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Science fiction has long imagined a

future populated with artificial

humans—human-looking devices with

human-like intelligence. Although Asimov’s 

benevolent robots and the Terminator movies’ terrible

war machines are still a distant fantasy, researchers

across a wide range of disciplines are beginning to

work together toward a more modest goal—build-

ing virtual humans. These software entities look and

act like people and can engage in conversation and

collaborative tasks, but they live in simulated envi-

ronments. With the untidy problems of sensing and

acting in the physical world thus dispensed, the focus

of virtual human research is on capturing the rich-

ness and dynamics of human behavior. 

The potential applications of this technology are

considerable. History students could visit ancient

Greece and debate Aristotle. Patients with social pho-

bias could rehearse threatening social situations in

the safety of a virtual environment. Social psychol-

ogists could study theories of communication by sys-

tematically modifying a virtual human’s verbal and

nonverbal behavior. A variety of applications are

already in progress, including education, and train-

ing,1 therapy,2 marketing,3-4 and entertainment.5-6

Building a virtual human is a multidisciplinary

effort, joining traditional artificial intelligence prob-

lems with a range of issues from computer graphics

to social science. Virtual humans must act and react

in their simulated environment, drawing on the dis-

ciplines of automated reasoning and planning. To

hold a conversation, they must exploit the full gamut

of natural language research, from speech recogni-

tion and natural language understanding to natural

language generation and speech synthesis. Provid-

ing human bodies that can be controlled in real time

delves into computer graphics and animation. And

because an agent looks like a human, people expect

it to behave like one as well and will be disturbed by,

or misinterpret, discrepancies from human norms.

Thus, virtual human research must draw heavily on

psychology and communication theory to appropri-

ately convey nonverbal behavior, emotion, and per-

sonality. 

This broad range of requirements poses a serious

problem. Researchers working on particular aspects

of virtual humans cannot explore their component

in the context of a complete virtual human unless

they can understand results across this array of dis-

ciplines and assemble the vast range of software tools

(for example, speech recognizers, planners, and ani-

mation systems) required to construct one. More-

over, these tools were rarely designed to interoper-

ate and, worse, were often designed with different

purposes in mind. For example, most computer

graphics research has focused on high fidelity offline

image rendering that does not support the fine-

grained interactive control that a virtual human must

have over its body. 

In the spring of 2002, about 30 international

researchers from across disciplines convened at the

University of Southern California to begin to bridge



this gap in knowledge and tools (see

www.ict.usc.edu/~vhumans). Ourultimate

goal is a modular architecture and interface

standards that will allow researchers in this

area to reuse each other’s work. This goal can

only be achieved through a close multi-dis-

ciplinary collaboration.  Towards this end,

the workshop gathered a collection of experts

representing the range of required research

areas, including 

The purpose of the workshop, and this

article, is to begin to bridge this gap in knowl-

edge and tools. Our ultimate goal is a mod-

ular architecture and interface standards that

will allow researchers in this area to reuse

each other’s work. This goal can only be

achieved through a close multi-disciplinary

collaboration. Towards this end, the work-

shop gathered a collection of experts repre-

senting the range of required research areas,

including 

• human figure animation

• facial animation

• perception

• cognitive modeling

• emotions and personality

• natural language processing

• speech recognition and synthesis

• nonverbal communication

• distributed simulation

• computer games. 

Here we discuss some of the key issues

that must be addressed in creating virtual

humans.  As a first step, we overview the

issues and available tools in three key areas

of virtual human research: face-to-face con-

versation, emotions and personality, and

human figure animation.  

Face-to-face conversation
Human face-to-face conversation involves

both language and nonverbal behavior. The

behaviors during conversation don’t just

function in parallel, but interdependently.

The meaning of a word informs the inter-

pretation of a gesture, and vice-versa. The

time scales of these behaviors, however, are

different—a quick look at the other person

to check that they are listening lasts for less

time than it takes to pronounce a single word,

while a hand gesture that indicates what the

word “caulk” means might last longer than

it takes to say, “I caulked all weekend.”

