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Abstract. We use formal ontologies to represent know-
ledge about digital library content and services. For-
mal ontologies define concepts with logic in a frame-
inheritance structure. The expressiveness and precision of
these structures supports computational reasoning that
can be used in important ways. This paper focuses on the
creation of ontological metadata.

We create ontological content metadata by gener-
ating it from MARC (MAchine Readable Cataloging)
data. MARC contains much information that is hard to
exploit computationally. In particular, relationships be-
tween works are implicit in shared values and natural lan-
guage notes. The conversion process involves specifying
an ontological model, mapping MARC to the ontology,
and reasoning about the data to create explicit links be-
tween works.

Service metadata will be supplied by providers who
wish to participate fully in a digital library that is im-
plemented as a decentralized multi-agent system. Agents
advertise by describing their services in terms of ontolog-
ically defined concepts. We reason about these descrip-
tions to organize them into subsumption taxonomies.
Agents can then find the best available services to meet
their needs by describing their needs, without requiring
a priori knowledge of other agents. This infrastructure
has demonstrated its usefulness in a multi-agent system
organized as a computational economy.
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1 Introduction

A fundamental issue in building libraries is how to orga-
nize large amounts of information so that users can find

what they need, when they need it. To this end, librar-
ians have developed sophisticated classification schemes
and cataloging rules for creating metadata. Metadata de-
scribes works contained in libraries. Metadata enhances
works’ usefulness by providing a basis for search, and
more generally, by identifying their intellectual and his-
torical contexts.

Digital libraries will make greater demands on meta-
data than do traditional libraries. The quantity of in-
formation will be even vaster, and access will be pro-
vided with a large variety of services that help users de-
fine and satisfy their needs. Most of these services must
be routinely provided without human assistance. Thus,
it is essential that metadata used in digital libraries be
amenable to computation. Digital libraries should be ca-
pable of reasoning about their contents to reformulate
queries, customize services to the task and user, deduce
new relations between works, and so forth. In short, the
metadata must support inference.

We use metadata based on formal ontologies to sup-
port sound computational reasoning. Formal ontologies
use logic to define concepts in relation to other concepts.
We describe digital library works with instances of on-
tology concepts. We can reason about relations among
attributes defined in the ontology, and about relations
among the works themselves. We define services as on-
tology concepts, and can reason about these definitions.
For example, we identify when one service is a specializa-
tion of another even when this relationship is not asserted
explicitly in the definition. This paper focuses on the cre-
ation of ontological metadata for digital library content
and services.

Formal ontology is an appropriate technique for mod-
eling complex domains. Concept definitions can form
webs of relations, rather than being limited to trees. Con-
cepts can have many descriptive dimensions (attributes),
may be partially described at any level of granular-
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ity (with any combination of dimensions), and may be
viewed from many perspectives (accessed by different
sequences of attribute values). For example, we can rep-
resent a song as being simultaneously music, linguistic
expression, and possibly fiction, without needing to pri-
oritize these characteristics with respect to each other.
A user might search for an audio tool to hear some group
of songs, or for songs that can be played with a certain
audio tool. In an ontology, retrieval supports access from
either perspective and at any level of granularity. In com-
parison, declarative formalisms with less expressiveness
than ontologies, such as relational databases, force com-
mitments to particular combinations and orderings of
dimensions.

Our ontological model for content is centered around
a hierarchy of five concepts that loosely describes the
creation of work, and thus, how works are derived from
other works. A CONCEPTION is an abstract work, an
EXPRESSION adds description of the content, a MANI-
FESTATION adds publishing format, a MATERIAL-
IZATION adds production format, and an INSTANCE
has an address for a particular copy. In many respects
this model articulates librarians’ traditional world-view:
it borrows most heavily from the proposal by the Interna-
tional Federation of Library Associations (IFLA 1996).

To make the creation of ontological content metadata
practical, we generate it from MARC (Network Devel-
opment and MARC Standards Office 1994), thus lever-
aging the tremendous investment in that format. When
two MARC records share data – for example, they might
have the same uniform title and publisher – we may infer
either that one work is derived from the other, or that
both are derived from a common ancestor. MARC also
includes many natural language notes with information
about derivation. Computers can make inferences based
on shared data and process natural language to interpret
notes, but it is preferable not to do this while users are
waiting. Generating ontological metadata from MARC
is thus a form of preprocessing, in which relationships
implicit in MARC are converted into explicit, labeled re-
lations amenable to manipulation by computers.

We are not currently trying to develop specific on-
tological models of digital-library services; we believe it
is premature to do so. Rather, we provide strong in-
centives for providers to describe their services ontologi-
cally as they become available. Our system, the Univer-
sity of Michigan Digital Library (UMDL) (Birmingham
et al. 1994), has a decentralized, agent-based architecture
(Durfee et al. 1998). A defining characteristic of this ar-
chitecture is that agents form teams with other agents to
solve problems. Agents choose to team with other agents
– at least the first time they work together – on the basis
of other agents’ ontological definitions of their services.

Figure 1 provides a high-level overview of agents coop-
erating to answer a user’s content query. The user agent
asks a mediator agent to recommend one or more collec-
tion agents appropriate to the query. The mediator agent

form
teamUser agent

Mediator agents
Collection

agents

execute query

find collection

Fig. 1. Forming an agent team to satisfy a query

communicates with other mediator agents to help it make
its recommendation. Each agent provides a specific ser-
vice. For example, one agent might provide a thesaurus,
another might know about topic hierarchies, and another
might keep track of individual agent locations. The user
agent then directly contacts the recommended collection
agents to execute the query.

The difference between service metadata for users and
agents is mostly in the degree of detail. In Fig. 1, the user
is typically not aware of the need for a thesaurus. On
another occasion, the same user might want to use a the-
saurus directly. (Agent services, however, may be hidden
from users.)

If we compare our approaches to the creation of
content metadata and service metadata, we might ask
whether we could create content metadata in a man-
ner analogous to our approach for service metadata.
Why not build infrastructure that encourages informa-
tion providers to supply their own metadata? Potentially,
other kinds of users – researchers, students, and so on
– could also contribute to metadata knowledge bases as
they use them. Computational reasoning would then be
used to facilitate, edit, filter, manage, and apply user
contributions. The role of the professional cataloging
community would change correspondingly, to become in-
creasingly focused on quality control and less on creating
metadata. Indeed, we suspect that the ever-increasing
flood of new information will eventually force changes in
this direction. There are, however, institutional as well as
technical obstacles to creating metadata in this way. For
now, we consider this kind of knowledge sharing “future
research”.

The remainder of this paper is structured as follows.
Section 2 defines “formal ontology”, and describes its rep-
resentation with description logic and the kinds of rea-
soning that are then available. Section 3 reports on our
creation of ontological metadata for content. Section 3.1
presents the UMDL ontology of digital library content.
Section 3.2 describes the generation of a knowledge base
of metadata from a sample of MARC records. Section 4
describes the infrastructure that incorporates the cre-
ation of ontological service metadata into the growth of
the system. Section 4.1 explains “runtime service clas-
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sification”, the process by which agents advertise and
find services using ontological metadata. Section 4.2 illus-
trates service classification in the context of the UMDL’s
experimental system, a society of agents organized as
a computational economy. Section 5 discusses the advan-
tages and disadvantages of aspects of our approach com-
pared to related work. Section 6 concludes the paper.

2 Formal ontologies

In artificial intelligence, an “ontology” is a set of vocab-
ulary definitions that expresses a community’s consensus
knowledge about a domain. This knowledge is meant to
be stable over time, and reused to solve problems. Note
that this concrete and utilitarian approach is quite dif-
ferent from “ontology” in philosophy, which concerns the
abstract nature of reality apart from human endeavor.

