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Creating multimode squeezes states and Greenberger-Horne-Zeilinger entangled

states using atomic coherent effects

Xiao Liang, Xiangming Hu∗ and Chang He
College of Physical Science and Technology, Central China Normal University, Wuhan 430079, People’s Republic of China

We propose a scalable scheme for a unitary multimode operator using an optical cavity with
an atomic ensemble. We exemplify three-mode and four-mode cases and engineer the squeeze
operators that are decoupled from the atomic degrees of freedom. The squeeze parameter can
be large since they are proportional to the number of atoms. Using the input-output theory we
show that ideal squeezed states and perfect squeezing could be approached at the output. At
the same time, we show that it is possible to obtain tripartite and quadripartite Greenberger-
Horne-Zeilinger entangled states for continuous variables. The responsible mechanism for both the
multimode squeezing and the genuine multipartite entanglement is based on the atomic coherence
controlled parametric interactions. The scalability of the scheme is simply obtained by including
more transitions in the atomic system.

PACS numbers: 03.67.Bg, 42.50.Pq, 42.50.Dv, 32.80.Qk

I. INTRODUCTION

The reduction of quantum noise is one of the impor-
tant issues in quantum optics, laser physics and nonlinear
optics since Caves et al. [1] first noted the possibilities
of manipulating quantum fluctuations with the aim of
precision measurement. Squeezing is defined, for an op-
tical field, when the fluctuations in a certain quadrature
are reduced below the vacuum level at the expense of in-
creasing them in its canonically conjugate variable [2, 3].
Since then great effort has been paid to it. Either the
theoretical proposals have been presented or the experi-
mental implementations have been performed. Squeezing
can happen either for a single-mode quadrature or for a
two-mode quadrature [2, 3]. Of extreme importance is
the close correlation of the two-mode squeezing to the
continuous variable (CV) entanglement [4, 5], which is
the important resources for the quantum information and
quantum computation [6–8]. For example, by using the
entangled squeezed states of the electromagnetic field one
realized the CV teleportation [9–11]. The two-mode (po-
larization) squeezing was realized by employing Kerr non-
linearity in optical fibers and with cold atomic ensemble
in optical cavities [12, 13]. Recently, an effective and tun-
able field squeeze operator for a single-mode field or for
a two-mode field has been proposed by using an atomic
ensemble in an optical cavity [14]. The squeeze operator
acts on a cavity with an atomic ensemble but decouples
from the atomic degrees of freedom. The squeeze param-
eter is scaled up with the number of atoms present in the
interaction region.

However, to our knowledge, beyond the two-mode case,
the multimode squeeze operator [15, 16] has not yet been
proposed or realized for atomic systems. Here we pro-
pose a mechanism for it. The multimode squeezing is
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of the particular importance since it is closely corre-
lated to the fully inseparable multipartite states. Such
multipartite inseparability is called the genuine multi-
partite entanglement. This term refers to states, in
which none of the parties can be separated from any
other party in a mixture of product states. One of im-
portant types of genuine multipartite entanglement is
Greenberger-Horne-Zeilinger (GHZ) entanglement [17].
In particular, the tripartite CV GHZ state is a three-
mode momentum (position) eigenstate with total mo-
mentum p1+p2+p3 = 0 (total position x1+x2+x3 = 0)
and relative positions xk − xl = 0 (relative momenta
pk − pl = 0), k, l = 1, 2, 3, k 6= l, and exhibits maximum
entanglement. Genuine multipartite entanglement en-
ables one to construct a quantum teleportation network
[18–20] or to perform controlled dense coding [21, 22].
Loock and Furusawa [23] presented experimental criteria
to detect genuine multipartite CV entanglement by using
variances of particular combinations of all the quadra-
tures involved. These combinations are measurable with
only a few simple homodyne detections. Experimental
preparation has been performed by using independent
squeezed fields and beam splitters [19–21]. So far exper-
imental research comes to the four-mode case [20].

On the other hand, the atom-field interactions are fun-
damental mechanisms for creating the multipartite en-
tanglement without use of initially prepared squeezing.
For the two-mode case, by using an ensemble of coher-
ently driven two-level atoms one can generate CV entan-
glement [24–26]. The atom absorbs two photons from
the strong driving field and emits two new photons at
a pair of Rabi sidebands into the cavity modes [27, 28].
Such a two-photon process is responsible for the non-
classical correlation. In order to obtain multipartite en-
tanglement one turns to multilevel atomic systems [29–
32], in which atomic coherent effects are particularly im-
portant. Among others is coherent population trapping
(CPT) [3, 33], which has been intensively studied for it
sets up a basis for various coherence phenomena such
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as electromagnetically induced transparency and quan-
tum control of photons [34–37], amplification and lasing
without inversion [38–43], enhancement of nonlinear op-
tical processes [44–47], and modifications of spontaneous
emission [48–52].

