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ABSTRACT: Selective conversion of biomass-derived substrates in
heterogeneous catalysis can be achieved through the functionalization of
nanoparticles with surface modifiers (ligands). However, full under-
standing of reaction mechanisms at the atomic level of detail is still
limited. Herein we rely on computational approaches to address this
challenge. We employ Density Functional Theory to understand the
role of phosphine-decorated palladium nanoparticles in the decarbon-
ylation of fatty acids to produce linear α-olefins. While self-assembled
monolayers of monodentate ligands completely passivate the metal
surface, the flexibility of bidentate counterparts allows the creation of
transient cavities that: (i) enhance selectivity and (ii) prevent catalyst
deactivation. Such detailed insight provided by theory can pave the way
for a rational design of metal−ligand interfaces in biomass upgrading.
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■ INTRODUCTION

Industrial processes are mainly dominated by heterogeneous
catalysis. Nevertheless, the excellent activity and recyclability of
these systems are sometimes tainted by poor selectivity. As a
result, current efforts are heavily focused on the chemistry at
the interface between metal nanoparticles and surface
modifiers.1,2 The resulting ligand-decorated systems combine
the advantages of heterogeneous systems with the selectivity of
homogeneous counterparts.3 The most successful example is
the selective semihydrogenation of alkynes using the Lindlar
catalyst, consisting of Pd/CaCO3, lead, and quinoline.4 More
recently, the functionalization of metals with NanoSelect is
producing highly active and selective nanostructured catalysts
for a wide variety of applications.5 Selective modifiers6,7 can
potentially: (i) block the catalytic site on the surface area thus
controlling the catalytic ensemble, (ii) alter the properties of
the metal−ligand boundaries, such as acidity,8 and (iii) impose
steric and electronic effects9−11 on reactants and products.
Due to their potential recyclability and selectivity, ligand-

decorated nanoparticles find a straightforward application on
biomass upgrading,12,13 where selective deoxygenation is the key
step.14−16 With readily available sources of vegetable oils and
animal fats, we focus on the decarbonylation of fatty acids to
yield linear α-olefins (LAOs),17 which are valuable materials in
a myriad of applications, such as comonomers in polymer-
izations and precursors of surfactants and lubricants, among
others.18 LAOs are usually prepared via ethylene oligomeriza-
tion19,20 or Fischer−Tropsch processes,21 but the use of fatty
acids allows direct access to odd numbered derivatives, which
would be more expensive and less trivial to prepare otherwise.

One big challenge of such a process is selectivity, in
particular, precluding isomerization of the terminal alkene to
the thermodynamically favored internal one (Scheme 1). Most

homogeneously catalyzed systems are based on Pd−phosphine
complexes and proceed through ester or anhydride inter-
mediates.22−30 In some cases, isomerization could be prevented
by fine-tuning of ligands,24,29,30 but CO inhibition might also
become an issue.31

Despite this early success, homogeneous catalysts lack
recyclability, so the design of heterogeneous counterparts
becomes quite appealing for industrial applications. Initial
studies employed H2 as coreactant, but that leads to product
hydrogenation.32−36 Less attention has been drawn to H2-free
heterogeneous deoxygenation systems,16 where anhydrides
have also been invoked as key intermediates.37 Recent reports
on decarbonylation processes are promising but still present
low selectivity toward LAOs.38−40
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Scheme 1. Decarbonylation of Fatty Acids to Olefins via
Ester or Anhydride Intermediates
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Inspired by homogeneous systems, Chatterjee and Jensen41

designed Pd/C catalysts functionalized with phosphine ligands.
Interestingly, while the clean and monodentate−phosphine
catalysts were inactive, the addition of bidentate phosphines
completely changed the picture. At 250 °C, they obtained
reasonable yields, LAO selectivities up to 98%, and no reactivity
coming from leached species. Indeed, pioneer works by
Fujihara and co-workers already reported Pd nanoparticles
functionalized with bidentate phosphines for catalytic applica-
tions.42,43 In light on these experiments, we designed a
computational study to address the Pd−phosphine interface
at atomic level of detail to provide insight on activity and
selectivity. Mechanistic studies have been reported for
molecular catalysts,30,44,45 and Heyden and co-workers have
extensively studied the decarbonylation of propanoic acid46−49