Formal ontologies define vocabulary with logic. The
syntax and semantics of the logic depends on the rep-
resentation language (see Genesereth and Fikes (1992)
for KIF, and Borgida and Patel-Schneider (1994) for de-
scription logics). We focus on description logics, which are
roughly equivalent to first-order logic in expressiveness,
but have some limited second-order capabilities. They are
different from first-order logic primarily in their focus on
inheritance relations. Ontological concepts are typically
organized in a subsumption taxonomy. Concepts are de-
fined as specializations of their parents by appending ad-
ditional relations.

Semantically, instances denote objects, concepts de-
note sets of objects, and relations denote sets of tuples of
objects. A concept (C) subsumes another (D) if every in-
stance of the latter is always also the former: C a D if and
only if DM ⊆ CM, where M is a logical model that maps
from symbols to a universe of objects, and DM and CM are
the extensions (denoted sets of objects) of those concepts.
The meaning of a concept is appropriately construed as
a function that maps from logical models to the concept’s
extension (Guarino 1997), ΩC: M→CM. Thus, ontologies
can be understood as nets of constraints that restrict the
set of possible models.

Concept definitions may be construed, more or less
explicitly, as frames. Definitions include a name, a set
of relations to other concepts, and a natural language
description, which serves strictly as documentation. In
slightly different contexts, relations may alternatively be
called roles, slots, or dimensions. Subsumption may be
called a “kind-of” relation. The “is-a” relation indicates
membership of an instance in a concept. Objects that
are instances of the concept inherit its relations. Objects
that instantiate associated concepts linked by relations
are called “role fillers”, or just “fillers”. Restrictions can
be placed on filler values, such as numerical restrictions,
or constraints in relation to other fillers. An instantiation
of a concept may be partial, with some roles filled, and
others waiting for fillers.

Another way to understand the nature of formal on-
tologies is to compare them to less formal structures.
Consider the following spectrum of structures used to de-
fine vocabulary. On the informal end of the spectrum are
library classification schemes, such as Dewey and Library
of Congress. These structures are trees of unadorned sym-
bols, where the relation between symbols, often called
“is-a”, is actually an imprecise commingling of subsump-
tion and instantiation.

Moving to the middle of the spectrum, we find “infor-
mal ontologies”, such as WordNet (Miller 1990). These
structures have other kinds of relations besides “is-a”,
although “is-a” links are still the most important. Fur-
thermore, informal ontologies are not trees, but directed
graphs: concepts can have multiple parents.

On the formal end of the spectrum are ontologies such
as those in the Ontolingua library at Stanford (Farquhar
et al. 1996). Here, the variety and precision of relations
is elaborated to the point where the entire meaning of
central concepts is captured by their relations to other
concepts. In informal ontologies, the authoritative mean-
ing of terms is in their natural language descriptions. In
formal ontologies, this descriptive text is documentation
only. By analogy, imagine studying a C program. You
read the comments first to learn how the program works,
but keep in mind that the documentation may be wrong –
it is the code that executes.

By itself, an ontology is a static structure without
behavior. The representation system determines how
the ontology can be used. We use description logic to
represent our ontologies: specifically, Loom (MacGregor
1991), a description logic system in the KL-ONE family
(Woods and Schmolze 1992). Description logic originally
developed out of semantic networks, starting in the 1970s
with a classic paper by Woods (1975) that drove home
the need to remove ambiguity by formal specification of
the semantics of concepts and links. Description-logic sys-
tems are susceptible to high computational costs. There
are many options, however, with complex tradeoffs be-
tween the ability to reason in various ways at various
times, and the efficiency and scalability of the system. We
discuss this issue further in Sect. 5.

Description logics can do “automatic classification”,
which algorithmically places new concept definitions into
their proper location in the ontology. The judgment of
whether one concept subsumes another is based on the
structure and content of the concept definitions. For ex-
ample, in Fig. 2 two services are defined, both a “kind-
of” RECOMMEND-DLCOLLECTION. The first line of
each service indicates inheritance from the “recommend-
dlcollection” concept, and the remaining lines further re-
strict the values of its slots. An initial colon (:) identifies
a Loom keyword. Other symbols are from the ontolo-
gies. QUERY-PLANNING-FOR-SCHOOLS is found to
subsume HIGH-SCHOOL-INFO-FINDER because every
role in the former corresponds to a role in the definition
of the latter, with a filler value that subsumes the corres-



P.C. Weinstein, W.P. Birmingham: Creating ontological metadata for digital library content and services 23

QUERY-PLANNING-FOR-SCHOOLS
(:and recommend-dlcollection

            (:all recommend-dlcollection.has.audience school)
      comparisons

HIGH-SCHOOL-INFO-FINDER
(:and recommend-dlcollection

            (:all recommend-dlcollection.has.audience high-school)
          (:all recommend-dlcollection.has.topic science)))

Fig. 2. Intensional check for subsumption

ponding filler value. Therefore, automatic classification
depends on a precise meaning for every relation in the on-
tology. (See Woods (1991) for a thorough discussion of
automatic classification. This technology should not be
confused with “automatic classification” based on key-
words, or other non-logical approaches.)

Description logic is also amenable to inference by
modus ponens, which is a deductive process that allows
entailed facts to be found.

3 Ontological metadata for content

This section describes the UMDL ontology for digital li-
brary content, and the process of converting a sample of
MARC records to a knowledge base of ontological meta-
data. The ontology itself is a set of concept definitions,
the product of group discussions and hand-coding, first in
stylized English and then in Loom.1 The result of convert-
ing the MARC data is a Loom knowledge base: a set of
interrelated instances of the ontology concepts.

3.1 The UMDL content ontology

Here we present the central concepts of the ontology, fo-
cusing on our model of bibliographic relations (relation-
ships between works). At the time of writing, the ontology
includes 183 concepts, not including concepts built into
Loom. Of these, however, all but 16 central concepts are
primitive. In other words, most of the concept definitions
do not have relations sufficient to justify typing an in-
stance as a member of the concept unless it is explicitly
asserted to be a member.

1 See http://www.umich.edu/~peterw/Ontology/ontology.html

Table 1. The work hierarchy

Concept Definition Example

CONCEPTION A concept, plan, or design for work An idea for a story

EXPRESSION A conception with specified content A manuscript for a novel

MANIFESTATION An expression packaged in a publishing format A published edition of the novel

MATERIALIZATION, DIGITIZATION A manifestation embodied in a physical format The novel coded in SGML

INSTANCE A copy of a digitization A particular file on a disk

A word of caution: few of our concept definitions
have come easily. We spent hours considering alternative
ways to conceptualize familiar concepts such as SONG, or
DOCUMENT, and substantially more effort extracting
order from slippery areas such as genre (we use upper-
case to reference ontology concept definitions, as opposed
to their meaning in the world). From this experience, we
learned two important lessons. First, we need to find ways
to make ontological definition easier. This problem is dis-
cussed further in Weinstein and Alloway (1997). Second,
we believe that any attempt to impose a single conceptu-
alization on all digital libraries is bound to fail. We do not
seek one classification system to be used by everybody,
but rather, a system that may be useful to many, and an
approach (ontological modeling) that may be useful to
many more. In particular, research to support semantic
heterogeneity (see Sect. 5.3) may increase the feasibility
of tolerating local variation in language without sacrific-
ing all ability to compute using that language.

3.1.1 The work hierarchy

The backbone of the digital library content ontology is
a hierarchy of concepts that loosely models the creation
of work (Table 1). This hierarchy revises, extends, and
clarifies the proposal by IFLA (IFLA 1996). The creative
process starts with an idea. As long as it is abstract, we
call the work a CONCEPTION. After the content of the
work has been specified, it is an EXPRESSION. When
the EXPRESSION is published, it becomes a MANI-
FESTATION. The physical embodiment of the MANI-
FESTATION is a MATERIALIZATION; if digital, the
MATERIALIZATION is a DIGITIZATION. A particu-
lar copy of a MATERIALIZATION is an INSTANCE
(not to be confused with a description-logic “instance” of
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Fig. 3. Attributes associated with the work hierarchy

a concept). We believe that our work hierarchy is consis-
tent with informal definitions of work by Yee (1994) and
others in the library community. Note that “work” itself
is not a defined concept, but an ambiguous natural lan-
guage word that is very useful for conversation about fully
or partially instantiated objects in the work hierarchy.

