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Abstract 

Tumours evolve through time and space. Computational techniques have been 

developed to infer their evolutionary dynamics from DNA sequencing data. A growing 

number of studies have used these approaches to link molecular cancer evolution to 

clinical progression and response to therapy. There has not yet been a systematic 

evaluation of methods for reconstructing tumour subclonality, in part due to the 

underlying mathematical and biological complexity and to difficulties in creating gold-

standards. To fill this gap, we systematically elucidated the key algorithmic problems in 

subclonal reconstruction and developed mathematically valid quantitative metrics for 

evaluating them. We then created approaches to simulate realistic tumour genomes, 

harbouring all known mutation types and processes both clonally and subclonally. We 

then simulated 580 tumour genomes for reconstruction, varying tumour read-depth and 

benchmarking somatic variant detection and subclonal reconstruction strategies. The 

inference of tumour phylogenies is rapidly becoming standard practice in cancer 

genome analysis; this study creates a baseline for its evaluation. 
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Most tumours arise from a single ancestral cell, whose genome acquires one or more 

somatic driver mutations1,2, which give it a fitness advantage over its neighbours by 

manifesting hallmark characteristics of cancers3. This ancestral cell and its descendants 

proliferate, ultimately giving rise to all cancerous cells within the tumour. Over time, they 

accumulate mutations, some leading to further fitness advantages. Eventually local 

clonal expansions can create subpopulations of tumour cells sharing subsets of 

mutations, termed subclones. As the tumour extends spatially beyond its initial location, 

spatial variability can arise as different regions harbour independently-evolving tumour 

cells with distinctive genetic and non-genetic characteristics4–9. 

DNA sequencing of tumours allows quantification of the frequency of specific mutations 

based on measurements of the fraction of mutant sequencing reads, the copy number 

state of the locus and the tumour purity10,11. By aggregating these noisy frequency 

measurements across mutations, a tumour sample’s subclonal architecture can be 

reconstructed from bulk sequencing data6,11. Subclonal reconstruction methods have 

proliferated rapidly in recent years12–15, and have revealed key characteristics of tumour 

evolution4,7,16–20, spread21–23 and response to therapy24,25. Nevertheless, there has been 

no rigorous benchmarking of the relative or absolute accuracy of approaches for 

subclonal reconstruction. 

There are several reasons why such benchmarking has not yet been performed. First, it 

is difficult to identify a gold-standard truth for subclonal reconstruction. While single-cell 

sequencing could provide ground truth, it has pervasive errors26, and existing DNA-

based datasets do not have sufficient depth and breadth to adequately assess 

subclonal reconstruction methods. Alternatively, gold-standard datasets may be 

generated using simulations, but existing tumour simulation methods like 

BAMSurgeon27 neither create representative subclonal populations nor phase simulated 

variants, which can be exploited in subclonal reconstruction6,10. Second, it is unclear 

how subclonal reconstruction methods should be scored, even in the presence of a 

suitable gold-standard. For example, one key goal of reconstruction is identification of 

the mutations present in each subclonal lineage. Metrics are needed that penalise 

errors both in the number of subclonal lineages and in the placement of mutations 

across them. Third, subclonal reconstruction methods have only been developed in 

recent years; few groups have equal expertise with multiple tools. Algorithm developers 

themselves are typically experts in parameterizing their own algorithms; an unbiased 

third-party is needed compare different methods, each run with expert parameterization. 

To fill this gap, we developed a crowd-sourced benchmarking Challenge: The ICGC-

TCGA DREAM Somatic Mutation Calling Tumour Heterogeneity Challenge (SMC-Het). 

Challenge organisers simulated realistic tumours, developed robust scoring metrics and 

created a computational framework to facilitate unbiased method evaluation. Challenge 

participants then created re-distributable software containers representing their 
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methods. These containers were run by the Challenge organizers in an automated 

pipeline on a series of test tumours never seen by the Challenge participants. Here, we 

describe the creation of quantitative metrics for scoring tumour subclonality 

reconstructions and of novel tools for simulating tumours with realistic subclonal 

architecture. Finally, we use these characterise the sensitivity of subclonal 

reconstruction methodologies to somatic mutation detection algorithms and technical 

artefacts. 