and methyl propionate50,51 over Pd(111), Pd(211),52,53 and
Ru(0001).54 Some reports on adsorption of phosphines on Pd
surfaces55 and nanoclusters56 exist, but little is known on how
the reaction mechanism proceeds at such interfaces. To the best
of our knowledge, this is the first computational approach of
phosphine-decorated metal surfaces that fully addresses
reactivity features at different coverages. Just a few reactivity
studies can be found for P-functionalized Au-based sys-
tems.57−59

Herein we simulate the decarbonylation of fatty acid
derivatives to olefins on clean and phosphine-decorated Pd
surfaces to unravel the role of ligands on activity and selectivity
(Figure 1). We use pentanoic acid as model substrate to mimic

long aliphatic chains. The product, 1-butene, is large enough to
study the isomerization side reaction. As for ligands, we use
DPEPhosMe based on the best performing bidentate DPEPhos,
and PPhMe2 for the inactive monodentate PPh3 (Figure 1), as
experimentally reported.41

■ COMPUTATIONAL DETAILS

All calculations were performed at the Density Functional
Theory (DFT) level of theory using the Vienna Ab-initio
Simulation Package (VASP).60,61 The PBE functional62 was
employed together with Grimme’s D2 dispersion scheme63 and
our modified parameters for transition metals.64 Core electrons
were described by projector augmented wave (PAW)
pseudopotentials65 and valence electrons were represented by
plane waves with a kinetic energy cutoff of 450 eV, as in
previous related studies.8,46,50,59 Large Pd nanoparticles (∼20
nm diameter)41 were described using Pd(111) slabs. We
prepared p(4 × 4), p(5 × 5), and p(6 × 6) models to
accommodate reactants and ligands. We used four-layer thick
slabs, where the two upper layers were relaxed, and the two
bottom ones were fixed to mimic the bulk. All reactants and

ligands were fully relaxed during geometry optimizations. The
Brillouin zone for the p(4 × 4), p(5 × 5), and p(6 × 6) slabs
was sampled by a 3 × 3 × 1, 2 × 2 × 1, and 2 × 2 × 1 k-points
mesh, respectively, generated through the Monkhorst−Pack
method.66 Density of states (DOS) were obtained with a
denser 5 × 5 × 1 k-points mesh. To avoid spurious interactions
between the periodic images, a vacuum region between the
slabs of 15 Å and dipole correction along z were included.67

Transition states (TSs) were located with the climbing image
nudged elastic band68 and improved dimer69 methods. The
assessment of the minima and transition states was performed
by diagonalizing the numerical Hessian matrix obtained by
±0.015 Å displacements (metal and ligand atoms were fixed
during frequency calculations). Normal modes associated with
TS imaginary frequencies correspond with the chemical step
described. Vibrational partition functions were computed for
selected species using numerical frequencies (Γ-point) where
all nonmetal atoms were relaxed (at 523 K). All frequencies
below 200 cm−1 were replaced by 200 cm−1.70 All inputs and
final structures can be found in the ioChem-BD repository.71,72

3D representations were prepared with the QuteMol visual-
ization package.73

■ RESULTS AND DISCUSSION

We first present mechanistic studies using clean Pd(111)
surfaces at low reactant coverage, A, and high reactant coverage,
B. We then characterize phosphine-decorated Pd(111) surfaces,
C, and evaluate them as potential active species during the
catalytic cycle.

