlogðJÞ; pf ¼
1

3
ðw12TrðCÞ � w2TrðC

2Þ þ T�2Þ:

Here, F is the deformation gradient,C ¼ FTF is the Cauchy
strain, and fm is the local fiber direction (in material
coordinates). matc1 and matc2 are Mooney-Rivlin material
parameters and K is the bulk modulus. T is the tension in
the fiber direction from the force length curve (see [45]).
Typical values for these parameters are:

matc1 ¼ 30000Pa ðmuscleÞ;matc1 ¼ 60000Pa ðtendonÞ;

matc2 ¼ 10000Pa ðmuscle and tendonÞ;

K ¼ 60000Pa ðmuscleÞ; K ¼ 80000Pa ðtendonÞ;

T ¼ 80000Pa:

This formula holds throughout both the muscle and tendon
tetrahedra, however, the tendons are passive (no active
stress). Note that tendon is considerably stiffer than muscle.
Modeling this inhomogeneity is essential for generating
muscle bulging during contraction (as well as for accurately
computing the musculotendon force generating capacity).
Also, large muscles, like the deltoid, trapezius, triceps, and
latissimus dorsi, have multiple regions of activation. That is,
muscle contraction and activation is nonuniform in the
muscle. In general, the effects of varying activation within a
muscle can be localized to a few contractile units in each
muscle. For example, each head of the biceps and triceps
receive individual activations (see Fig. 4).

Fascia tissues wrap individual muscles and muscle
groups and are made up of fibrous material with a stiffness
similar to that of tendon. These elastic sheaths hold the
muscles together and, as a result, keep the muscle near the
underlying skeleton during motion. The stiffness of these
connective tissues must be incorporated into the muscle
constitutive model. One approach is to make each muscle
inhomogeneously stiff near the muscle boundary (i.e.,
similar material to tendon). However, we simply add an
additional resistance to elongation in the constitutive model
to encourage resistance to stretching on the boundary of the
muscles. This is done by adding in an additional linearly
elastic stress into the diagonalized form of the constitutive
model during elongation. The problematic effects of large
rotations associated with linear elasticity are naturally
removed in the diagonalized setting, see [23]. Elongation

is identified when the diagonalized deformation gradient
values are greater than 1.

6 EMBEDDING FRAMEWORK

The human musculature is geometrically complex and
creating a visually realistic model requires many degrees of
freedom. Our upper limb model has over 30 muscles made
up of over 10 million tetrahedra. The simulation of such a
model is hindered by both its overall size and the time step
restriction imposed by the smallest tetrahedron in the mesh.
To reduce the computational cost, our system uses a
dynamic Free Form Deformation embedding scheme. The
simulation mesh is created by overlaying a BCC lattice on
the high resolution geometry (as in [27], [7]). For each
particle on the surface of the initial high resolution
tetrahedralized volume, we compute its barycentric coordi-
nates in the low resolution tetrahedron that contains it and
use these to update the high resolution geometry during
subsequent simulation.

Our BCC embedding approach gives rise to several
substantial benefits. The BCC grid size we used led to a
tenfold reduction in the size of the simulation mesh, from
about 10 million to about one million tetrahedra. Most
importantly, the time step restriction for stability was
relaxed by a factor of 25 owing to the regular structure of
the BCC tetrahedra and the elimination of poorly shaped
elements. These combined facts enabled the full finite
element simulation of the whole upper limb musculature at
rates of 4 minutes per frame on a single CPU Xeon 3.06Ghz
workstation. Substantial RAM savings are also achieved
since all simulation tetrahedra are identical up to a rigid
body transform, eliminating the need to store the rest state
matrix on an individual tetrahedron basis. Only one rest
state tetrahedron is stored per muscle.

The embedding process can potentially change the
topology of the original high resolution geometry since
the original connectivity of the input geometry is projected
to the connectivity of the embedding coarse tetrahedra.
Cases where parts of the high resolution geometry attempt
to separate but cannot since they are embedded in the same
coarse tetrahedron (see Fig. 9) are particularly frequent in
our musculoskeletal simulation, for example, in the con-
cavity between the two heads of the bicep. To some extent,
this change of topology is inevitable as we are reducing the
number of degrees of freedom. Nevertheless, we propose
limiting the undesirable topology changes by relaxing some
constraints on the embedding mesh. In particular, we allow
it to be nonmanifold and to possess multiple copies of
nodes corresponding to the same location in space in a
fashion similar to the “virtual node algorithm” of [26].