Results 

How should subclonal reconstruction methods be evaluated? 

Subclonal reconstruction is a complex procedure that involves estimating many 

attributes of the tumour including its purity, number of lineages, lineage genotypes and 

the phylogenetic relationships amongst lineages. We structured our evaluation of these 

attributes into three categories (Figure 1). Sub-challenge 1 (SC1) quantify the ability of 

an algorithm to reconstruct global characteristics of tumour composition. Specifically, it 

evaluates each algorithm’s predictions of the total fraction of cells that are cancerous 

(tumour purity; SC1A), the number of subclonal lineages (SC1B) and for each subclone 

the fraction of cells (cellular prevalence) and number of mutations associated with it 

(SC1C). Sub-challenge 2 (SC2) evaluates how accurately each algorithm assigns 

individual single nucleotide variants (SNVs) to each subclonal lineage. It evaluates both 

their single-best guess at a hard assignment of SNVs to lineages (SC2A) and soft 

assignments represented through co-clustering probabilities (i.e. the probability that two 

SNVs are in the same lineage; SC2B). Finally, sub-challenge 3 (SC3) evaluates the 

ability of algorithms to recover the phylogenetic relationships between subclonal 

lineages, again both as a single hard assignment (SC3A) and as a soft assignment 

(SC3B). Taken together, these subchallenges define seven specific sub-challenges of 

SMC-Het, each corresponding to a specific outputs upon which subclonal reconstruction 

methods can be benchmarked (Online Methods). 

To quantify the accuracy of these seven outputs, we considered several candidate 

scoring metrics, all bound between zero (very poor performance) and one (perfect 

performance). Appropriate metrics for SC1 were trivially identified (Online methods), 

but SC2 and SC3 required us to modify existing metrics and develop new ones. 

Specifically, because SC2B and SC3B are based on pairwise probabilities of co-

clustering, we were unable to use clustering quality metrics designed for hard clustering 

nor those that require explicit estimation of the number of clusters, such as normalised 

mutual information (also known as the V-measure28). 

As SC2 and SC3 involve assigning mutations to subclonal lineages, we required 

candidate metrics to satisfy three conditions28: 
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1. The score decreases as the predicted number of subclonal lineages diverges 

from the true number of subclonal lineages. 

2. The score decreases as the proportion of mutations assigned to incorrect 

subclonal lineages (predicted subclonal lineages that do not correspond to the 

true subclonal lineage) increases. 

3. The score decreases as the proportion of mutations assigned to noise subclonal 

lineages (predicted subclonal lineages that do not correspond to any true 

subclonal lineage) increases. 

Moreover, metrics for evaluating cluster assignments have a number of desirable 

properties28. We identified a set of these applicable to each task (Online Methods), 

used a simulation framework to assess how well a candidate metric satisfies them. We 

identified four complementary metrics that satisfy all three properties: Matthew’s 

Correlation Coefficient (MCC), Pearson’s Correlation Coefficient (PCC), area under the 

precision recall curve (AUPR) and average Jensen-Shannon divergence (AJSD; 

Supplementary Figure 1). 

To further refine this set, we tested their behaviour relative to subclonal reconstruction 

errors related to parent vs. child and parent vs. cousin relationships, and splitting or 

merging of individual nodes (Online methods). Nine experts ranked the overall severity 

of up to eight error cases for each of 30 tree topologies, providing 2,088 total expert 

rankings. We then simulated each error case and scored it with all candidate metrics 