Reactivity on Clean Pd(111). Initially, we assume the in
situ formation of acetic pentanoic anhydride37 through the
reaction of pentanoic acid with acetic anhydride. Similar to
previous literature,46 we compute the decarbonylation mech-
anism of one acetic pentanoic anhydride molecule on a clean
Pd(111) surface A that minimizes close contacts between
neighbors (i.e., a low coverage situation). The energy profile is
presented in Figure 2. Initial adsorption of the anhydride is
exothermic by 0.81 eV,74,75 where the aliphatic chain is
interacting with the surface. The C−O bond breaking process
has a barrier of 0.47 eV via TS-A1 and gives rise to the acyl
intermediate A2 and adsorbed acetate (−1.49 eV). The

Figure 1. Heterogeneous Pd-catalyzed decarbonylation reaction under
study.

Figure 2. Decarbonylation (solid black line) and isomerization
(dashed black line) mechanisms on clean Pd(111) A surfaces.
Asterisks represent adsorbed species.
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subsequent C−C bond breaking entails 1.03 eV via TS-A2 and
produces the alkyl intermediate A3 and CO (−2.23 eV). An
alternative mechanism involving α-carbon dehydrogenation46

can be consulted in Figure S1 of the Supporting Information
(SI). Then, A3 quickly undergoes dehydrogenation via TS-A3
with a barrier of 0.41 eV. Alkene release from A4 to A5 takes
1.03 eV, but terminal (A4) to internal (A7) alkene isomer-
ization appears as a competitive process with a barrier of 0.62
eV via TS-A4.
The energy profile estimates an overall energy barrier of 1.03

eV and predicts a rather facile alkene isomerization involving
0.62 eV. At 250 °C, the reaction temperature, such barriers
should be easy to overcome. However, catalytic runs using
clean Pd/C (i.e., in the absence of phosphine ligands) report no
reaction with recovery of starting materials.41

According to experiments, Pd is added in 1% mol and the
resulting nanoparticles are very large (∼20 nm diameter).
Therefore, we would expect a large ratio between reactants and
accessible (first surface layer) Pd atoms; in other words, a high
coverage scenario. We then assume that acid molecules first
cover the Pd surface, as acetic anhydride is added in a later
step.41 We design a p(4 × 4) Pd(111) slab B (Figure 3) with

four pentanoic acid molecules B1 to model a self-assembled
monolayer (SAM). The adsorption of reactants is highly
exothermic at −2.99 eV.76 The adsorption energy per acid
molecule, −0.75 eV, is similar to that of a single anhydride
molecule in A1, −0.81 eV. The acidic hydrogen of the OH
group dissociates to form B2 at −3.10 eV. These values suggest
that the initial full coverage of Pd by acid molecules might
prevent further reaction with the acetic anhydride coreactant.
Moreover, the C−O bond breaking step to access the key acyl
intermediate, B3, is significantly endothermic, demanding 2.46
eV above B2. According to these results, the excess of acid
prevents the decarbonylation step from a thermodynamic point
of view, thus no alkene product should be observed.
Phosphine Self-Assembled Monolayers on Pd(111).

Due to the large excess of reactant and ligand molecules
compared to accessible metal atoms, we would expect a full
coverage of Pd surfaces. The characterization of SAMs is quite
important as such high coverage situations decide the fate of
the active sites of the catalyst.77 As seen below, the adsorption
of phosphines is preferred over acid molecules, thus we design a
model to reproduce phosphine SAMs over Pd.
We first calculate the interaction of different phosphines

(PMe3, PPhMe2, PPh3, and DPEPhosMe) with p(5 × 5)
Pd(111) to evaluate the contributions of ligands to the
adsorption energy. PMe3 binds to the surface through the P
atom with an energy of −2.33 eV, and PPhMe2 does the same
through the P atom and the phenyl group with an energy of
−3.54 eV. These data indicate that the major contribution is

coming from the formation of Pd···P interactions, although
phenyl adsorption is also significant. Interestingly, differences in
hydrogenation activity for aryl- and alkyl-derived phosphines
have been noted in Ru-decorated nanoparticles.78 The
adsorption energy of PPh3 (−3.73 eV) is quite similar to that
of PPhMe2 (−3.54 eV). Lastly, the bidentate DPEPhos