More precisely, each level of the work hierarchy is
defined by the attributes associated with it. Figure 3
provides an overview. Any unlabeled links indicate “kind-
of” relations. A CONCEPTION is identified by its
UNIFORM-TITLE, CREATOR, and SEQUENTIAL-
NUMBER for numbered musical works. An EXPRES-
SION has a “genre”. This is the most complex part of
the ontology; we use a natural language term to refer to
it, and discuss it separately below. A MANIFESTATION
has a PUBLISHING-FORMAT, which is divided into
RECORDED for BOOKs, JOURNALs, etc., and LIVE
for performances, ongoing scientific observations, and so
on. A MATERIALIZATION has a DIGITAL-FORMAT,
which includes TEXT, IMAGE, VIDEO, and other kinds
of formats.

The relationship between the levels of the work hier-
archy is somewhat trickier than is immediately appar-
ent. We want the lower levels to inherit from the higher.
So, an INSTANCE is a kind of MATERIALIZATION,
MANIFESTATION, and so on. Thus, an INSTANCE has
a UNIFORM-TITLE that can be retrieved directly with-
out navigating all the way up the work hierarchy. We also,
however, want sibling instances to share data at all levels
of the hierarchy. In object-oriented systems, instantiating
an object allocates separate memory for the members of
every inherited class. In description logic, fortunately, we
can have this cake and eat it too: each concept in the work
hierarchy is defined as both being a “kind-of” and “ex-
tending” the concept above. The inherited value is then
constrained to be the “same-as” the value associated by
the “extends” relation. Currently, Loom does not prop-
erly enforce these “same-as” constraints, but we achieve

equivalent results for our limited application by procedu-
rally enforcing these constraints.

Genre has been especially difficult to define, and this
area of the ontology is provisional. We use “genre” as
the Library of Congress does (Network Development and
MARC Standards Office 1994), with a much more gen-
eral meaning than in English. Like “work”, no single def-
inition can capture all of the meaning required; rather,
“genre” refers to MODE and all of its subsidiary con-
cepts. MODE has multiple dimensions. VERISIMILI-
TUDE divides FICTION from NON-FICTION, which
are mutually exclusive. MEDIUM can be SOUND, SYM-
BOLIC, or VISUAL presentation: these are not mutually
exclusive. Thus, an instance of SONG can be FICTION,
SOUND, and SYMBOLIC all at the same time.

Figure 4 illustrates the structure of genre. (The con-
cepts at the top of the boxes “have” the underlined con-
cepts, the concepts in brackets are “kinds-of” the under-
lined concepts, and unlabeled links also indicate inher-
itance.) The full structure is not a tree, but a web of
connections. For example, the concept SONG is defined in
stylized natural language

SONG. MUSIC with lyrics, thus a LINGUISTIC-STYLE
and a TONGUE.

Stating that SONG is MUSIC indicates a kind-of inher-
itance relation, while the references to other concepts
identify roles.

In addition, every level of the work hierarchy is associ-
ated with CREATORs constrained to be of certain types.
For example, on the EXPRESSION level there are EDI-
TORs, TRANSLATORs, and so on.

3.1.2 Relations among works

Families of related works have a simple and elegant
structure that is amenable to efficient maintenance and
manipulation by computers. Namely, these structures
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Fig. 4. The structure of genre

are trees, as illustrated in Fig. 5. CONCEPTIONs can
have multiple EXPRESSIONs, but an EXPRESSION
can have only one CONCEPTION; and so on for each
level down to INSTANCE. Full metadata for a particu-
lar copy of a work includes a single (description logic)
instance at each level.

ConceptionC

E Expression

ManifestationM M

D Digitization

I I nstance

translate

sequel

reprint

reformat

copy

Fig. 5. A work with five derivation relations

Each kind of relation between works occurs at a par-
ticular level of the work hierarchy. For example, sequels
are between CONCEPTIONs; translation is from one
EXPRESSION to another; reprinting is at the MANI-
FESTATION level, reformatting involves DIGITIZA-
TIONs, and copying is between INSTANCEs. Similar
constraints apply to relations that add, continue, or de-
scribe other works rather than derive from them. In gen-
eral, we call relationships describing the creation of work
ontogenic relations.

Services that operate on higher levels of the work hier-
archy involve rights that are relatively profound. For ex-

ample, borrowing a book is a service at the INSTANCE
level. A digital library might reformat a document from
Microsoft Word to ClarisWorks: this would be an op-
eration at the DIGITIZATION level. Customized news
service is at the MANIFESTATION level. Collaborative
editing is at the EXPRESSION level. Licensing the rights
to use fictional characters, for example, would be at the
CONCEPTION level.

Whole-part relations are different from ontogenic
ones, and we have not yet implemented these. Figure 6
illustrates our current proposal using a hypothetical sce-
nario involving a textbook for teaching C++. The sec-
ond edition adds a diskette containing sample programs.
CONTAINS relations are established at each level of the
work hierarchy, starting at the first level for which the
contained work is considered independent relative to the
original work. Links at each level are required to avoid
ambiguity about the contents of the original work if, sub-
sequently, new works are created that are derived from
the contained work.

The ontological model changes the nature of the ven-
erable debate about when a work requires its own “main

extends-in-part

contains

containsrevised

Conception
(intro to C++)

Manifestation
(diskette)

Expression
(programs)

Manifestation
(with diskette)

Manifestation
(1st edition)

Expression
(text)

Expression
(with samples)

Fig. 6. Adding a part to a whole
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entry” (Yee 1994). Here, a subjective decision is appar-
ently required to determine the level of the work hierarchy
where the new work deserves an independent instance
that is not shared with the original work. For example, in
Fig. 6, if the programs already existed as examples in the
original text, then they would share the EXPRESSION
with the whole work, but would have a separate MANI-
FESTATION. Instead, the figure is drawn with a separate
EXPRESSION, consistent with a judgment that the sam-
ple programs were first created for the second edition.
The ontology refines the issue by distinguishing among
five levels of work description, rather than two. The on-
tology also changes the practical context of the decision;
to some extent, the choice is determined by the attributes
associated with each level. For example, if the successor
work does not share its genre with the predecessor, then
it cannot share its EXPRESSION either.

3.1.3 Potential benefits

Ontology-based metadata can provide the following im-
portant benefits:

– Very precise queries. For example, consider an am-
ateur musician who needs to learn a part. She can
pose a query equivalent to: “Find me a score for
Beethoven’s Fifth Piano Concerto, arranged for cello,
with a recorded performance that is also available.”
A similar query could be posed without specifying
the particular concerto. The traditional distinction
between access and descriptive metadata is blurred,
because all ontology-based data can be used for both
purposes. Attributes designated for controlled vocab-
ulary, however, will continue to be particularly useful
for access.

– Explicit paths from vague to precise queries. A vague
query identifies values desired for one or two at-
tributes. In ontologies, attributes are defined by their
relations to other attributes, providing numerous in-
tuitively natural sequences for prompting users to
articulate their requirements. Frequently, query re-
finement will occur by starting at the top of the work
hierarchy and progressing downwards. Queries can
also be refined by requesting increasingly specific ver-
sions of known attributes, or by adding values for
attributes associated with the known values.

– Integrating catalogs. The same kind of reasoning
used to merge work descriptions when generating our
knowledge base can be applied to integrate multiple
catalogs (see Sect. 3.2).

– Per-service calculation of license needs. License re-
quirements are a function of the kind of service pro-
vided, the work involved, and the licensing agreement
that covers the work. The ontology’s model of re-
lations between works can provide both a language
for expressing license agreements, and a means for
computing fees associated with services at runtime.
See Sect. 4.2 for preliminary work in this direction.