(Figure 2a-d). Importantly for SC3, we added one metric, the Clonal Fraction (CF), 

which scores the accuracy of the predicted fraction of mutations assigned to the clonal 

peak. Unlike SC2, which scores mutation assignment, i.e. genotyping of the 

(sub)clones, SC3 scores tree topology, which implies an ordering of events. The clonal 

fraction was designed to capture expert knowledge that emerged from the expert 

ranking: experts tended to favour the merging of two subclonal clusters over merging of 

the clonal cluster with a subclonal cluster, which was not captured by other metrics. The 

fraction of (sub)clonal mutations is indeed a biologically relevant measure that varies 

widely across cancer types29. Given that our metric rankings are based on subjective 

expert viewpoints, we have made our ranking system available online to allow others to 

create their own rankings and compare them to ours or use them to fine-tune scoring 

metrics for their own applications (https://mtarabichi.shinyapps.io/SMCHET). 

Between-expert agreement, measured as pairwise rank correlations (0.52 ± 0.22), were 

much higher than metrics-expert agreement (for SC2B, 0.14 ± 0.12; for SC3B, 0.12 ± 

0.15; Figure 2e). Subsets of metrics were highly correlated (JS, Pearson and MCC; 

range: 0.97-0.99), whereas others were less correlated (AUPR, JS/Pearson/MCC and 

CF; range: 0.47-0.78). We reasoned that less correlated metrics might capture 

complementary aspects of the reconstructions and derived additional metrics combining 

the best of them, as well as an average of all (Figure 2e). For SC2, the average of two 
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metrics (
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴+𝐽𝐽𝐽𝐽2 ) and AUPR was significantly better correlated to experts than any 

individual metric (�́�𝜌𝐽𝐽𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 0.21; Figure 2c,e). For SC3, AUPR, MCC, Pearson and 

JS were comparable and significantly better than the other metrics 

(ρ�𝐽𝐽𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝜖𝜖[0.19,0.23]. We chose Pearson for subsequent analysis as it allows for 

assessment with a non-binary truth. The resulting expert rankings and quantitative 

comparisons provide a basis for future development of improved scoring metrics. 

Simulating accurate subclonal tumour genomes 

We elected to use simulated tumour data to run SMC-Het. The key reasons were the 

unavailability of deep single-cell DNA sequencing data as a gold-standard, the lack of 

single-cell sequencing data that match arbitrary tree structures and characteristics, the 

ability to simulate a large number of tumours at low-cost and the demonstrated ability of 

tumour simulations to recapitulate complex sequencing error profiles27. We elected to 

use the BAMSurgeon tool created for the earlier SMC-DNA Challenges27,30, which 

creates tumours with accurate SNVs, indels and small genomic rearrangements at 

varying allelic fractions. However, that version of BAMSurgeon lacked a number of key 

features for our purpose. We added five major features: (1) phasing of variants, (2) 

large-scale allele-specific copy number changes (including whole-genome duplications), 

(3) translocations, (4) trinucleotide SNV signatures and (5) replication-timing effects 

(Figures 3, 4). We describe each of these briefly. 

Phasing of mutations. To correctly simulate a tumour, it is critical that genetic variants - 

both somatic and germline - are fully phased, as they are in real genomes. Without 

phasing, allele-specific copy number changes cannot be simulated correctly and will 

lead to incorrect B-allele frequencies and allele-specific copy number calls, amongst 

other errors. To achieve correct and complete phasing, we leveraged NGS data from a 

trio of individuals from the Genome-in-a-Bottle consortium (Supplementary Figure 2a-

e) and created the PhaseTools package to accurately phase heterozygous variants 

identified in these data (Online Methods). The final result of this process is two BAM 

files per chromosome, each representing a single parental copy. 