The purpose of the present paper is to use the atomic
coherent effects to engineer a multimode squeeze opera-
tor. We exemplify three- and four-mode cases and de-
rive the squeeze operators, which are decoupled from the
atomic degrees of freedom. The squeeze parameters can
be large since they are proportional to the number of
atoms. According to the relation between the input and
output fields, ideal multimode squeezed states and per-
fect squeezing are achievable. At the same time one can
obtain multipartite CV GHZ entangled states. Physi-
cally, the atomic coherent effects [3, 33] and parametric
interactions [27, 28] combine to be responsible for squeez-
ing and entanglement. In principle, the present scheme is
scalable by including more transition channels. The re-
maining part of the present paper is organized as follows.
In Sec. II, we present the model and derive the squeeze
operator for the four cavity fields. In Sec. III, we analyze
the quantum correlations and show the squeezing and en-
tanglement for three and four fields. The conclusion is
given in Sec. IV.

II. SQUEEZE OPERATORS FOR THREE OR

FOUR MODES

We consider an ensemble of N -independent atoms that
are placed in a four-mode optical cavity, as shown in Fig.
1. The interactions of the atoms with the driving fields
and the cavity fields are described in Fig. 2. The atom
has three levels, of which one is the ground state |0〉 and
the other two are excited states |1〉 and |2〉. As usual,
the driving fields are treated classically and the cavity
fields are treated quantum mechanically. Two external
driving fields of circular frequencies ω1,2 are applied to
the dipole-allowed transitions |0〉 − |1, 2〉 with Rabi fre-
quencies Ωje

iψj (j = 1, 2), respectively, where Ωj are the
real amplitudes and ψj are the phases. Four sidebands of
circular frequencies νl are amplified as four cavity fields,
which are described by the annihilation and creation op-

erators al and a†l (l = 1 − 4). In the rotating wave ap-
proximation and in an appropriate rotating frame, we
derive the master equation for the density operator ρ of
the atom-field composite system as [3]

ρ̇ = − i

~
[H, ρ] + Lρ, (1)

with the Hamiltonian H = H0 +H1, where

H0 =

2
∑

j=1

N
∑

µ=1

~[∆jσ
µ
jj +

Ωj
2
(e−iψjσµ0j + eiψjσµj0)], (2)
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FIG. 1: (Color online) The possible setup for the creation
of GHZ entanglement of four cavity fields (denoted by the
annihilation operators a1−4).
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FIG. 2: (Color online) Level scheme for the interactions of
two driving fields (denoted by Rabi frequencies Ω1,2) and four
cavity fields with an atom in V configuration. ∆’s and δ’s are
the detunings, which are defined in the text.

describes the interaction of the driving fields with the
atoms, and

H1 =

2
∑

j=1

N
∑

µ=1

~σµj0(g2j−1a2j−1e
−iδ2j−1t + g2ja2je

−iδ2j t)

+H.c., (3)

represents the interaction of the cavity fields with atoms.
In the above equations, ~ is the Planck constant and H.c.
is the Hermitian conjugate. For the µth atom, σµjk =

|jµ〉〈kµ| (j, k = 0, 1, 2) are the projection operators for
j = k and the spin-flip operator for j 6= k. gl are the
strengths for the atom-cavity field couplings. ∆j = ωj0−
ωj (j = 1, 2) are the frequency detunings between the
atoms ωl0 and the driving fields. δ1 = ν1 − ω1, δ2 =
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ν2−ω1, δ3 = ν3−ω2, and δ4 = ν4−ω2 are the frequency
detunings between the cavity fields and the driving fields.
The decay term in Eq. (1) takes the form Lρ = Laρ+Lcρ,
where

Laρ =

2
∑

j=1

N
∑

µ=1

γj
2
D[σµ0j ]ρ, (4)

denotes the atomic relaxation, and

Lcρ =

4
∑

l=1

κl
2
D[al]ρ, (5)

stands for the cavity loss. We have defined the superoper-
ator D[Q]ρ ≡ [Qρ,Q†]+[Q, ρQ†] for the atomic operators
σµ0j and the fields operators al. γ1,2 denote the atomic
spontaneous decay rates and κ1,2,3,4 represent the cavity
decay rates.
Here we are interested in the dispersive interaction

