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Java is growing in appropriateness and usability for high per-

formance computing. With this increasing adoption, issues

relating to combining Java with existing codes in other lan-

guages become more important. The Java Native Interface

(JNI) API is portable but too inconvenient to be used directly

owing to its low-level API. This paper presents Janet – a

highly expressive Java language extension and preprocessing

tool that enables convenient integration of native code with

Java programs. The Janet methodology overcomes some of

the limitations of JNI and generates Java programs that ex-

ecute with little or no degradation despite the flexibility and

generality of the interface.

1. Introduction

In only a few years Java has evolved from a web and

embedded-deviceprogramming language to a powerful

general-purpose framework for numerous applications

on a variety of hardware platforms. It has already

penetrated the enterprise market, is gaining increasing
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adoption in the field of scientific computing [1,8,14,20,

22,25], and is even encountering use in system level

programming and real-time systems.

There are multiple reasons for such an interest in Java

technology. The “write once, run anywhere” phrase

has evolved into much more than just a catchword and

in most cases, Java allows applications to run unmod-

ified on different architectures as well as in heteroge-

neous environments.1 Simplicity of the language gives

developers an opportunity to focus on the problem at

hand, rather than syntax nuances and compiler distrac-

tions. Automated memory management helps in avoid-

ing common programming mistakes, thus reducing de-

bugging time. Security concerns are addressed through

the ability of a Virtual Machine to restrict access to un-

derlying operating system facilities. Yet another fea-

ture is dynamic code loading that enables Java byte

code to be downloaded from a network or even to be

generated on-the-fly during program execution.

The performance of modern Java Virtual Machines

is already close to that of native code, and contin-

ues to improve [6,11] over time. Although this most

commonly cited issue of performance is fast becoming

a non-issue, there are still compelling reasons to use

legacy native codes in conjunction with Java. From

the software engineering perspective, reuse of existing

codes with a resulting reduction in design and testing

time is highly desirable. Even for code that is com-

pletely rewritten in Java, an appropriate interface to the

existing version of the software makes the transition to

a new implementation smoother.

The Java Native Interface (JNI) [15,16,18] defines

a platform-independent API for interfacing Java with

native languages such as C/C++ and Fortran. Unfor-

tunately, its level of abstraction is rather low, which

makes JNI error-prone and inconvenient to use, and

results in large codes that are difficult to debug and

maintain. In this paper, we present the Janet (JAva

1The GUI-related Java portability issues rarely apply to high-

performance applications.
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Native ExTensions) project – a language extension that

provides a preprocessing tool and enables convenient

development of native methods and Java interfaces to

legacy codes. Janet facilitates the use of JNI so that

no explicit calls to the JNI API have to be made. Fur-

ther, Janet allows Java and native codes to coexist in

the same source file which contributes significantly to

clarity and readability.

The remainder of this paper is organized as follows:

Section 2 discusses similar projects, while Section 3

provides an overview of JNI. Sections 4, 5, 6, and 7

describe the Janet tool in detail including syntax and

semantics aspects. In Section 8 performance results for

Janet interfaces are presented, including benchmarks

for wrappers to a parallel library called LIP. Finally,

conclusions and future work are discussed in Section 9.

2. Related work

The JCI tool is an automatic Java interface generator

for C language codes [7,21]. As input, the tool accepts

a C header file with declarations of native library func-

tions, and generates JNI wrappers for these functions.

Although such an automated approach is very conve-

nient, the lack of provisions for user input, combined

with substantial semantic differences between Java and

C unavoidably leads to wrappers that do not conform

to the Java programming style, i.e., they are not object

oriented, unsafe in many respects, and use function re-

turn codes rather than exceptions to report erroneous

situations.

The Jaguar project [24] introduces extensions to the

JIT technology and Java bytecode. It bypasses the JNI

layer and enables direct access to the underlying com-

puting platform. This approach is promising as it leads

to much more efficient codes than those employing

JNI. Unfortunately, it also binds the resulting code to

a particular architecture (currently only Intel x86) and

is therefore not very flexible. In contrast, our approach

is solely based on JNI and thus retains a high level of

portability.