Consider a coverage of our high resolution geometry by
a manifold tetrahedral mesh, as illustrated in Fig. 9a. We
note that the fragment of the high-resolution geometry that
is contained within each tetrahedron might consist of
several disjoint connected components, as is the case in
the two rightmost elements of our example. In order to
avoid connecting such disjoint material fragments by
embedding them in the same tetrahedral element, we create
a copy of the original tetrahedron for each one of them, as
shown in Fig. 9 (middle). All tetrahedra thus created are
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completely disjoint in the sense that we assign a different

copy of each vertex of the original mesh to each duplicate

tetrahedron that contains it. We subsequently assign each

connected material fragment within an original tetrahedron

to a different one of its newly created copies.
In the second phase of our algorithm, we rebuild the

connectivity of our mesh by collapsing vertices on adjacent

tetrahedra that should correspond to the same degree of

freedom. In particular, when two of the newly created

tetrahedra exhibit material continuation somewhere across

their common face, their corresponding vertices are

identified. Such pairs are indicated with double arrows in

Fig. 9b. For each corresponding pair of vertices on the

common boundary of two materially contiguous tetrahedra,

we collapse the two vertices onto a single one using a

union-find data structure for the vertex indices. The

resulting tetrahedron mesh is nonmanifold in general, as

illustrated in Fig. 9c.
After our mesh generation process we project the fiber

directions, inhomogeneities (tendonmaterial), andboundary

conditions (origins and insertions) from the high resolution

mesh to the coarse simulationmesh. Using a BCC covering of

space as our generator mesh provides for an efficient

implementation as most point location or tetrahedron

intersection queries can be performed in constant and linear

time, respectively. We note that, in our current implementa-

tion, the mesh generation is a static process performed prior

to the beginning of the simulation, although the described

technique extends to a dynamic context if the topology of our

input geometry is changing in time.

7 FASCIA AND CONNECTIVE TISSUES

Skeletal muscles are contained in a network of connective

tissue, much of which is fascia, that keeps them in tight

contact during motion. Without modeling these constraints,

dynamic models will have difficulties with ballistic motion

and exhibit spurious separation, as shown in Fig. 10. Our

fascia model enforces a state of frictionless contact between

muscles. It is similar in spirit to [24], [8], [6], which all used

“sticky” regions in one sense or another to create (possibly

temporary) bonds between geometry in close proximity.
The fascia framework works in the context of the

embedding techniques presented in Section 6. First, we

find all intersections between the high resolution muscle

surface and the edges of the BCC simulation mesh and label

these embedded nodes. The primitives in our fascia model

are line segments (links) that connect each embedded node

to its closest point (anchor) on the high resolution surface of

each nearby muscle. Links between each embedded node

and all its neighboring muscles within a certain distance are

initially created and their anchors are maintained as the

closest points of the corresponding muscle surfaces during

simulation. Each time step, the link corresponding to the

closest anchor is selected as the active one and dictates the

contact response.
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Fig. 9. (a) Illustration of a topology-offending embedding scenario. (b) Individual connected components of material within the same element are
assigned to distinct copies of the original. Vertices on common boundaries of elements that exhibit material continuity (indicated by arrows) are
considered equivalent. (c) Collapsing equivalent vertices leads to the final nonmanifold simulation mesh.

Fig. 10. (a) Muscle simulations without fascia and (b) with fascia show the effects of inertia forces in the absence of connective tissue. Note, for

example, the spurious separation of muscles in the forearm (a).