case, where both the driving fields and the cavity fields
are far off resonance with atomic bare-state transitions,
and the cavity fields are far off resonance with the dressed
transitions by the driving fields. In order to show the es-
tablishment of a multimode squeeze operator we derive
the time evolution of the four cavity fields through the
following four steps.
(i) We introduce two orthogonal coherent superposi-

tion states of the two excited states [3]. For the Raman
two-photon resonance case ∆1 = ∆2 = ∆, these super-
position states are defined as

|1̃〉 = cosφe−iψ1 |1〉+ sinφe−iψ2 |2〉,
|2̃〉 = − sinφeiψ2 |1〉+ cosφeiψ1 |2〉, (6)

where we have defined cosφ = Ω1

Ω , sinφ = Ω2

Ω , and the

effective Rabi frequency Ω =
√

Ω2
1 +Ω2

2. The Hamilto-
nian H0 is rewritten in terms of the superposition states
as

H0 =

N
∑

µ=1

~[∆(σµ
1̃1̃

+ σµ
2̃2̃
) +

Ω

2
(σµ

01̃
+ σµ

1̃0
)]. (7)

It is seen Hamiltonian (7) that only the superposition
state |1̃〉 is coupled to the equivalent field with the effec-
tive Rabi frequency Ω, while the coherent superposition
state |2̃〉 is decoupled from the driving fields. This in-
dicates that the superposition state |2̃〉 is not populated
due to the destructive interference although there are two
bare atomic transitions |0〉 → |1〉 and |0〉 → |2〉 to popu-
late the excited states |1〉 and |2〉. This is the very coun-
terpart of CPT [3, 33–37]. Here we call the coherent effect
the “coherent de-population”, and the coherent superpo-
sition state |2̃〉 the “dark state”. The physics common
to CPT and de-depopulation is destructive interference
between excitation transitions. The essential difference
lies between them. All population is in the dark state
for CPT case, while no population is in the dark state

for the coherent de-population case. Since the superpo-
sition state |2̃〉 is empty, we can drop it in the following
treatment.
(ii) We employ the dressed-atom approach [53]. By

diagonalizing the Hamiltonian H0, we write the dressed
states in terms of the bare atomic state |0〉 and superpo-
sition state |1̃〉 as

|+〉 = sin θ|0〉+ cos θ|1̃〉,
|−〉 = cos θ|0〉 − sin θ|1̃〉, (8)

where tan(2θ) = Ω
∆ , 0 < θ < π

2 . The dressed states |±〉
have their eigenvalues λ± = ~

2 (∆ ± Ω̄), where we have

used the generalized Rabi frequency Ω̄ =
√
∆2 +Ω2. In

terms of the dressed atomic states, the Hamiltonian (7)

is rewritten as H0 =
∑N
µ=1(λ+σ

µ
++ + λ−σ

µ
−−), where

σµ±± = |±µ〉〈±µ|. Then the damping term is written in
the form

Laρ =

N
∑

µ=1

γ

2
{cos4 θD[σµ−+]ρ+ sin4 θD[σµ+−]ρ

+γ cos2 θ sin2 θD[σµ++ − σµ−−]ρ}, (9)

where we have assumed γ1 = γ2 = γ for simplicity. In
what follows we are interested in the dispersive interac-
tion, for which the cavity fields are far off resonance with
the dressed atomic transitions. In this case, the cavity
fields do not change the atomic populations [27, 28]. The
equation for the expectation values of the projection op-

erators σ̄ll =
1
N

∑N
µ=1〈σ

µ
ll〉 (l = +,−) is derived as

dσ̄++

dt
= −γ cos4 θσ̄++ + γ sin4 θσ̄−−, (10)

together with the closure relation σ̄++ + σ̄−− = 1. At
the steady state we obtain the dressed populations

σ̄++ =
sin4 θ

cos4 θ + sin4 θ
, σ̄−− =

cos4 θ

cos4 θ + sin4 θ
. (11)

The expectation value for the flip operator of the dressed
atoms σ̄+− follows the following equation in the absence
of the cavity fields

dσ̄+−
dt

= (iΩ̄ + γ + 2γ cos2 θ sin2 θ)σ̄+−. (12)

From this equation we obtain the expectation value for
the flip operator, which takes the oscillating decay from
its initial value σ̄0

+− as

σ̄+− = σ̄0
+−e

iΩ̄t−γ(1+2 cos2 θ sin2 θ)t. (13)

For the far-off resonance case we will consider, the atomic
decay is negligibly small compared with the generalized
Rabi frequency, i.e., Ω̄

.
= |∆| ≫ γ.