The Jalapeño project [12] implements a Java Virtual

Machine written almost entirely in Java itself. Due

to the fact that a VM must be able to access main

memory directly without the usual safety restrictions,

the authors use a special MAGIC class with methods

implemented in machine code. The Jalapeño project

emphasizes high performance rather than portability

and as such is not intended to provide general purpose

support for interfacing Java with native languages.
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Fig. 1. Use of a native library in a Java application.

An alternative way of wrapping legacy code is to use

shared stubs [18]. This technique allows invocation

of arbitrary functions residing in shared libraries and

uses system-level routines for dynamic linking. Such a

technique is, again, platform-dependent and introduces

substantial overheads in native function calls. Nonethe-

less, Janet can be used simultaneously with this ap-

proach as they do not exclude each other.

3. Java Native Interface overview

JNI [15,18] is an Application Programming Inter-

face (API) that allows Java code (running inside a Java

Virtual Machine) to interoperate with applications and

libraries written in other programming languages, such

as C/C++ or Fortran. One of the most important ben-

efits of JNI is that it imposes no restrictions on the

implementation of the underlying Java VM.

JNI allows the implementation of Java methods

which have been declared as native in a class defini-

tion. Figure 1 shows interactions between a Java appli-

cation, the Java VM, JNI and native code in the situation

where native methods serve as an interface between the

Java application and the legacy native library.

The essential feature of JNI is that it allows na-

tive code to have the same functionality as pure Java

code. In particular, it provides means to create, inspect
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(a) array access

JNIEXPORT jint JNICALL

Java_IntArray_sumArray(JNIEnv *env, jobject obj, jintArray arr) {

jint *carr; jint i, sum = 0;

jint len = (*env)->GetArrayLength(env, arr);

if (!(carr = (*env)->GetIntArrayElements(env, arr, NULL))) return 0;

for (i=0; i<len; i++) sum += carr[i];

(*env)->ReleaseIntArrayElements(env, arr, carr, 0);

return sum; }

(b) field access

JNIEXPORT void JNICALL

Java_lip_Lip_maptableFree(JNIEnv *env, jclass cls, Maptable mtab) {

jclass mtc; jfieldID fid; jlong l;

if (!(mtc = (*env)->FindClass(env, "lip/Maptable"))) return;

if (!(fid = (*env)->GetFieldID(env, mtc, "data", "J"))) return;

l = (*env)->GetLongField(env, mtab, fid);

LIP_Maptable_free(l); }

(c) method invocation and exception handling

JNIEXPORT void JNICALL

Java_dummy_method(JNIEnv *env, jobject obj) {

jthrowable exc;

jclass cls = (*env)->GetObjectClass(env, obj);

jmethodID mid = (*env)->GetMethodID(env, cls, "callback", "()V");

if (mid == NULL) return;

(*env)->CallVoidMethod(env, obj, mid);

if (exc = (*env)->ExceptionOccurred(env)) {

jclass newExcCls;

	 JNI_EXCEPTION_DESCRIBE();

	 if (!(newExcCls = (*env)->FindClass(env,

		 	 "java/lang/IllegalArgumentException"))) return;

	 (*env)->ThrowNew(env, newExcCls, "from C code"); }}

(d) synchronization

JNIEXPORT void JNICALL

Java_dummy_foo(JNIEnv *env, jobject obj, jobject bar) {

(*env)->MonitorEnter(env, bar);

native_foo();

(*env)->MonitorRelease(env, bar); }

Fig. 2. Examples of native methods using JNI features.

and modify objects (including arrays), invoke methods,

throw and catch exceptions, synchronize on Java mon-

itors and perform runtime type checking by calling ap-

propriate functions of the JNI API. Several examples

are shown in Fig. 2.

The main problem in using JNI is the fact that it is

much closer to the Java VM than Java language itself,

so its level of abstraction is rather low. This makes

the development process long, inconvenient and error-

prone. Most of the programming mistakes (which are

rather easy to make) in the created interfaces lead to un-

defined behavior at runtime, resulting in hard-to-track

and platform-dependent errors. The following are ex-

amples of such error-prone situations.

– In order to access Java arrays of primitive data

types, native code must invoke a special JNI func-

tion to lock an array and obtain a pointer to it.