Every time step, the fascia links are used to adjust the
BCC mesh. Each embedded node has a position xemb and
velocity vemb which can be compared to the position xa and
velocity va of its anchor. Ideally, we need the positions and
velocities along the normal direction to the surface at the
anchor position to match closely. Thus, we compute a new
desired position and velocity for the embedded point:

~x0x0
emb ¼ ~xxemb þ �½ð~xxa �~xxembÞ � ~NN�~NN

~v0v0
emb ¼ ~vvemb þ �½ð~vva �~vvembÞ � ~NN�~NN:

The embedded particle and the anchor should optimally
meet halfway with � ¼ � ¼ :5, although we cannot move
either of these points since they are both enslaved by their
embedding BCC lattices. Thus, we first compute the desired
position and velocity changes for all embedded particles
and map these to the BCC mesh in a second step. The
anchor end of each link does not inflict any correction on
the neighboring muscle as that effect is accomplished by the
links originating on that particular muscle. We found values
of � ¼ 0:1 and � ¼ 0:5 to work well in practice and
attenuate them as the length of a link surpasses a given
threshold.

In the second step, we map the desired state of the
embedded nodes to the BCC mesh. For each node on the
BCC mesh, we look through all its edges to find embedded
nodes and change the position and velocity of this BCC
node using the average desired change recorded by the
embedded nodes. See [26] for more details.

Fig. 10 shows a comparison of a simulation with and
without fascia. The effects of the connective tissues and the
problems that inertia forces can cause in their absence are
evident in the muscles of the forearm that wobble around,
unnaturally separating from the bone.

8 SIMULATING SKELETAL MUSCLE

We demonstrate the strength of our pipeline with a series of
skeletal animations of the upper limb (see Fig. 11). The
bones in the shoulder and the arm are animated through a
series of key-frames and 30 muscles are simulated with
FVM. Inverse dynamics were used with the results of [37] to
compute muscle activations at each one of the key-frame
poses in the animation. The activations obtained were
interpolated at key-frames (just as for the bone positions)
throughout the simulation.

9 CONCLUSIONS AND FUTURE WORK

Unfortunately, computational complexity and limitations in
existing algorithms limit the scope and accuracy of
musculoskeletal models in both graphics and biomechanics.
In computer graphics, the emphasis is on the visual nature
of the musculature and, particularly, the effect that it has on
the skin. As a result, models in the field have focused
mainly on generating plausible muscle geometry at the
expense of other quantities. However, muscle geometry,
fasicle length, stress, force generating properties, etc., are all
coupled together. As technology and algorithms improve
and demands for realism are met in both graphics and
biomechanics, the models used for examining the respective
quantities will become more and more similar. Our frame-
work is a step in this direction.

The presented framework allows for the creation of
highly detailed geometry as well as for realistic anisotropies
and heterogeneities. Additionally, realistic dynamic defor-
mations are produced from a transversely isotropic muscle
constitutive model. The computational burden of simulat-
ing large muscle groups is ameliorated by our embedding
framework while preserving high resolution geometry for
rendering. The volatile simulation environment, inherent in
the complex coupling of intricately articulated rigid bodies
and dozens of contacting deformable objects, is handled by
the extremely robust diagonalized FEM. In addition, our
fascia model both robustly recreates the effects of the
connective tissues that surround the muscles as well as
efficiently resolving the unique contact environment in-
herent in the musculoskeletal system.

However, many aspects of the pipeline could be
improved. More realistic muscle constitutive models that
include the force/velocity relationship, time-dependent
elasticity changes noted in [34], as well as anisotropic shear
behavior relative to the fiber axis as in [4], [3] can be used
when examining more specific phenomena on a smaller
scale such as nonuniform contraction of the biceps.

While the geometry of the musculoskeletal system
extracted from the segmented visible human is very well
resolved, the tendon/aponeurosis and fiber information
could be improved with the aid of scanning technologies or
anatomy experts. In the future, subject-specific models
would be desirable using segmented data from MRI and
CT. However, the resolution of the visible human data set is
still greater than those that are attainable with scanning
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Fig. 11. Simulation of muscles in the upper limb.



technologies. Thus, given the additional difficulty of

segmenting the scanned data, a reasonable alternative

approach is to use the model created from the visible

human data set and to deform (or morph) it to match a

specific subject or body type using anatomical landmarks

similar to [15].
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