3.2 A knowledge base of metadata

This section describes the process of converting MARC
data to a knowledge base of ontological metadata, and
a user interface for browsing the knowledge base.2

Originally, we requested 500 US MARC records from
the University of Michigan library for works either by
or about Beethoven. The idea was to provide data with
many works related to others in the sample, and also a va-
riety of publishing formats and genres. The actual sample
contains 493 records, out of a total of almost 5000 in the
library related to Beethoven.

3.2.1 Generation from MARC

Generating the knowledge base involves mapping data
from MARC to the ontology, and reasoning about the
data to identify relations among works. The process is al-
most fully automatic, and is certainly fully automatable.

We generate the knowledge base in four steps:

1. Convert binary MARC data to text tagged with ontol-
ogy concepts.

2. Extract coded attributes and values from natural lan-
guage comments in the tagged text.

3. Convert the tagged text to Loom assertions. At this
stage, every value is treated as a distinct object.

4. Reason about the data to establish explicit relations
between works.

We convert MARC fields and values to tagged text
with a set of four control files that describe the MARC
format and its relation to the UMDL ontology. The pri-
mary control file maps each selected MARC field and
code to one or more ontology concepts. Some mappings
are conditioned on the MARC value to permit a sin-
gle field to be mapped to multiple ontological concepts.
The second control file establishes priorities for situa-
tions where multiple MARC fields map to the same on-
tological concept. The third control file identifies the lo-
cation of codes within the MARC fields, contingent on
MARC record type and bibliographic level. The fourth
control file includes information for each code, including
its length and the location of the code-value table.

For the Beethoven knowledge base, the extraction
of coded attributes and values from the MARC notes
was done by a human, but in a rapid, mechanical way
that could be achieved computationally with a lexicon
and some straightforward natural language processing.
For example, the 245c value “compiled and edited by
H.C. Robbins Landon” translates into “RE H.C. Robbins
Landon” (“RE” is a keystroke-saving code for “role, edi-
tor”). We spent an average of only forty seconds per
record on this transcription; with less than 500 records, it
was simply easier to do this by hand than to write a pro-
gram to do it.

2 This interface is available at
http://www.umich.edu/~peterw/Ontology/Beethoven/demo.html.
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The conversion of the tagged text to Loom asser-
tions (TELL statements) is trivial, since we postpone
all reasoning until the data is in Loom. Every MARC
record is assigned an ITEM-NUMBER associated with
a MATERIALIZATION (we are dealing only with meta-
data and so do not include the INSTANCE level). The
fifth control file provides the paths that link each of
the destination ontology concepts to MATERIALIZA-
TION. For each step along a path, a separate Loom
instance is created, with the MARC value (if there is
one) linked to the instance of the destination concept.
Thus, after execution of the TELL statements, the know-
ledge base contains metadata where every value asser-
tion is separate. For example, every ITEM-NUMBER
has its own MATERIALIZATION, MANIFESTATION,
EXPRESSION, and CONCEPTION. Furthermore, sin-
gle MATERIALIZATIONs are frequently linked to mul-
tiple instances of intermediate concepts, such as MU-
SIC, with one instance for each value related to the
concept.

Stage 4 is by far the most interesting. Here, we rea-
son about relations implicit in the MARC data, to make
them explicit. Our treatment, however, can only be con-
sidered a crude first pass. There is no end to the effort
that might be invested in developing increasingly refined
rules to glean additional information. See Tillet (1992) for
an interesting review of how relationships among works
are represented in past and current catalogs.

Frequently, partial or imprecise data suggests rela-
tionships that cannot be confirmed. In these cases we
assert relations that are considered “tentative”. For ex-
ample, the knowledge base includes two works that are
missing UNIFORM-TITLEs; one has the MANIFEST-
ATION-TITLE “Goethe et Beethoven”, while the other
is “Goethe und Beethoven”. We consider the CONCEP-
TIONs of these works to be “tentatively-the-same”.

By definition, “certain” relations that are not true
are errors; false “tentative” relations are merely false. In-
stances are merged only if their common identity is cer-
tain. Otherwise, a “tentatively-the-same” relation is as-
serted to link them.

We are liberal with “tentative” relations, but conser-
vative with “certain” relations. Thus, many tentative re-
lations are incorrect. The result of any deduction that
uses a tentative relation is also tentative.

Our processing includes the following steps:

a) Merge multiple instances of intermediate concepts
with unification. The unification algorithm uses cardi-
nality constraints that are part of ontology definitions.
If both an instance’s asserted type is subsumed by an-
other’s, and multiple values are permitted, then the
instances are merged.

b) Identify and merge shared CONCEPTIONs. CON-
CEPTIONs with the same UNIFORM-TITLE, CRE-
ATOR, and SEQUENTIAL-NUMBER for numbered
musical works are considered to be the same. When

the UNIFORM-TITLE is missing, we use the MANI-
FESTATION’s TITLE instead. Differences in punctu-
ation or case are ignored.

c) Identify and merge EXPRESSIONs that have the
same CONCEPTION, if all genre and associated
CREATOR values match, or if a manifestation-level
certain derivation is recognized.

d) Identify and merge MANIFESTATIONs that have
the same EXPRESSION, if the PUBLISHER and
PUBLICATION-DATE match, and other PUBLISH-
ING-FORMAT values of one instance are a subset of
those of the other instance. Also merge MANIFEST-
ATIONs if a materialization-level certain derivation is
recognized.

e) Identify CONCEPTIONs that are “tentatively-the-
same” using the same rule described in (b) above, but
ignoring missing CREATOR names, and using a per-
missive matching algorithm for comparing titles.

f) Identify EXPRESSIONs that are tentatively-the-
same as in (c), with either matching genre or CRE-
ATORs, but not both.

g) Identify MANIFESTATIONs that are tentatively-
the-same as in (d), but rather than a shared EX-
PRESSION, require only EXPRESSIONs that are
tentatively-the-same, or a shared CONCEPTION.

h) Establish relations to preceding works based on
MARC notes describing derivation relations. If no pre-
decessor is found in the work-family, generate meta-
data that describes what is known about the prede-
cessor (including all levels of the work hierarchy above
the level of the derivation, and information from the
MARC note)
There are nineteen types of relations transcribed from
the MARC data, mapped to eight relations in the
ontology. Values transcribed from the notes of the
successor work are compared to ordinary values de-
scribing candidate predecessor works. For each of the
source relations, a subset of the following attributes
are compared: author, editor, language, title, pub-
lisher, city, date, publisher-item-number. “Points” are
awarded for a match for each value, depending on the
source relation. A match to a candidate predecessor is
considered certain or tentative if points are accumu-
lated above respective thresholds.

i) Establish certain and tentative reproduction rela-
tions on the MATERIALIZATION level, triggered
by a FACSIMILE production format or an “original
date” in the MARC publication-date code.

We generated the Beethoven knowledge base on a Sun
SparcStation 20. Stages 1 and 3, written in C++, com-
pleted in a few seconds. Stage 4 is written in Lisp using
Loom, and required several hours. The binary MARC
data required 0.5 MB of disk. The Lisp image of the
resulting knowledge base requires 35 MB (this is not
a space-efficient format), but loads for execution in about
half a minute.
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Table 2. Number of work-hierarchy instances

Raw Merged New All

Conceptions 493 286 1 287
Expressions 493 473 128 602
Manifestations 493 490 26 645
Materializations 493 493 58 706

Table 2 summarizes the transformation of the know-
ledge base as the reasoning proceeds. After initial load-
ing of the data there is one instance on each level of the
work hierarchy for each MARC record. The “Merged”
column shows the results of steps (a) through (d), above.
Steps (e) through (g) do not affect the number of work
instances. The “New” column shows the number of pre-
decessors generated to represent works outside of the col-
lection in steps (h) and (i). The “All” column includes
empty instances at the lower levels, generated to complete
the work family of new predecessor instances created at
higher levels. These results reflect the nature of MARC
data, our sample, and our reasoning process. Perhaps
the single most salient feature is the relative success of
merging works at the CONCEPTION level compared to
other levels. This is primarily due to authority-controlled
titles – the UNIFORM-TITLE – and creator names.
The UNIFORM-TITLE is designed to link bibliographic
records. Not surprisingly, our output reflects this. 295 of
the original 493 CONCEPTIONs included a UNIFORM-
TITLE; these were merged to yield only 88 CONCEP-
TIONs. Of the 198 MARC records that do not have
a UNIFORM-TITLE, we found 60 that are tentatively-
the-same as at least one other CONCEPTION.