Coordinating verbal and nonverbal con-

versational behaviors for virtual humans

requires meeting several interrelated chal-

lenges. How speech, intonation, gaze, and

head movements make meaning together, the

patterns of their co-occurrence in conversa-

tion, and what kinds of goals are achieved by

the different channels, are all equally impor-

tant for understanding the construction of vir-

tual humans. Speech and nonverbal behav-

iors do not always manifest the same

information, but what they convey is virtu-

ally always compatible.7 In many cases, dif-

ferent modalities serve to reinforce one

another through redundancy of meaning. In

other cases, semantic and pragmatic attrib-

utes of the message are distributed across the

modalities.8 The compatibility of meaning

between gestures and speech recalls the inter-

action of words and graphics in multimodal

presentations.9 For patterns of co-occurrence,

there is a tight synchrony among the differ-

ent conversational modalities in humans. For

example, people accentuate important words

by speaking more forcefully, illustrating their

point with a gesture, and turning their eyes

toward the listener when coming to the end

of a thought. Meanwhile listeners nod within

a few hundred milliseconds of when the

speaker’s gaze shifts. This synchrony is

essential to the meaning of conversation.

When it is destroyed, as in low bandwidth

videoconferencing, satisfaction and trust in

the outcome of a conversation diminishes.10

Regarding the goals achieved by the dif-

ferent modalities, in natural conversation

speakers tend to produce a gesture with

respect to their propositional goals (to advance

the conversation content), such as making the

first two fingers look like legs walking when

saying “it took 15 minutes to get here,” and

speakers tend to use eye movement with

respect to interactional goals (to ease the con-

versation process), such as looking toward the

other person when giving up the turn.7To real-

istically generate all the different verbal and

nonverbal behaviors, then, computational

architectures for virtual humans must control

both the propositional and interactional struc-

tures. In addition, because some of these goals

can be equally well met by one modality or

the other, the architecture must deal at the level

of goals or functions, and not at the level of

modalities or behaviors. That is, giving up the

turn is often achieved by looking at the lis-

tener. But, if the speaker’s eyes are on the road,

he or she can get a response by saying, “Don’t

you think?”

Constructing a virtual human that can

effectively participate in face-to-face con-

versation requires a control architecture with

the following features:4

• Multimodal input and output. Because

humans in face-to-face conversation send

and receive information through gesture,

intonation, and gaze as well as speech, the

architecture should also support receiving

and transmitting this information.

• Real-time feedback. The system must let

the speaker watch for feedback and turn

requests, while the listener can send these

at any time through various modalities.

The architecture should be flexible enough

to track these different threads of commu-

nication in ways appropriate to each

thread. Different threads have different

response-time requirements; some, such

as feedback and interruption, occur on a

sub-second time scale. The architecture

should reflect this by allowing different

processes to concentrate on activities at

different time scales.

• Understanding and synthesis of proposi-

tional and interactional information.

Dealing with propositional information—

the communication content—requires

building a model of the user’s needs and

knowledge. The architecture must include

a static domain knowledge base and a

dynamic discourse knowledge base. Pre-

senting propositional information requires

a planning module for presenting multi-

sentence output and managing the order

of presentation of interdependent facts.

Understanding interactional informa-

tion—about the processes of conversa-

tion—on the other hand, entails building

a model of the current state of the conver-

sation with respect to the conversational

process (to determine who is the current

speaker and listener, has the listener under-

stood the speaker’s contribution, and so

on).
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With the untidy problems of

sensing and acting in the physical

world thus dispensed, the focus of

virtual human research is on

capturing the richness and

dynamics of human behavior. 



• Conversational function model. Functions,

such as initiating a conversation or giving

up the floor, can be achieved by a range of

different behaviors, such as looking repeat-

edly at another person or bringing your

hands down to your lap. Explicitly repre-

senting conversational functions, rather

than behaviors, provides both modularity

and a principled way to combine different

modalities. Functional models influence

the architecture because the core system

modules operate exclusively on functions,

while other system modules at the edges

translate input behaviors into functions,

and functions into output behaviors. This

also produces a symmetric architecture

because the same functions and modalities

are present in both input and output.

To capture different time scales and the

importance of co-occurrence, input to a vir-

tual human must be incremental and time

stamped. For example, incremental speech

recognition lets the virtual human give feed-

back (such as a quick nod) right as the real

human finishes a sentence, therefore influ-

encing the direction the human speaker takes.