(iii) We focus on the case where the driving and cav-
ity fields are far off resonance with the atoms. In or-
der to investigate the interaction of the cavity fields with
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the dressed atoms, we make a unitary transformation
exp(−iH0t/~) and transform into the second interaction
picture. The Hamiltonian is written in the form

H1 =

N
∑

µ=1

~[cos2 θ(g1a1 + g3a3)

− sin2 θ(g∗2a
†
2 + g∗4a

†
4)]σ

µ
+− +H.c.. (14)

We tune the cavity fields such that δ1 = δ3 < 0; δ2 = δ4 >
0; |δl| ≫ |δ1+ δ2|; (|∆|, |δj |) ≫ ||∆|− |δk|| ≫ (|gl〈al〉|, γ).
This not only guarantees that the superposition state |2̃〉
is decoupled from the cavity fields, but also that the cav-
ity fields are far off resonance with the dressed atomic
transitions. For ∆ ≫ Ω, we have cos θ = 1 + O(χ2),
sin θ = χ + O(χ3), σ̄−− = 1 + O(χ4), where χ = Ω

∆ .

Similarly, for −∆ ≫ Ω, we have sin θ = 1 + O(χ2),
cos θ = −χ+O(χ3), σ̄++ = 1+O(χ4). This indicates that
for the µth atom we can take the populations σµ−−

.
= 1

and σµ++
.
= 0 for ∆ ≫ Ω, and σµ++

.
= 1 and σµ−−

.
= 0

for −∆ ≫ Ω. At the same time, the expectation value
for the flip operator of the dressed atom shows its time
dependence σµ+− = σ0µ

+−e
iΩ̄t−γt. For the far off reso-

nance case, we can derive the effective Hamiltonian as
Heff = − i

~
H1(t)

∫

H1(t
′)dt′, where the indefinite inte-

gral is evaluated at time t without a constant of integra-
tion [54]. When |δl(|∆| − |δl|)| ≫ |gl|2N is satisfied the
Stark shift of the dressed atoms due to the cavity fields
is negligibly small. After discarding the fast oscillating
terms, we obtain the effective Hamiltonian

Heff = ~(ξ∗12a1a2 + ξ∗32a3a2 + ξ∗14a1a4 + ξ∗34a3a4)

+H.c., (15)

where the cross coupling coefficients between the cavity
fields read

ξ12 =
g∗1g

∗
2NΩ2

1e
2iψ1

∆2(|∆| − δ2 + iγ)
,

ξ32 =
g∗3g

∗
2NΩ1Ω2e

i(ψ1+ψ2)

∆2(|∆| − δ2 + iγ)
,

ξ14 =
g∗1g

∗
4NΩ1Ω2e

i(ψ1+ψ2)

∆2(|∆| − δ2 + iγ)
,

ξ34 =
g∗3g

∗
4NΩ2

2e
2iψ2

∆2(|∆| − δ2 + iγ)
. (16)

Hamiltonian (15) indicates the four simultaneous para-

metric processes: (i) |0〉 Ω1−→ |1〉 a1−→ |0〉 Ω1−→ |1〉 a2−→ |0〉,
(ii) |0〉 Ω1−→ |1〉 a2−→ |0〉 Ω2−→ |2〉 a3−→ |0〉, (iii) |0〉 Ω1−→
|1〉 a1−→ |0〉 Ω2−→ |2〉 a4−→ |0〉, (iv) |0〉 Ω2−→ |2〉 a3−→ |0〉 Ω2−→
|2〉 a4−→ |0〉. The simultaneous occurrence of these pro-
cesses is due to the atomic coherent effect stated as in
step (i). In Eq. (16), we keep the atomic decay γ al-
though it is negligibly small compared with the detuning
difference |∆|− δ2. In the following section, we will show

that the atomic decay has a negligible effect on the quan-
tum correlations for the far off resonance case, on which
we focus.
(iv) After performing the above three steps and deriv-

ing the effective Hamiltonian, we obtain a time evolution,
which yields a 4-mode squeeze operator [15, 16]

S4 = eε
∗

12
a1a2+ε

∗

32
a3a2+ε

∗

14
a1a4+ε

∗

34
a3a4+H.c., (17)

where we have defined the squeezing parameters εkl =
iξ∗klτ (k = 1, 3; l = 2, 4), and τ is the time. For given
evolution time τ , the squeeze parameters εkl can take
large values since they are proportional to the number of
atoms N . In the absence of any one of four modes (for
example, when there is no cavity resonance for a4), we
can obtain a squeeze operator for 3-mode field

S3 = eε
∗

12
a1a2+ε

∗

32
a3a2+H.c.. (18)