When the array is no longer being accessed, an-

other function must be called to release the array.

The JNI specification does not define the behavior

of a program which fails to release an array. In ad-

dition, access functions to arrays of different types

have different names. The use of improper func-

tions causes runtime errors rather than compilation

warnings (see Fig. 2(a)).

– Accesses to fields of Java objects must be per-

formed through opaque field descriptors. To ob-

tain such a descriptor, the user must know not only

the name of the field, but also a signature string

of the field type. Again, native methods compile

with no errors but fail at runtime if the type of the

accessed field has changed. Moreover, JNI pro-

vides separate functions for each type and storage

attribute of a given field (see Fig. 2(b)).

– Invocation of Java methods is even more compli-

cated. Methods are invoked through opaque de-

scriptors that are obtained for a specific method

name and signature. However, the method sig-
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nature depends on the types of all its parameters,

which makes native code even more sensitive to

changes in Java classes on which it depends. As

before, distinct JNI functions are required for in-

vocation of methods with varying return types and

invocation modes, i.e., instance, static, and non-

virtual (see Fig. 2(c)).

– Exceptions that may occur in native methods, e.g.,

as a result of a JNI call that invokes a Java method,

cannot be handled like an ordinary Java exception

and caught by a Java exception handler. Instead, an

explicit query is necessary. This query is manda-

tory since the behavior of subsequent JNI calls is

undefined when there are pending exceptions (see

Fig. 2(c)).

– Lock and unlock operations on Java monitors are

independent of each other, so frequently the latter

is mistakenly omitted at runtime, especially within

exception handling code (see Fig. 2(d)).

4. Overview of Janet

Janet is a Java language extension and preprocessing

tool that enables the convenient development of native

methods and Java interfaces to native code by removing

the need for explicit calls to JNI.

With JNI, the definitions of native methods must be

written in separate source files. In contrast, Janet allows

Java and native source codes to coexist in a single file.2

Moreover, such an embedded native code can directly

perform Java operations such as accessing Java fields

and variables, invocation of Java methods, use of Java

monitors, exception handling, etc. These operations

can be carried out using ordinary Java language syntax

– no cumbersome JNI function calls are required.

Currently, the only native language that is supported

is C. However, due to the open architecture of Janet,

support for other languages may be added with little

effort.

A Janet file is transformed by Janet preprocessor

into Java and native language source files, as shown in

Fig. 3. The translation process separates a native code

from Java code, and inserts appropriate JNI function

invocations. The JNI code, automatically generated for

the user, performs the following operations: it deter-

mines necessary type signatures, chooses JNI functions

2A native code can appear as an implementation of a native

method, or inside newly introduced native statements analogous

in syntax to the synchronized statement.

Janet

Translator

Janet

source file

Java source file native source file(s)

Fig. 3. Janet translation process.

to call, loads Java classes, obtains field and method de-

scriptors, performs array and string lock and release op-

erations, handles and propagates Java exceptions, and

matches monitor operations.

A simple example of the canonical “Hello World”

program that uses Janet (file HelloWorld.janet),

is presented below. This example demonstrates the use

of a single native method whose body is embedded in

Java source code.

class HelloWorld {
native "C" {
#include <stdio.h>

}
public native "C" void display

HelloWorld() {
printf("Hello world!\ n");

}
public static void main

(String[] args) {
}

}

The translation process generates three source files

in this case: the first contains stripped Java source with

only a native method declaration, the second contains

the native method implementation, and the third is an

auxiliary C source file. The first two files are presented

below:

– File HelloWorld.java:

class HelloWorld {
/* . . . code that loads library

goes here . . . */
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public native void displayHello

World();

public static void main(String

args) {
new HelloWorld().displayHello

World();

}
}

– File HelloWorldImpl.c:

#include <janet.h>

#include <stdio.h>

Janet HelloWorld displayHello

World(JNIEnv * janet jnienv,

jobject janet obj)

{
printf(‘‘Hello world!\ n’’);

}

Next, all native source files must be compiled into a

shared libraryHelloWorld (e.g.,libHelloWorld.

so on Linux and Solaris operating systems).