At the very least, the sytem should report a

significant change in state right away, even

if full information about the event has not yet

been processed. This means that if speech

recognition cannot be incremental, at least

someone speaking or finished speaking

should be relayed immediately, even in the

absence of a fully recognized utterance. This

lets the virtual human give up the turn when

the real human claims it and signal reception

after being addressed. When dealing with

multiple modalities, fusing interpretations of

the different input events is important to

understand what behaviors are acting

together to convey meaning.12 For this, a syn-

chronized clock across modalities is crucial

so events such as exactly when an emphasis

beat gesture occurs can be compared to

speech, word by word. This requires, of

course, that the speech recognizer supply

word onset times. 

Similarly, for the virtual human to produce

a multimodal performance, the output chan-

nels also must be incremental and tightly

synchronized. Incremental refers to two

properties in particular: seamless transitions

and interruptible behavior. When producing

certain behaviors, such as gestures, the vir-

tual human must reconfigure its limbs in a

natural manner, usually requiring that some

time be spent on interpolating from a previ-

ous posture to a new one. For the transition

to be seamless, the virtual human must give

the animation system advance notice of

events such as gestures, so that it has time to

bring the arms into place. Sometimes, how-

ever, behaviors must be abruptly interrupted,

such as when the real human takes the turn

before the virtual human has finished speak-

ing. In that case, the current behavior sched-

ule must be scrapped, the voice halted, and

new attentive behaviors initiated—all with

reasonable seamlessness. 

Synchronicity between modalities is as

important in the output as the input. The vir-

tual human must align a graphical behavior

with the uttering of particular words or a

group of words. The temporal association

between the words and behaviors might have

been resolved as part of the behavior gener-

ation process, as is done in SPUD (Sentence

Planning Using Description),8 but it is essen-

tial that the speech synthesizer provide a

mechanism for maintaining synchrony

through the final production stage. There are

two types of mechanisms, event based or

time based. A text-to-speech engine can usu-

ally be programmed to send events on

phoneme and word boundaries. Although

this is geared towards supporting lip synch,

other behaviors can be executed as well.

However, this does not allow any time for

behavior preparation. Preferably, the TTS

engine can provide exact start-times for each

word prior to playing back the voice, as Fes-

tival does.13 This way, we can schedule the

behaviors, and thus the transitions between

behaviors, beforehand, and then play them

back along with the voice for a perfectly

seamless performance. 

On the output side, one tool that provides

such tight synchronicity is the Behavior

Expression Animation Toolkit system.11 Fig-

ure 1 shows BEAT’s architecture. BEAT has

the advantage of automatically annotating

text with hand gestures, eye gaze, eyebrow

movement, and intonation. The annotation is

carried out in XML, through interaction with

an embedded word ontology module, which

creates a set of hypernyms that broadens a

knowledge base search of the domain being

discussed. The annotation is then passed to

a set of behavior generation rules. Output is

scheduled so that tight synchronization is

maintained among modalities.

Emotions and personality
People infuse their verbal and nonverbal

behavior with emotion and personality, and

modeling such behavior is essential for build-

ing believable virtual humans. Consequently,

researchers have developed computational

models for a wide range of applications.

Computational approaches might be roughly

divided into communication-driven and sim-

ulation-based approaches. 

In communication-driven approaches, a

virtual human chooses its emotional expres-

sion on the basis of its desired impact on the

user. Catherine Pelachaud and her colleagues

use facial expressions to convey affect in

combination with other communicative func-

tions.14 For example, making a request with

a sorrowful face can evoke pity and motivate

an affirmative response from the listener. An

interesting feature of their approach is that

the agent deliberately plans whether or not

to convey a certain emotion. Tutoring appli-

cations usually also follow a communication-

driven approach, intentionally expressing

emotions with the goal of motivating the stu-

dents and thus increasing the learning effect.

The Cosmo system, where the agent’s peda-

gogical goals drive the selection and
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Figure 1: Behavior Expression Animation Toolkit Text-to-Nonverbal Behavior Module.



sequencing of emotive behaviors, is one

example.15 For instance, a congratulatory act

triggers a motivational goal to express admi-

ration that is conveyed with applause. To con-

vey appropriate emotive behaviors, agents

such as Cosmo need to appraise events not

only from their own perspective but also

from the perspective of others.