Since such a multimode squeeze operator can be estab-
lished, a multimode field initially in its vacuum state will
evolve into a squeezed state.
It is straight to generalize to more modes by including

more transitions in the present scheme. We can exam-
ine the dependence of the cross coupling strengths on
the number n of the transitions involved. When the l-
transition is driven by an external coherent field with
Rabi frequency Ωl, the effective Rabi frequency becomes
Ω =

√

∑n
l=1 Ω

2
l . In order to guarantee the dispersive in-

teractions, we must always take large detuning |∆| ≫ Ω,
whatever positive integer n we are given. Instead, the de-
tuning difference |∆| − δ2 remains unchanged when the
cavity fields are properly tuned. In this case, the coupling
parameters ξ2j−1,2k between the cavity modes a2j−1 and
a2k depend on the Rabi frequencies through the relation

ξ2j−1,2k ∝ ΩjΩk
∑n

l=1 Ω
2
l

, (19)

where j ≤ k; j, k = 1, 2, · · · , n. For equal Rabi fre-
quencies we have a simple relation ξ2j−1,2k ∝ 1

n , which
indicates that the coupling strengths decrease inversely-
proportionally with the number n of the involved transi-
tions.

III. GHZ ENTANGLEMENT FOR THREE OR

FOUR PARTIES

In the following section, we exemplify three and four
modes and show that ideal squeezed states and perfect
squeezing could be approached at the output port. At
the same time, we show that tripartite and quadripartite
GHZ entangled states can be obtainable. In order to
investigate the multimode correlations, we first define the
quadrature operators for each mode as

xl = al + a†l , pl = −i(al − a†l ), (20)
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such that [xl , pl] = 2i, l = 1 − 4. Then the quadrature
operators for n ≥ 3 modes can be defined as

Xn =
1√
n

n
∑

l=1

xl, Yn =
1√
n

n
∑

l=1

pl. (21)

If the variances for certain quadratures have fluctua-
tions below the standard quantum limit one has n-mode
squeezing. We define the variances VXn

= 〈(δXn)
2〉 and

VYn
= 〈(δYn)2〉 for operators Xn and Yn, respectively.

Squeezing occurs when VXn
< 1 or VYn

< 1.
We learn that for three cavity fields a1,2,3, two condi-

tions are sufficient to verify the CV GHZ entangled state
[23]. These two conditions are

U12 = V (x1 + x2) + V (p1 − p2 + h3p3) < 4,

U23 = V (x2 + x3) + V (p2 − p3 + h1p1) < 4, (22)

where hl (l = 1, 3) are arbitrary real parameters that
are used to optimize the correlations. The optimization
parameters are obtained by minimizing the variances as

h1 =
V31 − V21

V11
, h3 =

V23 − V13
V33

, (23)

where Vkl =
1
2 (〈δpkδpl〉+〈δplδpk〉). For four cavity fields,

there are three inequalities that are sufficient for the GHZ
entanglement [23]

U34 = V (x3 + x4) + V (p3 − p4 + h1p1 + h2p2) < 4,

U14 = V (x1 + x4) + V (p1 − p4 + h2p2 + h3p3) < 4,

U23 = V (x2 + x3) + V (p2 − p3 + h1p1 + h4p4) < 4,

(24)

where the optimization parameters hl (l = 1 − 4) are
derived as

h1 =
V44(V12 − V13)− V14(V24 − V34)

V 2
14 − V11V44

,

h2 =
V33(V12 − V24)− V23(V13 − V34)

V 2
23 − V22V33

,

h3 =
V22(V13 − V34)− V23(V12 − V24)

V 2
23 − V22V33

,

h4 =
V11(V24 − V34)− V14(V12 − V13)

V 2
14 − V11V44

. (25)

For the present system, since the cavity fields are de-
coupled from the atomic degrees of freedom, we have the
master equation for the reduced density operator ρc of
the cavity fields

ρ̇c = − i

~
[Heff , ρc] + Lcρc, (26)

where the effective Hamiltonian and the cavity damp-
ing are given in Eq. (15) and Eq. (5), respectively.
By means of the generalized P representation of Drum-
mond and Gardiner [55], and from the master equa-
tion (26) we can derive the set of Langevin equa-
tions. To do this, we choose a definite operator order:

a†1, a
†
2, a

†
3, a

†
4, a4, a3, a2, a1, and use the correspondences

between the c–numbers and the operators: αl ↔ al, α
∗
l ↔

a†l (l = 1−4). For the sake of simplicity we assume −iξkl
(k = 1, 3; l = 2, 4) to be positive, which is guaranteed
by manipulating the phase factors. Then we substitute
ξkl for −iξkl and match the standard notation for the
two-mode case [56]. The set of Langevin equations are
derived as follows