Our sample of MARC records extracted from the uni-
versity library is not actually random, in the sense that it
seems to either include, or not include, all of the records
for a given UNIFORM-TITLE. Thus, we believe that had
we included all records related to Beethoven we would
have obtained a comparable rate of merging of CON-
CEPTIONs. We surmise, however, that this rate would
be smaller if all records in the library were included (we

Table 3. Types of ontogenic relations identified in the Beethoven sample

Level Relation Certain Certain Tentative Tentative
Predecessors Successors Predecessors Successors

Conception Sequel 1 1 1 1
Expression Critiques 2 2 2 2

Revised 43 43 43 48
Supplements 7 7 7 11
Translated 78 80 78 118

Manifestation Reprinted 16 16 16 19
Republished 12 12 12 14

Materialization Reproduced 59 58 59 58

Total 218 219 218 271

picked the Beethoven domain because we expected to find
many relations among works).

The potential for merging on levels below CONCEP-
TION depends on the relative percent of the total work
universe contained in the sample. For example, the most
convincing evidence for merging EXPRESSIONs is to
find a certain manifestation-level derivation between two
works: for example, that a work was reprinted from a ver-
sion (that shares the same CONCEPTION) published in
some given year. We were able to merge only three pairs of
EXPRESSIONs on this basis. Of course, a library is less
likely to purchase a given work if it already owns a closely
related version.

The ontological model of genre associated with EX-
PRESSION is the most complex part of our ontology, and
rules for reasoning about merging EXPRESSIONs should
be correspondingly complex. The rules ((c) and (f) above)
that we applied in this effort were simplified to the great-
est degree of all our rules, compared to what they should
be. Therefore, we were able to confirm relatively few cer-
tain equivalences on this level, and have a relatively large
number of tentative matches (we consider 214 EXPRES-
SIONs to be tentatively-the-same as at least one other
EXPRESSION).

MARC contains more notes about ontogenic relations
at the EXPRESSION level than at any other. An onto-
genic relation on the EXPRESSION level identifies shar-
ing at the CONCEPTION level; again, MARC illumi-
nates most strongly the distinction of greatest traditional
interest, whether the item in hand is a new “work”. We
were able to establish 23 cases where an EXPRESSION
in our sample had been derived in some way from another
EXPRESSION in the sample. In 128 cases the original
EXPRESSION was not in our sample, and so we gener-
ated new EXPRESSIONs including whatever is known
about the predecessors.

Table 3 lists the frequency of the different types of
ontogenic relations identified. All “certain” relations are
also considered “tentative” relations: the semantics is
that we know, with at least that level of certainty, that
the relation holds. A single predecessor might have rela-
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Fig. 7. Selecting a work

tions to several successors. The converse can also hold,
but is less frequent. In our results the fanout is almost
exclusively tentative, but this may be because of our in-
ability to merge new work instances generated when the
predecessor was not found in the sample.

The new, partial work instances that we generate
when identifying ontogenic relations may be of some in-
terest to users in and of themselves. More generally, they
will be merged with full descriptions of the original works
if they are found in other catalogs that are integrated into
the knowledge base.

3.2.2 Browsing the knowledge base

We developed a Java interface to help library researchers
develop a feeling for the structure of ontology-based
metadata. The initial window (Fig. 7) lets the researcher
select a work by identifying a type restriction from a list of
genre and publishing format attributes: autobiographies,
concertos, sound recordings, and so on. The researcher
can also specify a keyword to be included in one of sev-
eral fields, including creator, title, topic, and others such
as editor.

The second window supports browsing work families
by navigating relations that connect the works (Fig. 8).
All metadata associated with the selected “current” work
is displayed in a text area to the left of the window. In
the middle are the relations that link that work to others.
After picking a relation, and then one of a list of re-
lated works, all metadata for the related work is also dis-
played. The related work can be made the current work,

and the process repeats.Users in various institutional con-
texts may potentially contribute to the knowledge base
while they are using it. To suggest this possibility, our
demonstration interface provides a button that lets a user
“confirm” a tentative relationship between two displayed
works. We consider “confirmed” to be an intermediate
level of certainty between “tentative” and “certain”.

4 Ontological metadata for services

This section describes the role of ontological metadata
for services in a decentralized, agent-based digital-library
architecture. This system requires (the functional equiv-
alent of) ontological service metadata to meet the design
goal of extensibility. Furthermore, agents enhance their
competitiveness by using ontological service metadata.
Thus, the architecture assures the development of onto-
logical service metadata.

The UMDL Service Classifier Agent (SCA)3maintains
ontologies of agent services via a process that we call
“runtime service classification”. Section 4.1 describes how
agents advertise and find services using an SCA. Sec-
tion 4.2 describes the SCA’s roles in an experimental
multi-agent system organized as a computational econ-
omy. This simulation illustrates how the benefits of run-
time service classification on the level of individual agents
manifest on the level of the system as a whole. Section 4.3
summarizes these benefits.

3 Developers can communicate directly with an SCA on the web;
the URL is http://www.umich.edu/~peterw/Ontology/sca.html.
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Fig. 8. Browsing by navigating relations

Agent communication requires shared language. We
assume that agents adhere to linguistic constraints on
several levels. On the level of message structure (how to
order the bytes to describe the communicated object) we
require a protocol equivalent to CORBA (Object Man-
agement Group 1995). On the level of agent dialogue
(the structure of conversational interaction) something
like KQML is required (ARPA Knowledge Sharing Ini-
tiative 1993). KQML messages include pairs of attributes
and values that describe the purpose and context of the
message. The “:content” field contains the substance of
the communication; the part that talks about the world.
We assume that the syntax of the content value is con-
strained by a language, such as KIF (Genesereth and
Fikes 1992), that can be translated to the language of
an SCA. The terminology included in the content value
must be either reserved words in the syntax language,
or terms from ontologies. The ontologies define linguis-
tic constraints on the level of symbol semantics. To be
specific, we use Xerox’s ILU (Inter-Language Unification)
version of CORBA, KQML, and the SCA uses Loom.

The UMDL service ontologies are divided into nested
modules, each of which is an ontology. The most gen-
eral includes services that we consider part of a “generic”
digital library. The second module adds concepts specific
to the UMDL implementation, such as “auctions”. The
third module describes agent services. We call this last
ontology “dynamic” because agents define new service
concepts at runtime. In contrast, “static” ontologies are

either fixed, or are changed slowly over time by human
committees.

4.1 Runtime service classification

The SCA is implemented using the UMDL agent class
(Durfee, Kiskis et al. 1996), which handles communica-
tion on the levels of message structure and agent dialogue.
For message syntax, we use Loom.

To advertise a service, an agent submits a service de-
scription to an SCA, which uses automatic classification
to locate the description within the agent-services ontol-
ogy. The service description can use terms from any of the
nested UMDL ontologies. The agent also includes a pre-
ferred label in the classification request (the desired name
for its service). The SCA responds to classification re-
quests in one of three ways:

– If the service description is classified as a new concept,
the preferred label is returned as the recommended
service label.

– If the service description is logically equivalent to
a service that has already been classified, then the la-
bel for the existing service will be returned.

– If the concept is new but the label has already been
used for another service description, the SCA auto-
matically generates a new label.

If an agent provides multiple services, it classifies each
one separately. It is also possible for several different
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kinds of agents to provide the same service – the SCA en-
sures that they all use the same label.