The second category of approaches aims at

a simulation of “true” emotion (as opposed to

deliberately conveyed emotion). These

approaches build on appraisal theories of

emotion, the most prominent being Andrew

Ortony, Gerald Clore, and Allan Collins’cog-

nitive appraisal theory—commonly referred

to as the OCC model.16 This theory views

emotions as arising from a valenced reaction

to events and objects in the light of agent

goals, standards, and attitudes. For example,

an agent watching a game-winning move

should respond differently depending on

which team is preferred.3 Recent work by

Stacy Marsella and Jonathan Gratch inte-

grates the OCC model with coping theories

that explain how people cope with strong

emotions.17 For example, their agents can

engage in either problem-focused coping

strategies, selecting and executing actions in

the world that could improve the agent’s

emotional state, or emotion-focused coping

strategies, improving emotional state by

altering the agent’s mental state (for exam-

ple, dealing with guilt by blaming someone

else). Further simulation approaches are

based on the observation that an agent should

be able to dynamically adapt its emotions

through its own experience, using learning

mechanisms. 6,18

Appraisal theories focus on the relation-

ship between an agent’s world assessment

and the resulting emotions. Nevertheless, they

are rather vague about the assessment

process. For instance, they do not explain how

to determine whether a certain event is desir-

able. A promising line of research is inte-

grating appraisal theories with AI-based plan-

ning approaches,19 which might lead to a

concretization of such theories. First, emo-

tions can arise in response to a deliberative

planning process (when relevant risks are

noticed, progress assessed, and success

detected). For example, several approaches

derive an emotion’s intensity from the impor-

tance of a goal and its probability of achieve-

ment. 20,21 Second, emotions can influence

decision-making by allocating cognitive

resources to specific goals or threats. Plan-

based approaches support the implementa-

tion of decision and action selection mecha-

nisms that are guided by an agent’s emotional

state. For example, the Inhabited Market

Place application treats emotions as filters to

constrain the decision process when select-

ing and instantiating dialogue operators.3

In addition to generating affective states,

we must also express them in a manner eas-

ily interpretable to the user. Effective means

of conveying emotions include body ges-

tures, acoustic realization, and facial expres-

sions (see Gary Collier’s work for an

overview of studies on emotive expres-

sions22). Several researchers use Bayesian

networks to model the relationship between

emotion and its behavioral expression.

Bayesian networks let us deal explicitly with

uncertainty, which is a great advantage when

modeling the connections between emotions

and the resulting behaviors. Gene Ball and

Jack Breese presented an example of such an

approach. They constructed a Bayesian net-

work that estimates the likelihood of specific

body postures and gestures for individuals

with different personality types and emo-

tions.23 For instance, a negative emotion

increases the probability that an agent will

say “Oh, you again,” as opposed to “Nice to

see you!” Recent work by Catherine

Pelachaud and colleagues employs Bayesian

networks to resolve conflicts that occur when

different communicative functions need to

be shown on different channels of the face,

such as eyebrow, mouth shape, gaze direc-

tion, head direction, and head movements

(see Figure 2).14 In this case, the Bayesian

network estimates the likelihood that a face

movement overrides another. Bayesian net-

works also offer a possibility to model how

emotions vary over time. Even though nei-

ther Gene Ball and Jack Breese nor Cather-

ine Pelachaud and colleagues took advantage

of this feature, the extension of the two

approaches to dynamic Bayesian networks

seems obvious. 