α̇1 = αin1 − κ′1α1 + ξ12α
∗
2 + ξ14α

∗
4 + Fα1

(t),

α̇2 = αin2 − κ′2α2 + ξ12α
∗
1 + ξ32α

∗
3 + Fα2

(t),

α̇3 = αin3 − κ′3α3 + ξ32α
∗
2 + ξ34α

∗
4 + Fα3

(t),

α̇4 = αin4 − κ′4α4 + ξ14α
∗
1 + ξ34α

∗
3 + Fα4

(t), (27)

together with those for α∗
l (l = 1 − 4). In the above

equations, αinl are the average amplitudes for the in-
put fields, and κ′l = κl

2 . Fαl
(t) are the Langevin fluc-

tuation forces and are assumed to be δ correlated, sat-
isfying 〈Fαk

(t)Fαl
(t′)〉 = Dαkαl

δ(t − t′). The nonzero
diffusion coefficients are Dα1α2

= −ξ12, Dα2α3
= −ξ32,

Dα1α4
= −ξ14, and Dα3α4

= −ξ34, Dαlαk
= Dαkαl

, and
Dα∗

k
α∗

l
= Dαkαl

. By writing αl = 〈αl〉+ δαl and describ-
ing to first order the fluctuations in the field variables,
we obtain the linearized Langevin equations, which are
given in a compact form

d

dt
δX(t) = −BδX(t) + F (t), (28)

where δX(t) = (δα1, δα2, δα3, δα4, δα
∗
1, δα

∗
2, δα

∗
3, δα

∗
4)
T ,

F (t) = (Fα1
, Fα2

, Fα3
, Fα4

, Fα∗

1
, Fα∗

2
, Fα∗

3
, Fα∗

4
)T , where

the drift matrix G can easily be obtained from Eq. (27).
The correlation matrix for the noise term 〈F (t)FT (t′)〉 =
Dδ(t−t′) is easily obtained from the above diffusion coef-
ficients. The system reaches its steady state and is stable
when all of the eigenvalues of G have positive real parts.
The linearized Langevin equations (28) can be rewritten
in the spectral form. Defining the Fourier transforma-
tion δR(ω) = 1√

2π

∫

dte−iωtδR(t), we write the correla-

tion spectrum as 〈δR(ω)δRT (ω′)〉 = S(ω)δ(ω+ω′), where
S(ω) is derived as

S(ω) = (B − iωI)−1D(BT + iωI)−1, (29)

where I is a unit matrix.
We present the measurable spectral quantities for the

optical fields outside the cavity. By VXn
(ω), VYn

(ω), and
Ukl(ω) we denote the output spectra for the correlations
V (Xn), V (Yn), and Ukl, respectively. We use the input-
output relations [2, 56] ainl + aoutl =

√
κlal and assume

the coherent inputs. Defining the correlation spectra
〈δO1δO2〉(ω)δ(ω + ω′) = 〈δO1(ω)δO2(ω

′)〉 for arbitrary
two operators O1 and O2, we relate the output spectra
to the intracavity spectra through the relations

〈δxokδxol 〉(ω) = (−1)k−l〈δpokδpol 〉(ω) (30)

= δkl +
√
κkκl〈δxkδxl〉(ω),

where we have used Kronecker delta function δkl = 1 for
k = l, and otherwise δkl = 0.
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FIG. 3: (Color online) The three-mode correlation spectrum
VX3

(ω) for various parameters as in the text.
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FIG. 4: (Color online) The correlation spectra U12 (ω) (solid)
and U23 (ω) (dashed) for various cases of different parameters.

In what follows we present the numerical results. The

cooperativity parameters are defined as Cl =
g2lN

κ2

l

, which

are associated with the different modes al (l = 1−4). As
the first step we assume that γ is negligibly small com-
pared with the detuning |∆| − δ2. We rescale the decay
rates, detunings, Rabi frequencies, and Fourier frequency
in units of a rate parameter κ MHz. The parameters are

chosen as Ω1 = Ω2 and Ω2

∆2 (|∆| − δ2)
−1 = 2 × 10−3κ−1.

We first give the numerical results for the three-mode
case, which are obtained simply by removing any one of
four modes. For definiteness we remove the a4 mode.
Plotted in Fig. 3 is the three-mode correlation spec-
trum VX3

(ω) for various values of cavity loss rates and
cooperativity parameters: (a) κ1,2,3 = 0.5κ,C1,2,3 = 250;
(b) κ1,2,3 = 0.5κ,C1 = 120, C2 = 400, C3 = 1200; (c)
κ1 = 0.5κ, κ2 = 0.4κ, κ3 = κ,C1,2,3 = 330; and (d)
κ1 = 0.5κ, κ2 = 0.8κ, κ3 = 0.4κ,C1 = 40, C2 = 800, C3 =
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FIG. 5: (Color online) The four-mode correlation spectrum
VX4

(ω) for various parameters as in the text.
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FIG. 6: (Color online) The correlation spectra U34(ω) (solid),
U14(ω) (dashed), and U23(ω) (dotted) for various cases of dif-
ferent parameters.