The example in Fig. 9 is a description for a service to
recommend a collection on the topic “science” for “mid-
dle school” audiences. The first line indicates inheritance
from the “recommend-dlcollection” concept, and the sec-
ond and third lines further restrict the values of its slots.
An initial colon (:) identifies a Loom keyword. Other sym-
bols are from the ontologies. Service concepts are always
treated as “defined” (not primitive) to support recogni-
tion based on their descriptions.

(:and recommend-dlcollection
(:all recommend-dlcollection.has.audience middle-school)
(:all recommend-dlcollection.has.topic science)))

Fig. 9. Example service description for classification

In KL-ONE systems, there is a deeply rooted bifurca-
tion between concepts, which denote sets of objects, and
instances, which denote individual objects. For example,
classification operates on concepts, but retrieval is over
instances. In Fig. 9, therefore, the fillers (“middle-school”
and “science”) must be both concepts (for classification of
the description) and instances (for retrieval of the adver-
tised description). The SCA automatically asserts that
fillers are instances when necessary.

Agents can use a variety of strategies to learn about
classified services. Often a single query suffices, but a se-
ries of queries can also be used to systematically ex-
plore the dynamic ontology. Loom’s query expression lan-
guage has full first-order expressiveness. Variables may
be chained to traverse ontological relationships, either to
restrict matches to services with specified role fillers, or
to reveal fillers for services that are otherwise selected. If
the query is successful, the SCA returns a list of sets of
bindings, where each set includes a value for each vari-
able in the query expression. The example in Fig. 10 is
a service description in a query that asks for a service
to recommend a collection, where the service is suitable
for an audience that is a kind of school. Symbols starting
with a question mark (?) are variables.

(:and (recommend-dlcollection ?service)
 (recommend-dlcollection.has.audience ?service ?audience)
 (school ?audience))

Fig. 10. Example service description for a query

Loom’s query language can be extended with custom
predicate functions that accept or reject every combina-
tion of bindings considered by the query. The SCA also
provides several “wrapper” functions that are invoked
once for the entire query. Whereas predicate functions
execute within Loom queries, wrapper functions typic-
ally include a Loom query. The example in Fig. 11 shows
an example of the most-specific-subsuming wrapper func-
tion, which ranks all subsuming services in order by the
weighted proximity of their role fillers to the ideal.

(:wrapper #'most-specific-subsuming
'(:and (recommend-dlcollection ?service)

        (recommend-dlcollection.has.audience ?service ?audience)
       (school ?audience)
              (recommend-dlcollection.has.topic ?service ?topic)

(topic ?science))
'((middle-school audience) (biology ?topic))
:priorities (2 1)
:attenuation-factors (0.6 0.8))

Fig. 11. Wrapper for ‘most specific subsuming’

This wrapper is used to search upwards in the con-
cept taxonomy through increasingly general services for
the first that is available. The first phrase is a Loom query
that identifies candidate services. The next line charac-
terizes the ideal solution. The :priorities list weights the
importance of each query dimension. The :attenuation-
factors quantify the judgment of proximity, compensating
for the density of development of the static ontology in
which the role fillers are defined.

The SCA can also automatically construct new con-
cepts from existing terms. The “define-inclusive-concept”
wrapper function returns a definition for a concept that
subsumes each of a list of concept labels. The new def-
inition is for the least-common-subsuming concept sub-
ject to a language restriction. Since Loom’s concept lan-
guage includes disjunction (“or”), the unrestricted least-
common-subsuming concept would be the (uninteresting)
disjunction of the input concepts.

Thus, only elements of concept definitions that fit the
form specified in Fig. 12 are considered. The inclusive
concept is defined as having:

1. the intersection of superconcepts,
2. only roles with relations shared by all, and
3. filler value restrictions that are the intersection of role

value restriction superconcepts.

{ (and  [direct superconcepts]*
        [(ALL relation value-restrictions)]* }

Fig. 12. Syntax of definitions constructed by the
‘define-inclusive-concept’ wrapper

4.2 The SCA in the Service Markets Society

The UMDL’s Service Markets Society (SMS) (Durfee
et al. 1998) is a computational economy. Agents buy and
sell services within markets. Markets are implemented
with auctions, which provide a bidding protocol whereby
buyers and sellers negotiate over price. This approach
provides efficient resource allocation with surprisingly
reasonable communication costs (Wellman 1993). The
basic mechanism is familiar. As a selling agent’s compu-
tational load increases, it costs more to produce marginal
services. So the agent asks for a higher price, receives less
business, and effectively sheds load to other producers.
A full discussion of the rationale and implementation of
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the computational economy is out of the scope of this pa-
per, but Durfee et al. (1998) provides a good overview.

The SMS is a simulation, and does not deliver digi-
tal library services to end users. Nor does it identify the
quantity of a service. For example, a purchase might be
for an hour’s worth of query planning, or a bundle of 100
queries.

The current SMS includes a single SCA, and five other
kinds of agents. Three of these use the SCA. Several dozen
instances of these agents may be active simultaneously.
At any time, new agent instances can become active, and
active ones can close. All SMS agents use the same SCA,
and thus subscribe to the same ontologies.

Services are sold by Query Planning Agents (QPAs).
These agents are instantiations of the Task-Planning
Agent, which is a generalized, goal pursuing procedural
reasoner (Vidal and Durfee 1995). Each QPA is config-
ured upon creation to provide query planning service
specialized for one of 49 (hypothetical) possible ser-
vices. This space of services is the cross product of seven
values for each of two attributes. The possible values
are arranged in small subsumption hierarchies. The at-
tribute “audience”, for example, can be “any-audience”,
“school”, “professional”, “middle-school”, “high-school”,
or “government” or “business” as kinds of professional.

Services are purchased by User Interface Agents
(UIAs).These agents seek to buy one of the same 49 ser-
vices potentially provided by QPAs. Since this service
may not be provided by any active QPA, UIAs identify
the best available service using either of two search strate-
gies: increasing generality (most-specific-subsuming),
or increasing specificity (most-general-subsumed). The
search criteria and strategy can be changed at any time.
UIAs seek to buy services periodically, at a rate subject
to interactive modification.

Auction Manager Agents (AMAs) define markets, and
maintain an appropriate population of auctions to service
each market. In the SMS, a single AMA spawns an auc-
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Fig. 13. Agent interaction with the SCA in the SMS

tion for each service provided by a QPA. A QPA asks the
AMA for an auction to sell its services; if no auction is ac-
tive selling that service, the AMA spawns a new auction.
The AMA uses the SCA to classify the auction service de-
scription, and then checks the registry to see if an auction
providing that service is active.

Figure 13 illustrates the SCA’s interactions with the
other agents. Agents are in ovals, ontologies in rectan-
gles, and the arrows connecting agents represent mes-
sages, paraphrased in natural language. To communicate
with the SCA, agents use terminology from the nested on-
tologies. The thin line around the SCA is jagged to show
that the set of available terms is dynamic; both QPAs
and the AMA add concepts to the agent services ontology.
Messages use font styles that correspond to the ontol-
ogy labels (plain, italics, and upper-case), to highlight the
source of their terminology.

Figure 13 shows how agents use the SCA to define new
terminology from existing terms at runtime. Auctions sell
some service, but they don’t need to know anything about
that service. The AMA asks the SCA for a service label
for an auction, using the QPA’s service label, but it does
not know anything about that service. The SCA classifies
the auction service using characteristics inferred from the
QPA’s service label. Thus, the SCA can respond to the
UIA’s request for an auction, which is given in terms from
the static ontologies, rather than the label that the AMA
used to define the auction service. Concepts in the SCA’s
dynamic ontology hide knowledge, just as words chunk
meaning in natural language. This appropriate hiding
of knowledge reduces overall system complexity, and in-
creases reusability and maintainability.