While significant progress has been made

on the visualization of emotive behaviors,

automated speech synthesis still has a long

way to go. The most natural-sounding

approaches rely on a large inventory of

human speech units (for example, combina-

tions of phonemes) that are subsequently

selected and combined based on the sentence

to be synthesized. These approaches do not,

yet, provide much ability to convey emotion

through speech (for example, by varying

prosody or intensity). Marc Schröder pro-

vides an overview of speech manipulations

that have been successfully employed to

express several basic emotions.25 While the

interest in affective speech synthesis is

increasing, hardly any work has been done

on conveying emotion through sentence

structure or word choice. An exception

includes Eduard Hovy’s pioneering work on

natural language generation that addresses

not only the goal of information delivery, but

also pragmatic aspects, such as the speaker’s

emotions.26 Marilyn Walker and colleagues

present a first approach to integrating

acoustic parameters with other linguistic phe-

nomena, such as sentence structure and

wording.27

Obviously, there is a close relationship

between emotion and personality. Dave Mof-

fat differentiates between personality and

emotion using the two dimensions duration

and focus.28 Whereas personality remains

stable over a long period of time, emotions

are short-lived. Moreover, while emotions

focus on particular events or objects, factors

determining personality are more diffuse and

indirect. Because of this obvious relation-

ship, several projects aim to develop an inte-
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Figure 2. Pelachaud uses a MPEG-4 compatible facial animation system to

investigate how to resolve cnflicts that arise when different communication funcitons

need to be shown on different channels of the face.
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grated model of emotion and personality. As

an example, Gene Ball and Jack Breese’s

model dependencies between emotions and

personality in a Bayesian network.23 To

enhance the believability of animated agents

beyond reasoning about emotion and per-

sonality, Helmut Prendinger and colleagues

model the relationship between an agent’s

social role and the associated constraints on

emotion expression, for example, by sup-

pressing negative emotion when interacting

with higher-status individuals.29

Another line of research aims at providing

an enabling technology to support affective

interactions. This includes both the defini-

tion of standardized languages for specify-

ing emotive behaviors, such as the Affective

Presentation Markup Language14 or the

Emotion Markup Language (www.vhml.

org), as well as the implementation of toolk-

its for affective computing combining a set

of components addressing affective knowl-

edge acquisition, representation, reasoning,

planning, communication, and expression.30

Human figure animation
By engaging in face-to-face conversation,

conveying emotion and personality, and oth-

erwise interacting with the synthetic envi-

ronment, virtual humans impose fairly severe

behavioral requirements on the underlying

animation system that must render their

physical bodies. Most production work

involves animator effort to design or script

movements or direct performer motion cap-

ture. Replaying movements in real time is not

the issue; rather, it is creating novel, contex-

tually sensitive movements in real time that

matters. Interactive and conversational

agents, for example, will not enjoy the luxury

of relying on animators to create human

time-frame responses. Animation techniques

must span a variety of body systems: loco-

motion, manual gestures, hand movements,

body pose, faces, eyes, speech, and other

physiological necessities such as breathing,

blinking, and perspiring. Research in human

figure animation has addressed all of these

modalities, but historically the work focuses

either on the animation of complete body

movements or on animation of the face. 

Body animation methods

In body animation, there are two basic

ways to gain the required interactivity: use

motion capture and additional techniques to

rapidly modify or re-target movements to

immediate needs,31 or write procedural code

that allows program control over important

movement parameters.32 The difficulty with

the motion capture approach is maintaining

environmental constraints such as solid foot

contacts and proper reach, grasp, and obser-

vation interactions with the agent’s own body

parts and other objects. To alleviate these

problems, procedural approaches parame-

terize target locations, motion qualities, and

other movement constraints to form a plau-

sible movement directly. Procedural

approaches consist of kinematic and dynam-

ics techniques. Each has its preferred domain

of applicability; kinematics is generally bet-

ter for goal-directed activities, and slower

(controlled) actions and dynamics is more

natural for movements directed by applica-

tion of forces, impacts, or high-speed behav-

iors.33 The wide range of human movement

demands that both approaches have real-time

implementations that can be procedurally

selected as required.

Animating a human body form requires

more than just controlling skeletal rotation

angles. People are neither skeletons nor

robots, and considerable human qualities

arise from intelligent movement strategies,

soft deformable surfaces, and clothing.