400. It is seen that for various choices of parameters,
the fluctuation spectrum drops below the standard quan-
tum limit 1. This means that the three-mode quadra-
ture X3 has the reduced fluctuations. For a certain
case (e.g., (b)), the fluctuations are reduced to the zero
level, which shows the ideal squeezed states and perfect
squeezing. In Fig. 4 we plot the two correlation spectra
U12(ω) and U23(ω) for (a) κ1,2,3 = 0.5κ, C1,2,3 = 240;
(b) κ1,2,3 = 0.5κ, C1 = 50, C2 = 150, C3 = 550; (c)
κ1 = 0.5κ, κ2 = 0.25κ, κ3 = κ,C1,2,3 = 400; and (d)
κ1 = 0.5κ, κ2 = 0.75κ, κ3 = κ,C1 = 60, C2 = 500, C3 =
30. For the identical cavity loss rates and the identical
cooperativity parameters (Fig. 4(a)), the curves for the
correlation spectra U12(ω) and U23(ω) display the same
dip. In terms of correlation spectra, the criteria (22)
in the spectral form are well satisfied, which shows that
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FIG. 7: (Color online) The four-mode correlation spectrum
VX4

(ω) for η = 0 (solid), η = 0.25 (dashed) and η = 0.5
(dotted). The other parameters are taken from Fig. 5(a).

GHZ entanglement occurs for three cavity fields a1,2,3.
The criteria are also well satisfied for various cases of
different parameters (Fig. 4(b-d)).
Similarly, we show in Fig. 5 and Fig. 6 the existence of

squeezing and GHZ entanglement for four cavity fields.
Plotted in Fig. 5 is the correlation spectrum VX4

(ω) for
(a) κ1,2,3,4 = 0.5κ,C1,2,3,4 = 450; (b) κ1,2,3,4 = 0.5κ,
C1 = 120, C2 = 60, C3 = 480, C4 = 600; (c) κ1 =
0.5κ, κ2 = 0.6κ, κ3 = κ, κ4 = 0.75κ, C1,2,3,4 = 300;
and (d) κ1 = 0.5κ, κ2 = 0.9κ, κ3 = 0.6κ, κ4 = 0.45κ,
C1 = 420, C2 = 90, C3 = 180, C4 = 720. We see that
VX4

(ω) is reduced below the standard quantum limit 1,
which indicates the appearance of four-mode squeezing.
For the symmetrical case of parameters as in Fig. 5(a),
the dip drops to zero, which corresponds to the perfect
squeezing and ideal squeezed states. Shown in Fig. 6 are
the correlation spectra U34(ω) (solid), U14(ω) (dashed),
and U23(ω) (dotted) for (a) κ1,2,3,4 = 0.5κ,C1,2,3,4 = 200;
(b) κ1,2,3,4 = 0.5κ, C1 = 60, C2 = 200, C3 = 40, C4 =
720; (c) κ1 = 0.5κ, κ2 = 0.85κ, κ3 = 0.45κ, κ4 =
0.6κ,C1,2,3,4 = 180; and (d) κ1 = 0.5κ, κ2 = 0.8κ, κ3 =
0.45κ, κ4 = 0.6κ,C1 = 40, C2 = 240, C3 = 120, C4 = 560.
It is clear that for a wide range of parameters the crite-
ria (24) in the spectral form are met, which indicates the
existence of GHZ entangled state for four cavity fields.
After performing the numerical results we are in a po-

sition to analyze the physical mechanism. We recall that
coherently driven two-level atoms can be used as a reser-
voir to generate two-mode CV entanglement[25, 26]. The
responsible mechanism is based on the quantum correla-
tions of a pair of sideband photons [27, 28]. The upper
and lower sideband photons are generated simultaneously
when the atoms absorb two photons from the strong driv-
ing field. In the large detuning limit, the initial atomic
population is not significantly changed, and a paramet-
ric process based on the two-photon transition is created.
When only the modes a1,2 are present, Eq. (17) reduces
to a two-mode squeeze operator. Such a mechanism holds
for the case where there are only the modes a3,4. When
both channels are involved for a1−4 modes, we have quan-

tum interference between these two pathways [3, 33–37].
Due to the atomic coherent effects, the odd modes a1,3
and the even modes a2,4 are in the simultaneous paramet-
ric interactions, which determines the four-mode squeeze
operator. By including more transitions, we can achieve
the squeeze operators for more modes.