Me binds
to the surface through two P atoms and one phenyl group, and
thus an expected larger adsorption energy of −4.77 eV is found.
To properly design a model for a high coverage scenario, we

now adsorb up to two DPEPhosMe ligands on different Pd(111)
slab sizes. Adsorption of one ligand on p(4 × 4), p(5 × 5), and
p(6 × 6) takes −3.56, −4.77, and −4.83 eV, respectively.
Looking at adsorption energies per area, we obtain −0.033,
−0.029, and −0.020 eV Å−2, respectively. We then add an
additional ligand molecule to these slab models. While the
second phosphine does not fit on p(4 × 4), it does on p(5 × 5)
and p(6 × 6) with overall adsorption energies of −8.80 and
−9.30 eV, respectively, and overall adsorption energies per area
of −0.053 and −0.039 eV Å−2, respectively. The adsorption
energies of two bidentate phosphines are less than twice that of
one, so we expect no cooperative effect between ligands.
According to energetics, the p(5 × 5) slab with two phosphine
ligands arises as the most stable structure at high coverage, and
we therefore use this model for our following studies.
Figure 4 depicts the Pd(111) surface with two DPEPhosMe

ligands, namely C. Interestingly, these phosphines completely

cover the metal surface and block access to reactants molecules.
At this stage, we propose a partial decoordination79,80 of one of
the phosphine arms to create a cavity, or binding pocket, on the
surface. The proposed structure, C1 in Figure 4, was found at
1.24 eV81 above C and should be accessible under experimental
conditions (250 °C).82 Indeed, the hemilabile behavior of these
ligands have been reported in homogeneous systems.30,83 In the
gas phase, the relaxed conformation of the phosphine coming
from C1 is only 0.20 eV less stable than that coming from C. It
is clear than the energy toll essentially emerges from the loss of
Pd···P and Pd···C interactions after partial decoordination.
Additionally, starting from the DPEPhosMe model, we included
two Ph groups in the P atom that detaches from the surface to
better mimic the complete DPEPhos ligand. The energy
difference between these species, D and D1, is now 0.85 eV.

Figure 3. Adsorption energies (eV) of all four molecules for the high
coverage model B. (Pd = light blue, O = red, C = gray, H = white).

Figure 4. Side (a) and top (b) views of fully coordinated C (left) and
partially coordinated C1 (right) surfaces with DPEPhosMe. (Accessible
Pd = light blue, P = orange, O = red, C = gray, H = white).
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This value is somehow lower than that of DPEPhosMe species C
and C1 (1.24 eV). This result might be related to: (i) the
slightly more electron-donor character of alkyl phosphine (C)
compared to aryl ones (D) and (ii) the liberation of bulkier Ph
groups (cf. Me).
An interesting feature of experiments is that systems

containing monodentate phosphines, such as PPh3, do not
perform well.41 Thus, we also modeled a SAM of PPhMe2 as
model for PPh3. Using the same p(5 × 5) as before, we adsorb
three ligands to obtain a fully covered surface, E. In contrast to
C, which only requires partial decoordination to expose surface
atoms in C1 via 1.24 eV, E requests the full desorption of one
PPhMe2 ligand via 2.61 eV to form E1. Even though the latter
process should be entropically favored, it is still quite
demanding compared to that involving the bidentate ligand.
To sum up, the lack of flexibility of monodentate phosphines

explains the poor catalytic performance of these systems, since
the metal surface is essentially poisoned by these ligands.
However, the chelating features of bidentate phosphines allow
the creation of transient cavities at the metal−ligand interface.
In the next section, we will evaluate whether such surface sites,
as those found in C1, are active and kinetically relevant during
the catalytic cycle.
Reactivity on Phosphine-Decorated Pd(111). Similarly