Movement strategies include reach or con-

strained contacts, often achieved with goal-

directed inverse kinematics.34 Complex

workplaces, however, entail more complex

planning to avoid collisions, find free paths,

and optimize strength availability. The sup-

pleness of human skin and the underlying tis-

sue biomechanics lead to shape changes

caused by internal muscle actions as well as

external contact with the environment. Mod-

eling and animating the local, muscle-based,

deformation of body surfaces in real time is

possible through shape morphing tech-

niques,35-36 but providing appropriate shape

changes in response to external forces is a

challenging problem. “Skin-tight” texture

mapped clothing is prevalent in computer

game characters, but animating draped or

flowing garments requires dynamic simula-

tion, fast collision detection, and appropriate

collision response.37-38

Accordingly, animation systems build pro-

cedural models of these various behaviors

and execute them on human models. The

diversity of body movements involved has

led to building more consistent agents: pro-

cedural animations that affect and control

multiple body communication channels in

coordinated ways.11,24,39-40 The particular

challenge here is constructing computer

graphics human models that balance suffi-

cient articulation, detail, and motion gener-

ators to effect both gross and subtle move-

ments with realism, real-time responsiveness,

and visual acceptability. And if that isn’t

enough, consider the additional difficulty of
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Figure 3. PeopleShop and DI-Guy are used to create scenarios for ground combat train-

ing. this scenario was used at Ft. Benning to enhance situation awareness in

experiments to train US Army officers for urban combat. Image courtesy of Boston

Dynamics.



modeling a specific real individual. Com-

puter graphics still lacks effective techniques

to transfer even captured motion into features

that characterize a specific person’s manner-

isms and behaviors, though machine-learn-

ing approaches could prove promising.41

Implementing an animated human body is

complicated by a relative paucity of gener-

ally available tools. Body models tend to be

proprietary (for example., Extempo.com,

Ananova.com), optimized for real time and

thus limited in body structure and features

(for example, DI-Guy, BDI.com, illustrated

in Figure 3, or constructions for particular

animations built with standard animator tools

such as Poser, Maya, or 3DSMax. The best

attempt to design a transportable, standard

avatar is the Web3D Consortium’s H-Anim

effort (www.h-anim.org). With well-defined

body structure and feature sites, the H-Anim

specification has engendered model sharing

and testing not possible with proprietary

approaches. The present liability is the lack

of an application programming interface in

the VRML language binding of H-Anim. A

general API for human models is a highly

desirable next step, the benefits of which

have been demonstrated by Norman Badler’s

research group’s use of the software API in

Jack (www.ugs.com/products/efactory/jack)

that allows feature access and provides plug-

in extensions for new real-time behaviors.

Face animation methods

A computer-animated human face can

evoke a wide range of emotions in real peo-

ple because faces are central to human real-

ity. Unfortunately, modeling and rendering

artifacts can easily produce a negative

response in the viewer. The great complexity

and psychological depth of the human

response to faces causes difficulty in pre-

dicting the response to a given animated face

model. The partial or minimalist rendering

of a face can be pleasing as long as it main-

tains quality and accuracy in certain key

dimensions. The ultimate goal is to analyze

and synthesize humans with enough fidelity

and control to pass the Turing test, create any

kind of virtual being, and enable total con-

trol over its virtual appearance. Eventually,

surviving technologies will be combined to

increase accuracy and efficiency of the cap-

ture, linguistic, and rendering systems. Cur-

rently the approaches to animating the face

are disjoint and driven by production costs

and imperfect technology. Each method pre-

sents a distinct “look and feel,” as well as

advantages and disadvantages. 

Facial animation methods fall into three

major categories. The first and earliest

method is to manually generate keyframes

and then automatically interpolate frames

between the keyframes (or use less skilled

animators). This approach is used in tradi-

tional cell animation and in 3D animated fea-

ture films. Keyframe and morph target ani-

mation provides complete artistic control but

can be time consuming to perfect.

The second method is to synthesize facial

movements from text or acoustic speech. A

TTS algorithm, or an acoustic speech recog-

nizer, provides a translation to phonemes,

which are then mapped to visemes (visual

phonemes). The visemes drive a speech artic-

ulation model that animates the face. The

convincing synthesis of a face from text has

yet to be accomplished. The state of the art

provides understandable acoustic and visual

speech and facial expressions.42-43

The third and most recent method for ani-

mating a face model is to measure human

facial movements directly and then apply the

motion data to the face model. The model can

capture facial motions using one or more

cameras and can incorporate face markers,

structured light, laser range finders, and other

face measurement modes. Each facial motion

capture approach has limitations that might

require post-processing to overcome. The

ideal motion-capture data representation sup-

ports sufficient detail without sacrificing

editability (for example, MPEG-4 Facial

Animation Parameters). The choice of mod-

eling and rendering technologies ranges from

2D line drawings to physics-based 3D mod-

els with muscles, skin, and bone.44-45 Of

course, textured polygons (non-uniform

rational b-splines and subdivision surfaces)

are by far the most common. A variety of sur-

face deformation schemes exist that attempt

to simulate the natural deformations of the

human face while driven by external para-

meters.46-47

JULY/AUGUST 2002 computer.org/intelligent 7

Figure4, The set of MPEG-4 Face definition Parameter (FDP) feature points.