So far we have neglected the atomic spontaneous de-
cay. Now we turn to discussing the effects of the atomic
decay on the quantum correlations by exemplifying the
four-mode case. For the sake of convenience we define the
ratio η = γ

|∆|−δ2 , where |∆| − δ2 is the frequency detun-

ing between the dressed atomic resonance and the cavity
mode. Fig. 7 gives the four-mode correlation spectrum
VX4

for η = 0 (solid), η = 0.25 (dashed) and η = 0.5 (dot-
ted). The other parameters are the same as for the curve
(a) in Fig. 5. We see that the correlation spectrum is
almost kept unchanged although the decay rate changes
so much. Plotted in Fig. 8 are the correlation spectra
(i) U34(ω), (ii) U14(ω), and (iii) U23(ω) for η = 0 (solid),
η = 0.25 (dashed), and η = 0.5 (dotted). The other pa-
rameters are the same as in (b) of Fig. 6. It is clear that
the correlation spectra are not significantly influenced.
Physically, all fields are far off resonance with atomic
transitions, including the dressed transitions. It means
that the spectra of the cavity fields locate beyond the
spontaneous emission spectrum of the atoms. This is the
very advantage of using dispersive interactions as physi-
cal mechanisms that generate nonclassical light. The es-
sential difference of the present scheme from the existing
ones is the simultaneous dispersive interactions through
two or more channels, between which quantum interfer-
ence is created. It is the quantum interference that plays
a crucial role in creating the nonclassical correlations be-
tween multiple modes.

A great number of atomic structures can be used as
candidates for the present system. For example, for
four modes, the atom 87Rb is a candidate, in which we
use |0〉 = |5S1/2, F = 2〉, |1〉 = |5P1/2, F = 3〉 and
|2〉 = |5P3/2, F = 3〉. The two transitions in the V
configuration are well separated from each other by the
D1 line (794.8 nm) and the D2 line (780.0 nm). In or-
der to avoid the Doppler effect one can use an ensem-
ble of cold atoms, which are prepared a magneto optical
trap [12, 13, 57–59]. A rough estimate of the coupling
strengths can be made by considering a particular case,
gl = g, κl = κ̃ (l = 1 − 4), and Ωj = Ω̃ (j = 1, 2).
In this case we have equal cross coupling coefficients,
|ξ2j−1,2k| = ξ (j, k = 1, 2). For the dispersive interac-
tion we can take parameters |∆| − δ2 ∼ 4γ, |∆| ∼ 25γ,

Ω̃ ∼ 5γ, we have ξ
κ̃ = 10−2C κ̃

γ , where C = g2N
κ̃2 is the

cooperativity parameter. When the parameter C κ̃
γ is in

the order of ∼ 102, the cross coupling strength is in the
order of the cavity loss rate, ξ ∼ κ̃. A comparison can be
made with the realistic cases with atomic ensembles [12–
14, 60–65]. We use the atomic 87Rb D2 transition with
decay rate γ ∼ 2π× 5.4 MHz. For the cavity parameters
we choose the waist w ∼ 35 µm and homogeneous laser
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FIG. 8: (Color online) The correlation spectra (i) U34(ω), (ii) U14(ω), and (iii) U23(ω) for η = 0 (solid), η = 0.25 (dashed) and
η = 0.5 (dotted). The other parameters are taken from (b) of Fig. 6.

beams of width d ∼ 50 µm, both of which correspond to
an interaction volume of ∼ 10−7 cm3. The cavity loss
rate takes a value of κ̃ ∼ 2π × 2.5 MHz. For a low den-
sity of ∼ 1012/cm3, which is small enough to prevent
coherence losses due to collisions, we have N ∼ 104. For
the above parameters, the coupling constant is required
such that g ∼ 2π×37 kHz, which is quite loose condition
for the coupling strength. In comparison, a realistic cou-
pling constant takes a value of g ∼ 2π × 100 kHz. This
shows that the present scheme is experimentally accessi-
ble within the current technology.

IV. CONCLUSION

In conclusion, by exemplifying four cavity fields we
have shown that multimode squeeze operators are ob-

tainable by using atomic coherent effects in a three-level
V system. Due to the atomic coherent effects, multiple
parametric processes occur simultaneously. The squeeze
parameters are large since they are proportional to the
number of the involved atoms. This squeeze operator
creates multimode squeezed states and multipartite CV
GHZ entangled states. The numerical results for the
correlation spectra at the output are given for the cases
of three and four fields.
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