One SMS scenario illustrates the capacity of the sys-
tem to utilize new agents without requiring any modifica-
tion to existing agents. For example, Fig. 14 shows a dis-
play that reports on the status of a UIA that is requesting
query planning appropriate for high school biology, with
a search strategy that identifies the least general available
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Fig. 14. A buying agent after automatically switching to a more satisfactory service

service that subsumes the desired service. Prior to the
snapshot shown in the figure, this agent was buying from
an agent selling query planning for high school science.
When the SMS experimenter spawns a new agent whose
service subsumes the request more specifically than that
of existing agents, the UIA switches without prompting
to buy from the new agent, as seen in the figure. Similarly,
if the SMS experimenter shuts the new agent down, the
UIA automatically reverts to buying high school science
query planning, because that is the best service available
to meet its needs.

In another SMS scenario, markets include providers
with different service descriptions: these markets sell
goods that subsume the advertised services of each seller.
In this scenario, user agents learn to identify a subset of
providers that provide relatively fast results compared to
other providers. The user agents then use the SCA to de-
fine a new concept that includes the advertised services of
the fast providers, but excludes the services of the slower
providers. On request from the users, the auction man-
ager creates a new, more specialized market. Sellers that
can provide fast service can then participate in the new,
relatively specialized market.

4.3 Third-party development

Runtime service classification fosters evolution of the so-
ciety to meet user needs by encouraging third-party de-
velopment of new agents. The SCA:

– Identifies opportunities. By examining the gap be-
tween service requests and recommendations, en-
trepreneurs can identify niches for services that are
desired, but not currently available.

– Reduces agent entry costs. Existing agents may au-
tomatically switch to using the new agent, without
requiring either modification or notification beyond
routine advertising.

These benefits derive from the technology of service
classification, and the way in which it is used. Technically,
the key is declarative description of services, organized
to enable ranking of available services given a target and
search strategy. In practice, agents requesting services
must state their requests in terms of what they need, not
in terms of what they know is currently available. They
must also periodically repeat their search, rather than
always using agents with whom they have previous expe-
rience. The SMS illustrates this behavior.

5 Discussion

In this section we compare our research to other work
with similar objectives. We scope the discussion to in-
clude efforts to create metadata that is significantly more
complex, and thus more powerful in its potential appli-
cations, than is currently available. We organize the dis-
cussion by considering issues related to representation,
modeling, and the degree to which it is necessary to share
syntactic and semantic constraints.
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5.1 Representation

Selecting a representation language is usually a difficult
decision. The fundamental problem is the tradeoff be-
tween expressiveness and tractability. Informally, “ex-
pressiveness” is the degree of generality and complex-
ity that can be encoded in statements of a language.
Tractability is the degree of efficiency possible when in-
terpreting and reasoning with the language. Both expres-
siveness and tractability have many facets depending on
what one is expressing and computing, respectively. The
choice of representation is therefore highly sensitive to the
definition of system objectives.

It is often possible to translate between different rep-
resentations as appropriate for different tasks (Gruber
1993). A statement in a relatively expressive language can
be translated to a relatively simple language with some
loss of information, although it is hard to formulate gen-
eral rules for appropriate ways to simplify. Translation
cannot add information, of course. Therefore, the practi-
cal issue is to determine a representation to store know-
ledge that is expressive in the most important ways for
the anticipated applications, that can be feasibly main-
tained, and that can be translated to other languages as
needed.

Ontological models of bibliographic relations have ad-
vantages over other proposals for new catalog structures
that use less expressive representations. One idea, with
many variations, is to extend MARC with fields for ex-
plicit links to other works. MARC, however, is highly
redundant both within and especially between records
(Leazer 1993). Redundant data reduces the efficiency of
storage and updating. The most serious threat for digital
libraries, however, is the prospect of overwhelming users
with numerous versions of very similar works (Vellucci
1997). MARC also has an archaic file organization. It is
possible to convert MARC’s idiosyncratic record struc-
ture, field codes, subfield codes, and value-conditioning
“indicators” to more standard formats. The need to do so,
however, impedes utilization of advances in mainstream
database technology.

Several proposals explore using relational databases
to store the new catalogs (Green 1996; IFLA 1996). These
systems are fast and reliable for massive quantities of
data. Unfortunately, relational technology is best suited
for applications such as banking, with large quantities
of highly standardized data. The complexity of biblio-
graphic data subverts normalization (Green 1996). Nor-
malization is the process whereby data is divided into
a separate table for each domain entity, indexed by a com-
bination of dimensional values that provides a unique
key for each record. Bibliographic data requires many de-
scriptive dimensions, partial descriptions at multiple lev-
els of granularity (with any combination of dimensions),
and viewing from many perspectives (access by differ-
ent sequences of dimensional values). Relational design
forces a commitment to particular combinations and or-

derings of dimensions. In complex domains, the result
is a proliferation of tables that destroys efficiency and
maintainability.

Object-oriented databases are appropriate for com-
plex domains. Heaney (1995) has proposed an object-
oriented catalog with a model similar to our own. Ac-
tually, our ontologies are object-oriented, with a class
structure that is declaratively encoded. In typical object-
oriented systems, the class structure is encoded procedu-
rally (in a programming language rather than in a data
structure). Information that is procedurally encoded is
not accessible to reasoning. For example, in standard
C++ there is no built-in way to determine the type of
a given object. Of course, developers can add methods to
return object type – and superclasses, subclasses, and so
on. If this is done in a well-principled way, then the de-
velopers are heading back down the road to description
logic, or other representation systems used to reason with
ontologies.

For generating ontological content metadata, descrip-
tion logic is too expressive in some ways, and not enough
in other ways. Description logic’s greatest asset is its abil-
ity to do automatic classification. We did not use au-
tomatic classification to generate the knowledge base of
metadata, nor is it likely to be important to support end-
user queries. Deductive object-oriented databases seek to
combine logic with support for object-oriented structures
(Kifer 1995). These systems do not do automatic classifi-
cation, but are good at deducing new individuals and re-
lations and can handle large quantities of data efficiently
(Kandzia and Schlepphorst 1997).

On the other hand, a formal way to reason about un-
certainty would be very useful for generating ontological
content metadata, and uncertainty is not handled well
by description logic. For example, the ontology contains
many attributes that do not have corresponding MARC
data. Many of them could be deduced, however, from
other values. To illustrate, given a BIOGRAPHY without
a SOUND or VISUAL medium, we might deduce BOOK.
This kind of reasoning could be most vigorously pur-
sued with default (non-monotonic) logic.4 Relatively fine-
grained evaluation of the degree of uncertainty associated
with a proposition, such as afforded by probability-based
approaches, would also be valuable. See Hunter (1996)
for a good overview of methods for reasoning with un-
certainty. Unfortunately, no known approach is entirely
satisfactory. For now, some sort of ad hoc compromise
(such as adding “tentative” relations to description logic)
is unavoidable.

Automatic classification is vital for runtime service
classification. This application reasons with description
logic concepts, whereas content metadata is represented
as instances. One idea, therefore, would be to split de-

4 Loom, as the most expressive of the KL-ONE systems, does
support default implications, but at the cost of sacrificing other
forms of inference (such as the :RELATES concept-forming
operator).
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scription logic systems into two parts, a relatively heavy-
duty part for concepts, and a leaner part for managing
large number of instances. This is not a new idea, how-
ever; almost all of the KL-ONE systems do have this hy-
brid design (Woods and Schmolze 1992).

The poor performance of particular existing descrip-
tion logic systems does not necessarily mean that de-
scription logic in general cannot handle large knowledge
bases. The various proofs showing that subsumption al-
gorithms, and thus classification, are NP-complete are
not quite to the point, since concept definitions generally
do not grow arbitrarily large; rather, the biggest prob-
lem is that classification of very general concepts can take
time proportionate to the size of the concept taxonomy
(Woods 1991). Loom, for example, is a very expressive
system with a huge array of capabilities, including truth
maintenance, default reasoning, a full first-order query
language, and disjunction and negation in concept defi-
nitions. Loom can be surprisingly fast, but in some situ-
ations is very slow. The high-level, general finding of an
empirical study of description logic performance showed
performance quadratic in the size of the knowledge base
(Heinsohn, Kudenko et al. 1994); but, it is not clear what
the bottlenecks are, and these systems have come a long
way since the time of the study. The new version of Loom
is implemented in C++ rather than Lisp, as is the new
CLASSIC (Brachman et al. 1991). Also, it is always pos-
sible to reimplement a description logic customized to
the application’s needs. In research now underway, we
achieved a speedup of more than two orders of magnitude
in this way.