A Java VM will search for libHelloWorld.so

during the initialization of the class HelloWorld (for

brevity, the code for linking the library is not shown).

The name for a library is established by the Janet pre-

processor using the following naming convention – if

the class appears in the default (unnamed) package as

it does in this example, the class name is used as the

library name. Otherwise, the package name (mangled

if necessary, see [15,18]) is used instead. In future re-

leases, we will add more flexibility in assigning names

to native libraries.

The following two sections present several examples

of Java operations (expressions and statements) that are

allowed to appear inside native code (embedded within

back-tick characters, ‘. . .’) and that are transformed

by Janet preprocessor into JNI function invocations.

Up-to-date source code for all the examples as well as

detailed documentation can be obtained from [13].

5. Embedded Java expressions

5.1. Simple expressions

Field access operations belong to the most com-

monly performed JNI operations. Janet simplifies these

operations by allowing Java syntax to be embedded di-

rectly inside the C code. The following example is

taken from the interface to the LIP [5] library:

static native void maptableFree

(Maptable mtab) {
LIP Maptable free(‘mtab.data’);

}

In this example, the C function LIP Maptable

free receives a parameter whose value is fetched from

the data field of an object of Maptable class which

in turn is passed as a parameter to the Java method

maptableFree.

Other Java expressions that are slightly more com-

plicated but also commonly used inside native meth-

ods are method invocations. Consider the following

example:

class C {
int bar(int a, int b) { . . . }
int bar1() { throw new Runtime

Exception(); }
int bar2() { . . . }
native void foo() {
some C routine(‘bar(bar1(),

bar2())’);

}
}

Native method foo contains a Java expression (as

a parameter of some C routine) that contains three

invocations of Java methods. Janet translates these

pieces of code into an appropriate sequence of JNI calls.

What is important in this example is the preservation

of exact Java semantics (see [9] §15.5 and §15.6), e.g.,

in the case when the method bar1 throws an excep-

tion, neither the bar nor bar2 methods are invoked.

In general, the native code generated by Janet guaran-

tees the same evaluation order and precise exception

handling as Java code does.

5.2. Native subexpressions of embedded Java

expressions

Let us consider a situation when the user wants to in-

voke a Java method bar that has to be passed the value

of some native variable as a parameter. Since Java and

native code namespaces are separated by Janet, such an

operation requires the user to specify explicitly that a

given expression references native code’s namespace.

This is done with a #(expr) syntax as in the following

example:

native void foo() {
int i = 0;

‘bar(i, 0)’: /* compilation

error: what ss ‘i’? */
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‘bar(#(i), 0)’; /* OK: ‘i’ comes

from native code side */

}

The Java type of such an embedded subexpression is

inferred from the context (the original native type is not

considered). In the example, Janet casts the expression

to this type before passing the value from the native

method because the first parameter of method bar has

Java type int. In ambiguous cases, the type cast must

be performed explicitly:

class C {
void bar(int i) { . . . }
void bar(boolean b) { . . . }
native void foo() {
int i = 0;

‘bar(#(i))’; /* compile error:

ambiguous */

‘bar((boolean)#(i))’; /* OK */

}
}

Embedded native expressions are not limited to sim-

ple variable accesses as in the above examples. In fact,

they may be fairly complex and may even contain em-

bedded Java expressions. This process of embedding

may be repeated recursively.

5.3. Accessing arrays

Arrays are simple and yet powerful data structures.

They are probably the most commonly used in scientific

codes. A large number of native libraries operate on

arrays and they could be effectively used in Java if an

appropriate interface is provided. For this reason, we

considered it crucial for Janet to provide efficient and

convenient support for operations on Java arrays.

Janet allows embedding Java array access expres-

sions into native code in the same fashion as other ex-

pressions. Consider the following code example of a

native method which computes the sum over elements

of a Java array:

native int sum(int[] arr) {
int i, sum = 0;

for (i = 0; i < ‘arr.length’;

i++) {
sum + = ‘arr[#(i)]’; /* C

variable indexes Java array */

}
‘return sum;’

}

In this example we have two embedded Java expres-

sions: one is the read of the array field length, and

the other performs array access. Note that the array

is indexed using the native variable i, and there is no

type ambiguity as the array index in Java has always

type int. Janet takes advantage here of the fact that

the field length is final. Thus, the JNI routine that

obtains length’s value is invoked only once, even

though the expression that uses it is evaluated multiple

times. Additionally, the array access itself is optimized:

Janet obtains the pointer to the whole array during the

first access, and once it is done, subsequent iterations

are executed without any JNI calls. Finally, the array

pointer is released at the end of the method sum.