Right eye Left eye
Feature points affected by FAPs

Other feature points

Teeth

Nose

MouthTongue



MPEG-4, which was designed for high-

quality visual communication at low bit-rates

coupled with low-cost graphics rendering

systems, offers one existing standard for

human figure animation (see Figure 4). It

contains a comprehensive set of tools for rep-

resenting and compressing content objects

and the animation of those objects, and it

treats virtual humans (faces and bodies) as a

special type of object. The MPEG-4 Face and

Body Animation standard provides anatom-

ically specific locations and animation para-

meters. It defines Face Definition Parameter

feature points and locates them on the face.

Some of these points only serve to help

define the face’s shape. The rest of them are

displaced by Facial Animation Parameters,

which specify feature point displacements

from the neutral face position. Some FAPs

are descriptors for visemes and emotional

expressions. Most remaining FAPs are nor-

malized to be proportional to neutral face

mouth width, mouth-nose distance, eye sep-

aration, iris diameter, or eye-nose distance.

Although MPEG-4 has defined a limited set

of visemes and facial expressions, designers

can specify two visemes or two expressions

with a blend factor between the visemes and

an intensity value for each expression. The

normalization of the FAPs gives the face

model designer freedom to create characters

with any facial proportions, regardless of the

source of the FAPs. They can embed MPEG-

4 compliant face models into decoders, store

them on CDROM, download them as an exe-

cutable from a website, or build them into a

Web browser.

Integration challenges
Integrating all the various elements

described here into a virtual human is a

daunting task. It is difficult for any single

research group to do it alone. Reusable tools

and modular architectures would be an enor-

mous benefit to virtual human researchers,

letting them leverage each other’s work.

Indeed, some research groups have begun to

share tools, and several standards have

recently emerged that will further encourage

sharing. However, we must confront several

difficult issues before we can readily plug-

and-play different modules to control a vir-

tual human’s behavior. Two key issues dis-

cussed at the workshop were consistency and

timing of behavior. 

Consistency

When combining a variety of behavioral

components, one problem is maintaining

consistency between the agent’s internal state

(for example, goals, plans, and emotions) and

the various channels of outward behavior (for

example, speech and body movements).

When real people present multiple behavior

channels, we interpret them for consistency,

honesty, and sincerity, and for social roles,

relationships, power, and intention. When

these channels conflict, the agent might sim-

ply look clumsy or awkward, but it could

appear insincere, confused, conflicted, emo-

tionally detached, repetitious, or simply fake.

To an actor or an expert animator, this is obvi-

ous. Bad actors might fail to control gestures

or facial expressions to portray the demeanor

of their persona in a given situation. The actor

might not have internalized the character’s

goals and motivations enough to use the

body’s own machinery to manifest these

inner drives as appropriate behaviors. A

skilled animator (and actor) knows that all

aspects of a character must be consistent with

its desired mental state because we can con-

trol only voice, body shape, and movement

for the final product. We cannot open a dia-

log with a pre-animated character to further

probe its mind or its psychological state.

With a real time embodied agent, however,

we might indeed have such an opportunity. 

One approach to remedying this problem

is to explicitly coordinate the agent’s inter-

nal state with the expression of body move-

ments in all possible channels. For example,

Norman Badler’s research group has been

building a system, Emote, to parameterize

and modulate action performance.48 It is

based on Laban Movement Analysis, a

human movement observation system.

Emote is not an action selector per se; it is

used to modify the execution of a given

behavior and thus change its movement qual-

ities or character. Emote’s power arises from

the relatively small number of parameters

that control or affect a much larger set, and

from new extensions to the original defini-

tions that include non-articulated face move-

ments. The same set of parameters control

many aspects of manifest behavior across the

agent’s body and therefore permit experi-

mentation with similar or dissimilar settings.