to clean Pd(111) (Figure 2), we compute the decarbonylation
mechanism of acetic pentanoic anhydride to 1-butene on a
phosphine-decorated Pd(111) surface. Since the adsorption
energy of the phosphine is significantly larger than that of the
acid, the metal surface is first covered by phosphine ligands,
allowing fatty acids to react with acetic anhydride to form
mixed anhydride intermediates.37 The energy profile is shown
in Figure 5, where we consider the previously discussed C1

structure as starting point. Adsorption of pentanoic anhydride
forms C2 at −0.62 eV. Due to the constrained pocket, the
aliphatic chain does not interact with the metal surface but the
organic groups from the nearby ligands. The C−O bond
breaking of the anhydride (and concomitant formation of
acetate) via TS-C2 involves 0.85 eV. The resulting acyl
intermediate C3 goes through a C−C bond breaking process
via TS-C3 (Figure 6 left) with a barrier of 1.19 eV84 to produce

C4 and CO.85 The alkyl intermediate should then undergo
dehydrogenation to form the corresponding olefin product.
However, hydrogen transfer from the alkyl group to the metal
surface appears to be challenging86 as most of Pd atoms are
already interacting with adsorbed species (phosphines, acetate,
or CO). Instead, the acetate bound to the surface acts as an
internal base44 and deprotonates the alkyl group via TS-C4
(Figure 6 right) with a barrier of 0.95 eV. Quite remarkably, the
resulting alkene product C5 does not bind in a parallel fashion
as in the clean surface (A4 and A7, Figure 2). Due to the steric
hindrance imposed by the phosphine cavity, the π-system is
found perpendicular to the surface, and the alkene desorption
via C6 becomes essentially barrierless (0.22 eV above C5).
Alkene isomerization would entail the transient formation of a
secondary alkyl intermediate (analogue to A6). Such structure,
C9, is found at 1.04 eV above C5, which further rules out the
isomerization process.

Discussion. We find three major differences between the
energy profiles of clean A (Figure 2) and phosphine-decorated
C (Figure 5) systems. First, the C−C bond scission via TS-A2
demands 1.03 eV, while the same process via TS-C3 takes 1.19
eV. The larger energy barrier for system C is in line with the
presence of ligands on the surface; in other words, the metal
atoms on the surface are more coordinated and, therefore, less
reactive. This is nicely reflected on the higher Pd d-band
center87,88 of clean A, −1.77 eV, compared to that of
phosphine-decorated C1, −1.84 eV. In the same line, the
dehydrogenation via TS-A3 (0.41 eV) is significantly less
demanding than the acetate-assisted hydrogen transfer via TS-
C4 (0.95 eV). This is yet another feature of the highly
functionalized surface, where little room is left for hydrogen
adsorption on the decorated surface. Finally, we observe an
opposite trend for the alkene desorption step. Clean A releases
1-butene via 1.03 eV and isomerizes it to 2-butene via 0.62 eV,
while phosphine-decorated C1 desorbs the alkene in a
barrierless step. The steric hindrance of the metal−phosphine
interface pushes away the product and plays a beneficial role
driving the reaction toward the linear α-olefin.
Previous DFT studies in homogeneous Pd catalysts30,44

suggested dehydrogenations as rate-determining TSs, while the
present work on Pd(111) surfaces points toward the C−C
bond breaking process (TS-C3). Interestingly, the relative
activation energies for dehydrogenation (from the prior alkyl
intermediate to the corresponding TS) are quite similar for

Figure 5. Decarbonylation (orange line) and isomerization (dashed
orange line) mechanisms on phosphine-decorated Pd(111) C surfaces.
Asterisks represent adsorbed species.