Such an array access scenario, although very com-

mon, is still not sufficient. If, for example, one wants to

use a legacy native routine which operates on the array

passed as a pointer argument, the pointer to the Java

array must be obtained explicitly. To solve this prob-

lem, Janet introduces address-fetch operator & which

can be used with arrays and strings.3 As an example,

consider how the sorting routine qsort from the stan-

dard C library can be used in a Java method qsort

(note again separate namespaces for C and Java):

native void qsort(int[] arr) {
jint* ptr;

ptr = ‘&arr’;

qsort(ptr, ‘arr.length’,

sizeof(jint), . . .);

}

The last concern is that Java arrays store platform-

independent primitive data types rather than native

ones, and these are not necessarily the same.4 The &

operator does not perform any type conversion – it sim-

ply exposes the array as it is. If explicit conversion is

desired, the #& operator may be used:

native void polint(float[] xa,

float[] ya, . . .) {
/* assume that polint() accepts

native C float[] */

polint(‘#&xa’, ‘#&ya’, . . .);

}

3Due to JNI limitations, the address-fetch operator & cannot

be used with arrays of reference types, including multidimensional

arrays.
4JNI defines jint, jlong, jboolean, jchar, jbyte,

jshort,jfloat and jdouble as native equivalents of Java prim-

itive data types.
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Table 1

Java to C type mapping for & and #& operators

Java type & operator #& operator

boolean[] jboolean* unsigned char*

byte[] jbyte* signed char*

char[] jchar* unsigned short*

short[] jshort* short*

int[] jint* int*

long[] jlong* long*

float[] jfloat* float*

double[] jdouble* double*

String (UNICODE) const char* (UNICODE) const char* (UTF-8)

The #& operator can also be applied to Java strings,

converting them from UNICODE to UTF-8 format:

native void print(String s) {
/* simple Java strings can be

printed from C */

printf(‘#&s’);

}

The mapping of types from Java to C that is per-

formed by & and#& operators is shown in Table 1. The

array conversion performed by the #& operator intro-

duces no performance degradation on platforms where

appropriate array element types are equivalent. How-

ever, it requires allocation and copying of the entire

array in cases when they are different.

6. Embedded Java statements

6.1. Declaring variables

Java variables can be declared inside a native method

implementation and used in subsequent embedded Java

expressions:

native void method(BookStore bs) {
‘Book b;’

. . .

‘b = bs.getBook();’

. . .

printf(’’%d\n’’,
(int)‘b.getPageCount()’);

}

Additionally, such variables give explicit control

over occurrences of the array get/release operations

(Fig. 2) in the code generated by Janet. Arrays are not

released as long as any variables referencing them re-

main in the current scope. Otherwise, they are released

upon reaching the end of the block that surrounds the

array access expression, or when a different array ref-

erence is produced by an expression. This is shown in

the following sample code:

class Dummy {
int[] arr0, arr1;

. . .

native void foo() {
‘int local[];’

{
‘arr0[0]’; /* get contents

of arr0 */

‘local = arr1;’ /* new

reference to arr1 */

‘local[0]’; /* get contents

of arr1 */

} /* arr0 released (end of

block) */

. . .