The hypothesis is that behaviors manifest in

separate channels with similar Emote para-

meters will appear consistent to some inter-

nal state of the agent; conversely, dissimilar

Emote parameters will convey various neg-

ative impressions of the character’s internal

consistency. Most computer-animated agents

provide direct evidence for the latter view:

• Arm gestures without facial expressions

look odd

• Facial expressions with neutral gestures

look artificial

• Arm gestures without torso involvement

look insincere

• Attempts at emotions in gait variations

look funny without concomitant body and

facial affect

• Otherwise carefully timed gestures and

speech fail to register with gesture perfor-

mance and facial expressions

• Repetitious actions become irritating

because they appear unconcerned about

our changing (more negative) feelings

about them

Timing

In working together toward a unifying

architecture, timing emerged as a central con-

cern at the workshop. A virtual human’s

behavior must unfold over time, subject to a

variety of temporal constraints. For example,

speech-related gestures must closely follow

the voice cadence. It became obvious during

the workshop that previous work focused on

a specific aspect of behavior (for example,

speech, reactivity, or emotion), leading to

architectures that are tuned to a subset of tim-

ing constraints and cannot straightforwardly

incorporate others. During the final day of the

workshop, we struggled with possible archi-

tectures that might address this limitation.

For example, BEAT schedules speech-

related body movements using a pipelined

architecture: a text-to-speech system gener-

ates a fixed timeline to which a subsequent

gesture scheduler must conform. Essentially,
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When these channels conflict, the

agent might simply look clumsy or

awkward, but it could appear

insincere, confused, conflicted,

emotionally detached, repetitious,

or simply fake.



behavior is a slave to the timing constraints

of the speech synthesis tool. In contrast, sys-

tems that try to physically convey a sense of

emotion or personality often work by alter-

ing the time course of gestures. For example,

Emote works later in the pipeline, taking a

previously generated sequence of gestures

and shortening or drawing them out for emo-

tional effect. Essentially, behavior is a slave

to the constraints of emotional dynamics.

Finally, some systems have focused on mak-

ing the character highly reactive and embed-

ded in the synthetic environment. For exam-

ple, Mr. Bubb of Zoesis Studios (see Figure

5) is tightly responsive to unpredictable and

continuous changes in the environment (such

as mouse movements or bouncing balls). In

such systems, behavior is a slave to environ-

mental dynamics. Clearly, if these various

capabilities are to be combined, we must rec-

oncile these different approaches.

One outcome of the workshop was a num-

ber of promising proposals for reconciling

these competing constraints. At the very

least, much more information must be shared

between components in the pipeline. For

example, if BEAT had more access to timing

constraints generated by Emote, it could do

a better job of up-front scheduling. Another

possibility would be to specify all of the con-

straints explicitly and devise an animation

system flexible enough to handle them all,

an approach the motion graph technique sug-

gests.48 Norman Badler suggests an interest-

ing pipeline architecture that consists of “fat”

pipes with weak uplinks. Modules would

send down considerably more information

(and possibly multiple options) and could

poll downstream modules for relevant infor-

mation (for example, how long would it take

to look at the ball, given its current location).

Exploring these and other alternatives is an

important open problem in virtual human

research.

The future of androids remains to be

seen, but realistic interactive virtual

humans will almost certainly populate our

near future, guiding us toward opportunities

to learn, enjoy, and consume. The move

toward sharable tools and modular architec-

tures will certainly hasten this progress, and,

although significant challenges remain, work

is progressing on multiple fronts. The emer-

gence of animation standards such as MPEG-

4 and H-Anim has already facilitated the

modular separation of animation from behav-

ioral controllers and sparked the develop-

ment of higher-level extensions such as the

Affective Presentation Markup Language.

Researchers are already sharing behavioral

models such as BEAT and Emote. We have

outlined only a subset of the many issues that

arise, ignoring many of the more classical AI

issues such as perception, planning, and

learning. Nonetheless, we have highlighted

the considerable recent progress towards

interactive virtual humans and some of the

key challenges that remain. Assembling a

new virtual human is still a daunting task, but

the building blocks are getting bigger and

better every day. 
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