Figure 6. Transition states TS-C3 (C−C bond breaking) and TS-C4
(hydrogen transfer) for the phosphine-decorated Pd(111) C surface.
(Pd = light blue, P = orange, O = red, C = gray, H = white). Key
distances are shown with dashed white lines.
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both systems, i.e., 1.05 eV in ref 44 and 0.95 eV from C4 to TS-
C4. The main difference thus comes from the ability of metal
surfaces to stabilize alkyl intermediates. While the formation of
alkyl intermediates is systematically endothermic in molecular
catalysts (+0.33 eV in ref 44), that process is exothermic on
Pd(111) surfaces (−0.74 eV from A2 to A3 and −0.40 eV from
C3 to C4). In other words, the highest point of homogeneous
energy profiles usually corresponds to the dehydrogenation
step due to the energy penalty required to form unstable alkyl
intermediates.
We then consider the role of the ligand in catalyst

deactivation.89 The major byproduct of the reaction is CO,
which is known to bind strongly to Pd. As expected, direct CO
release from A4 requires 2.29 eV. This poison effect is indeed
similar to that for PPhMe2 release (2.61 eV) but still
significantly larger than that for DPEPhosMe partial decoordi-
nation (1.24 eV). For phosphine-decorated surfaces, we also
considered CO release in an earlier stage of the reaction, that is,
after the formation of the alkyl intermediate C4. However, this
desorption energy was still large, 2.00 eV (Figure 7, left). Thus,

in the presence of bidentate ligands, we propose a displacement
of CO by the dangling phosphine arm. The CO-by-P exchange
in the phosphine-decorated system only takes 1.25 eV (Figure
7, right), in line with the experimental detection of CO under
reaction conditions.41

These general concepts on decorated surfaces can impact
other biomass-related processes.90−92 Looking into the related
furfural decarbonylation (Figure 8), we predict a barrier of 0.59

eV for the C−C bond scission step at the Pd−phosphine
interface in C1, which is comparable to previous data on clean
Pd (0.68 eV93,94). In this scenario, we also expect an enhanced
CO release promoted by bidentate phosphines (Figure 7,
right), which might prevent deactivation channels via CO
poisoning.
Overall, we identify two main roles of bidentate ligands: (i)

creation of reactive pockets that avoid alkene coordination and
enhance selectivity, and (ii) displacement of CO, which
attenuates surface CO poisoning and drives the reaction
toward high conversions. On the basis of these results we
enunciate some qualitative guiding rules to design metal−
phosphine interfaces: (i) ligand adsorption should predominate
over reactant adsorption on the metal surface to ensure that

ligands are not released during operation;80,95 (ii) a dynamic
bidentate ligand is necessary to avoid complete passivation of
the surface as found for monodentate derivatives; and (iii)
sizable yet labile groups attached to phosphorus are
recommended, so the freshly formed cavity is large enough
to bind reactant molecules.
Homogeneous catalysis usually focuses on fine-tuning of

ligands. In that sense, we devise that other bidentate ligands,
such as those reported for Pd-catalyzed carbonylation of
olefins,96,97 might be of relevance for these types of
transformations. However, heterogeneous catalysis mostly
performs screening of metal surfaces.98 In this work, we
identify the need for a rational design of interfaces to control
both activity and selectivity. Current efforts are underway in our
laboratories.

■ CONCLUSIONS

In this contribution, we have computationally elucidated the
role of phosphine−decorated Pd(111) catalysts in biomass-
derived decarbonylation transformations. Self-assembled mono-
layers of monodentate phosphines block the metal surface, in
line with the poor activity experimentally observed. On the
contrary, the inherent dynamics of bidentate ligands allows the
creation of transient cavities that are kinetically relevant in the
catalytic cycle. These highly crowded surface sites induce a
rapid product release and preclude undesired side reactions.
The flexibility of phosphine arms further promotes CO
desorption, thus reducing surface poisoning. The unique nature
of these systems holds promise for a rational design of metal−
ligand interfaces and applications to other biomass-related
processes.
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