} /* arr1 released (‘local’ goes

out of scope) */

}

6.2. Exception handling

Exception handling is one of the most error-prone

aspects of JNI. The user must explicitly check for ex-

ceptions in every possible place where they may occur

(essentially after every JNI call) and provide code to

handle them. As exceptions usually break normal flow

of program execution, it becomes easy to mismatch ar-

ray or monitor lock/release operations within exception

handling code. In contrast, Janet provides a convenient

syntax for exception handling, by adapting Java’s ex-

ception model and employingtry, catch, finally

and throw statements. The following example illus-

trates these concepts:

native void method() {
‘try {
callback();

} catch (Throwable e) {
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‘JNI EXCEPTION DESCRIBE();’

throw new IllegalArgument

Exception(’’from C code’’);

}’
}

Again, the semantics of the generated native code

strictly conforms to the Java language definition. In

particular, exceptions are handled as soon as they oc-

cur, arrays and monitors are guaranteed to be always

released, and the finally clauses are always eval-

uated. The only segment of native code involved is

theJNI EXCEPTION DESCRIBEmacro call – the re-

mainder is Java code that handles exceptions. Such a

syntax simplification is possible because Janet allows

the merging of subsequent embedded Java operations,

which eliminates extra back-tick delimiters. (Compare

this example with the analogous JNI code shown in

Fig. 2(c).)

6.3. Synchronization

JNI provides separate functions for monitor lock and

unlock operations. In contrast, Janet adapts the Java

synchronized statement for this purpose:

native void foo(Object bar) {
‘synchronized(bar)’ {
native foo();

}
}

Again, the generated code is exception-aware. The

monitor is unlocked even if exceptions occur inside

synchronized body. This is achieved through a

construct similar to thetry statement with afinally

clause that contains code to unlock the monitor.

6.4. Java-style return statement

In general, the C languagereturn statement should

not be used inside native methods when using Janet. In-

stead, the Java-style return statement is introduced:

native int foo() { /* will always

return 1 */

‘try’ {
‘return 0;’

} ‘finally’ {
‘return 1;’

}
}

There are two reasons why C’s return statement

should not be used. First, during compilation, it pre-
vents type checking for the returned value and can po-
tentially lead to runtime errors. Secondly, it prevents

Janet from executingfinally clauses as was required
in the example above.

6.5. Unconditional branch statements

Currently Janet uses a complete parser for Java code
and a simplified one for embedded C. This approach
has the advantage of extensibility as it is easy to add

new parsing modules for additional native languages.
Also, it increases the portability of the tool and gener-
ated interfaces. However, it limits the syntax of native

codes. Consider the following example:

do {
‘synchronized(foo)’ {
break;

} /* monitor unlock would occur

here */

} while (false);

The Janet preprocessor does not recognize seman-

tics of the break statement and inserts a monitor un-
lock code at the end of the block. Therefore, this
code unlocks the Java monitor when the native method
returns (rather than when do-while loop termi-

nates). To avoid such situations, Janet forbids uncondi-
tional branch statements, namely break, continue,
goto, as well as the longjmp() function call, to

be used in native code if they could prematurely exit
the block in which they appear. Also, the use of the
return statement is strongly discouraged for the rea-

sons described in Section 6.4. This issue pertains only
to the C language. With C++, it is possible to avoid
this problem by using object destructors.

7. Portability

One of the main goals of the Janet project is to retain
a high level of portability of both the tool itself and the
code it generates. The Janet preprocessor is therefore

written entirely in Java and it can run on any Java 2 plat-
form. The whole system consists of approximately 130
source files and 30,000 lines of code. The generated C

source code fully conforms to the ANSI C standard and
may be used with JNI version 1.1 onwards; therefore,
it works with JRE 1.1. At the same time, it can also
take advantage of the JNI 1.2 extensions introduced in

Java 2.
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Table 2

Performance results on Solaris OS with JDK 1.3 and HotSpot VM (time shown in mi-

croseconds)

Java JNI Janet

private native method inv. 0.11 + 0.025*argc

virtual native method inv. 0.14 + 0.025*argc

private method invocation 0.04 + 0.005*argc 6.7 + 0.9*argc 7 + 0.9*argc

virtual method invocation 0.05 + 0.005*argc 12.5 + 0.9*argc 13 + 0.9*argc

field access 0.025 0.45 0.5

dynamic cast 0.035 0.4 0.45

try (no exception) 0.045 0 0.25

throw 20 50 50

catch (exception thrown) 0 1 1.5
synchronized 0.2 1.5 1.5

array access (normal) 8*size 8*size

array access (fast) 0.75 20

per-method – arrays & locks 1.5

per-method – exceptions 0-0.25

argc – number of parameters passed to a method

size – size of array in KB

8. Performance results

JNI provides a highly portable and abstract interface

layer, e.g., it makes no restrictions as to how a Java

VM represents objects internally. While this approach

facilitates writing portable native methods, it also in-

troduces an overhead much higher than if the objects

could be accessed directly. Since Janet is built on top

of JNI, Janet performance is highly influenced by the

performance of JNI itself. To measure these overheads,

we performed a series of benchmark experiments on

different platforms.