5.2 Model of work

Other proposals for new catalog structures have work
hierarchies with two (Leazer 1993), three (Heaney 1995),
or four (IFLA 1996) levels (see Vellucci (1997) for an
overview). Ours has five. There is no advantage to having
fewer levels, however, as long as every level adds informa-
tion to every work. The associated attributes remain, and
need to be attached somewhere.

We borrowed most heavily from the IFLA proposal
(IFLA 1996); indeed, this can be considered our starting
point. IFLA’s model also has a central hierarchy, con-
sisting of the concepts WORK, EXPRESSION, MANI-
FESTATION, and ITEM. We renamed WORK to CON-
CEPTION because attributes at all levels are part of
what we mean by “work”. We added MATERIALIZA-
TION because we needed a place to attach digital for-
mats, and renamed ITEM to INSTANCE for clarity, al-
though perhaps COPY would be better, as in Green
(1996).

The big advantage of our model compared to IFLA’s,
we believe, derives from using an ontological rather than
a relational approach. IFLA defines the meaning of its
terms with pages of often confusing text. We define each

level of the work hierarchy by precise association with at-
tributes that are also ontologically defined.

Note that the work hierarchy imposes a dimen-
sional ordering that we could avoid. Figure 15 illustrates
an alternative structure for work, in which EXPRES-
SION, MANIFESTATION, and DIGITIZATION are
complementary subconcepts of CONCEPTION, and IN-
STANCE inherits from all of them. In this model, a new
EXPRESSION creates a new INSTANCE that shares the
old MANIFESTATION and DIGITIZATION.

CONCEPTION

INSTANCE

DIGITIZATIO NMANIFESTATIONEXPRESSION

Fig. 15. An alternative structure for work

The advantage of this less structured conceptualiza-
tion of work is that it reduces redundant metadata in
cases where there are minor changes on the EXPRES-
SION level. We are concerned in particular with the “ver-
sioning problem” that derives from the ease of modifying
many electronic documents, resulting in a proliferation
of very similar works. A new version creates redundant
metadata, depending on the type of modification. If a new
version requires a new DIGITIZATION, then very little
redundancy in metadata occurs in the UMDL work hier-
archy. A minor change in the content of the document,
however, requires a new EXPRESSION, and all of the
lower levels of the work hierarchy are duplicated. With
the structure in Fig. 15, however, only a new EXPRES-
SION node is required.

We chose the work hierarchy instead of a less-struc-
tured model because we believe it will be more useful
for supporting user inquiry. Also, techniques traditionally
used for version control – storing changes from one ver-
sion to another, rather than replicating information that
stays the same – can also be applied to metadata, thus
reducing the disadvantage of the work hierarchy.

5.3 Syntactic and semantic flexibility

One other project has taken an approach very similar to
ours for runtime service classification. Agents in the In-
foSleuth project at MCC (Bayardo et al. 1996; Nodine
and Unruh 1997) advertise by submitting ontology-based
descriptions of their services. Broker agents reason to
match requests for services to these descriptions. The
InfoSleuth ontologies are highly self-descriptive: the de-
scriptions talk about themselves as frames. This enables
translation between alternative syntaxes that support
different types of reasoning.

Our approach, in comparison, is semantically rich. We
organize the space of potential services by maintaining
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a taxonomy of services, with the ultimate intention of
supporting communication without requiring developers
to agree on term semantics at design time. InfoSleuth
agents communicate about the ontologies and objects
that they can manipulate, but there is little attempt to
represent the meaning of these objects or the relation-
ships between them.

We call language “semantically heterogeneous” when
single terms reference disjoint or overlapping sets of ob-
jects, or different terms reference the same or overlap-
ping sets. Neither InfoSleuth nor service classification
in the UMDL handle semantic heterogeneity, since the
SCA assumes that agents share all ontologies. In Info-
Sleuth, the syntax can vary, but shared symbols are as-
sumed to share semantics. If a system grows in a de-
centralized manner, however, semantic heterogeneity is
inevitable: the space of problems is infinite, while lexi-
cons are not. In the library world, semantic heterogene-
ity manifests as incompatible metadata sets. Semantic
heterogeneity is a formidable problem. Restrictions on
syntax, semantics, and the process of language develop-
ment, however, should make it easier to create shared
understanding with ontologies than in less constrained
contexts.

Precise mapping between ontologies almost always
requires a manual process that is difficult and time-
consuming. Some types of concept mismatches are eas-
ily handled, but others are deeply rooted and subtle
(Lehmann 1995; Visser et al. 1997).

Imprecise mapping is potentially more amenable to
automation. These methods necessarily start with some
sort of overlap between the source and target ontolo-
gies. This overlap can be in the form of shared “typical”
instances (Lehmann and Cohn 1994), shared concepts
(Campbell and Shapiro 1995), or shared parents from
which terms in the source and target ontologies inherit.

Currently, we adapt the latter approach by assum-
ing a restricted form of semantic heterogeneity that we
call “differentiated ontologies” (Weinstein 1997). Con-
cepts in differentiated ontologies are not shared, but in-
herit definitional structure from concepts that are shared.
Hypothetically, a society of agents starts with all agents
subscribing to the same ontologies. Over time, new, in-
creasingly specialized agents join the society, and these
agents (or their developers) define new ontologies to de-
scribe themselves by adding new relations and concepts
to definitions in existing ontologies. The union of differen-
tiated ontologies is approximately a single ontology. (We
permit only monotonic growth of this union).

We expect agents to participate in communities that
are defined by their use of an SCA associated with
some particular differentiated ontology. We match inter-
community requests to candidate target expressions by
building and evaluating “rough mappings”. These are
structures that include a set of one-to-one correspon-
dences between concepts and relations in the source and
target expressions. The expressions are coded in descrip-

tion logic, and represented as graphs; concepts are nodes
and relations are edges (Borgida and Patel-Schneider
1994). In rough mappings, nodes are pairs of matched
concepts and edges are matched relations. Rough map-
pings thus identify syntactic similarity as structural iso-
morphism. Between any pair of expressions there are
many alternative mappings. The largest and most densely
linked are ranked as the best. This mapping algorithm ex-
tends artificial intelligence research on analogy (e.g., see
Gentner (1990)).

6 Conclusions

We organize digital library content and services with for-
mal ontologies. The UMDL content ontology models bib-
liographic relations between works. Families of related
works have a tree structure. Common attributes are gen-
erally associated with the upper, shared levels of the hier-
archy, therefore greatly reducing redundant data.

It is possible to automatically create ontological con-
tent metadata from existing metadata. We generated
a knowledge base from a sample of almost 500 MARC
records. This process identifies relationships implicit in
the data and makes them explicit.

We obtain ontological service metadata from agents
seeking to advertise. Service classifier agents use descrip-
tion logic to automatically classify these definitions in
subsumption taxonomies, and can then recommend the
best available services to agents that make requests in
terms of what they need.

The results reported in this paper are small demon-
strations of what we intend to be large systems. We ex-
pect our ontological model of digital library content to
be useful to others working in this domain, although it is
far from complete in detail. Our procedure for convert-
ing MARC records to an ontological knowledge base may
be useful to other efforts to enrich existing metadata. We
anticipate mapping data described by multiple kinds of
metadata to families of differentiated ontologies, which
will then support loosely integrated query service.

Description logic is the right tool for runtime service
classification. Applying it to the SCA was straightfor-
ward, and yields some interesting behavior. For example,
SMS agents automatically switch to using new agents
that more closely fit their needs. The agents can reason
in this way because of the expressiveness and precision of
ontological metadata.
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