Table 2 shows performance results for the HotSpot

Java VM from Java 2 Standard Edition v1.3 for Solaris.

The host platform was a 4-processor Sun Enterprise 450

with 4 UltraSPARC 400 MHz CPUs with 4 MB of

ECache and 1280 MB RAM running SunOS 5.7. Ta-

bles 3 and 4 show performance results for HotSpot and

Classic Java VMs, respectively, from the Java 2 Stan-

dard Edition v1.3 for Linux. The host platform was

a PC with a Pentium II 440 MHz CPU and 128 MB

RAM running RedHat Linux 6.2. All numbers show

CPU time in microseconds (µs).

The test methodology was as follows. For each test,

two separate functions were provided. They differed

only in the use of the operation to be measured. A sin-

gle test run involved a number of iterative executions

of both methods, so that cumulative execution times

could be compared. The number of iterations was cho-

sen empirically (from the range of 103 to 108) for each

test, to ensure low deviation between execution times

and provide accuracy of at least 1.5 significant digits.

Immediately before measurements were started, each

Virtual Machine was allowed to execute the same num-
ber of “warm-up” iterations in order to optimize the
code. The numbers in all tables are average times over
at least 8 test runs. For the JNI test routines, safety
features were omitted to obtain the highest possible
performance, e.g., the exception checks after method
invocations were not included.

To begin with, the efficiency of both private and
virtual native method calls was measured as these
are the basis of any native code interface. Next,
a series of tests was performed to compare execu-
tion overhead of different kinds of Java expressions
and statements as they appear in pure Java, in na-
tive methods written using pure JNI, and in native
methods written using Janet. Then, the performance
of Java array access from within native code was
measured for JNI and Janet, using both traditional
Get<type>ArrayContents JNI routines (nor-

mal) as well as theGetPrimitiveArrayCritical
routine (fast) introduced in JNI 1.2.

Finally, the additional Janet-specific method invoca-
tion overhead was measured in the situations where ar-
rays of primitive type or synchronized statements
are used, and when the method handles Java exceptions,
i.e., when callback method invocations are involved.

As might have been expected, obtaining Java func-
tionality from native code via JNI function calls turned
out to be much slower than pure JIT-optimized Java.
Nevertheless, the overhead factor rarely exceeded 30
which is acceptable in most cases, as JNI functions typ-
ically take only a small part of the total native method
execution time. Therefore, overall JNI performance
seems to be adequate for most applications. However,
there are several issues that one has to be aware of:
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Table 3

Performance results on Linux OS with JDK 1.3 and HotSpot VM (time shown in microseconds)

Java JNI Janet

private native method inv. 0.1 + 0.012*argc

virtual native method inv. 0.12 + 0.012*argc

private method invocation 0.02 + 0.002*argc 4.2 + 0.65*argc 5 + 0.65*argc

virtual method invocation 0.022 + 0.0035*argc 9 + 0.65*argc 10 + 0.65*argc

field access 0.005 0.28 0.3
dynamic cast 0.02 0.16 0.18

try (no exception) 0.002 0 0.45

throw 36 74 83

catch (exc. thrown) 0.4 1–2.5 1–2.5

synchronized 0.04 1.2 1.5

array access (normal) 21*size 21*size

array access (fast) 0.35 17

per-method – arrays & locks 1
per-method – exceptions 0–0.45

argc – number of parameters passed to a method

size – size of array in KB

Table 4

Performance results on Linux OS with JDK 1.3 and Classic VM (time shown in microseconds)

Java JNI Janet

private native method inv. 0.55 + 0.05*argc

virtual native method inv. 0.45 + 0.06*argc

private method invocation 0.27 + 0.016*argc 1.3 + 0.06*argc 1.4 + 0.06*argc

virtual method invocation 0.27 + 0.02*argc 1.3 + 0.06*argc 1.45 + 0.06*argc

field access 0.05 0.18 0.22
dynamic cast 0.1 0.25 0.25

try (no exception) 0.02 0 0.45

throw 8 23 15

catch (exc. thrown) 0.28 0.5 0.5

synchronized 0.8 0.6 0.8

array access (normal) 1.4 6.2

array access (fast) 1.4 6.7

per-method – arrays & locks 1.5
per-method – exceptions 0–0.45

argc – number of parameters passed to a method

– Copying arrays and strings instead of pinning them

down can degrade the performance substantially.

Unfortunately, even Get . . . Critical() rou-

tines (which introduce restrictions on the enclosed

native code and therefore cannot be always used)

do not guarantee that copying will be avoided.

Nevertheless, they seem to be the most efficient

way to access Java arrays and strings.

– For native methods with very small amounts of

computation, the additional invocation overhead

can exceed any native code performance benefits.

– Excessive callbacks from native methods can be

expensive and should be used with caution.

– As JNI implementations are not the most important

parts of Java Virtual Machines, their performance

is not necessarily going to improve. In fact, it is

possible that a new VM version from the same

vendor executes JNI calls less efficiently than an

older version. This was the case with HotSpot VM

for Linux, where the JNI implementation is much

less efficient than that of the Classic VM.

A large overhead is also introduced when a native

method throws an exception, but it is not a real issue

because in properly written programs exceptions are

thrown rarely. It was observed that the execution of

the throw statement in pure Java code also takes an

enormous amount of time.

In most cases, Janet adds no more than 20% to the JNI

overhead. The additional time is spent in retaining the

safety of the running code i.e., for method invocations,

Janet checks if they did or did not cause an exception

(note that every Java method not declared to throw ex-

ceptions may still throw RuntimeExceptions and

Errors). A notable difference between JNI and Janet

performance is evident only for array accesses. This
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Fig. 4. Performance results of the code using the lip library from C and Java (n = 100).
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Fig. 5. Performance results of the code using the lip library from C and Java (n = 1000).

is because Janet invokes an additional method to avoid

aliasing problems with multiple references pointing to

the same array. This initial overhead however, is usu-

ally amortized over the time of actual array processing

and has little overall effect.

The Janet project was originally developed as a Java

interface to the LIP programming library [3–5]. The

LIP library is built on top of MPI [8,17,19] and sup-

ports both in- and out-of-core (OOC) parallel irregular

problems [2,23] (i.e. problems that indirectly access

large data arrays). To test the performance of Janet,

a generic irregular OOC problem was written in Java.

Its scalability in comparison to the C version is pre-

sented in Figs 4 and 5. All computations in the Java

test code were performed on the Java side, while the

native libraries were provided only as a communication

layer and the OOC I/O environment. The amount of

computation was proportional to the variable n, while

the communication overhead remained constant across

all tests. Unlike the previous results, here the perfor-

mance of Janet is shown in relative terms. They are

presented to give a perspective on a real-world paral-

lel application behavior, which involves complex inter-

actions between software and hardware components.

These interactions are not present in the benchmark

tests. Absolute performance values are as indicated by

the previously shown test results.

These results demonstrate that Java can be efficiently

employed in large scale scientific parallel computa-

tions, adding rapid software development and safety to

the power of existing native computing environments.
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9. Conclusions and future work

This paper has described a new approach to creat-

ing Java interfaces to native codes. The proposed Java

language extensions and the Janet preprocessing tool

enable simple, fast and convenient development of ef-

ficient interfaces while retaining full control over their

low-level behavior. For the immediate future, our goal

is to provide a visual environment (with a graphical

user interface) to enable the user to graphically design

the structure of Java wrappers for a native library. The

tool would then generate Janet code which could be

further refined by the user. A fully automatic wrapper

generator is also under consideration with its output

being subject to potential refinement with the GUI tool.

We also intend to apply Janet to enable the usage of

native resources in the Harness Metacomputing Frame-

work [10,20]. Finally, support for native languages

other than C is under development. The first candidate

here is C++ as it would eliminate the aforementioned

problems with unconditional branch statements.
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