Simulation of a tumour BAM with underlying tree topology (Figure 3a). To simulate a 

tumour BAM starting from the fully phased genome, we assigned subsets of the reads 

to each tree node, generating down-sampled BAM files. To simulate whole 

chromosome copy number events, we adjusted the proportion of reads assigned to 

each node of the tree (Figure 3b; see below). Then, BAMSurgeon was used on each 

sub-BAM to simulate mutations, including SNVs, indels and SVs (Figure 3c). This 

strategy allowed us to efficiently and reliably simulate copy number changes of arbitrary 

size and add specific mutations on each allelic copy. Finally, these sub-BAMs were 

merged to produce the final BAM. By contrast, when we used the subclonally-naive 

BAMSurgeon, copy number inference was incorrect (Supplementary Figure 2f,g). 
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After adding subclonal mutations only by specifying the VAF (i.e. without phasing or 

subsampling BAM files) SNVs that occurred after duplications or deletions often 

appeared at the wrong frequency (Supplementary Figure 2h). 

Whole arm and whole genome copy number changes. To allow changes in copy 

number of entire chromosomes and whole-genome ploidy changes (e.g. whole genome 

duplications, present in 30-50% of human cancers31–33), we developed a method to 

account for gains or losses of any chromosome, including sex chromosomes based on 

bookkeeping of reads assigned to each node. Given a tumour design structure (Figure 

3b), reads from the phased genomes were further split into individual subpopulations 

(sub-BAMs for leaf nodes) that make up the tumour in proportion to the copy number 

state of the region they aligned to and the cellular prevalence of their node. The 

extracted and modified reads were merged to generate a final BAM file (Figure 3c). 

Translocations and large-scale SVs. As the prior BAMSurgeon functionality could not 

reliably simulate SVs larger than 30 kbp or any translocations due to its use of 

assembly, we extended it to simulate translocations, inversions, deletions and 

duplications of arbitrary size. This required a new approach of creating a simulated 

translocation that accurately reflects the expected pattern of discordant read pair 

mappings and split reads (Online Methods). This also allows us to simulate 

translocations, which were not included in the SMC-DNA simulated data challenges30. 

The ability to simulate translocations combined with adjustments to read coverage 

makes the simulation of arbitrarily large and complex SVs possible. 

Trinucleotide mutation profile and replication timing. Single nucleotide mutations are not 

uniformly distributed throughout cancer genomes. They are biased both regionally and 

locally34. Mutations result from specific mutagenic stresses, which can induce biased 

rates of occurrence at specific trinucleotide contexts35. Replication-timing bias refers to 

the increase in the mutation rate of regions of the genome that replicate late in the cell 

cycle34. To resolve this issue, we created an extensible approach as part of 

BAMSurgeon. Each nucleotide in the genome is weighted according to its trinucleotide 

context, replication timing and the set of mutational signatures. Bases are then sampled 

from the genome until the expected trinucleotide spectrum is reached (Online 

Methods). BAMSurgeon can handle arbitrary mutational signatures, replication timing 

data at any resolution and any arbitrary type of locational bias in mutational profiles. 

Selection. Our framework for picking selecting point mutations can easily be extended 

to incorporate other biases in mutation frequency or location such as selection. 

Although explicit tumour growth models remain an area of active development36–38 and 

discussion39,40 we sought to illustrate this functionality using a recent model of 3D 

tumour growth that shows selection is reflected in VAF distributions across 3D tumour 

subvolumes37. We obtained VAFs from this simulator at five different levels of selection. 

For each level of selection, we simulated one 3D tumour and the resection of three 
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tumour subregions. These were taken as basis for our simulator to generate 15 tumour 

BAM files in which the spiked-in SNVs and their VAF were directly derived from the 

tumour growth models. The VAFs of the genotyped SNVs allowed accurate inference of 

the selection input parameter (Supplementary Figure 2i, Online methods), while also 

incorporating tri-nucleotide signatures and replication timing effects. By contrast, we 

were unable to recover the signature of selection with MuTect SNV calls, suggesting 

that more than three tumour regions might be needed to detect selection through this 

method when significant variant detection errors are present, emphasizing the utility of 

simulated tumour BAMs in algorithm and model assessment (Online methods). 

Each of the simulated features was verified by comparing simulated to designed values: 

observed to expected measurements in the BAMs (Online Methods, Supplementary 

Figure 3). Starting from a tumour design (Figure 4a) we systematically and 

quantitatively compared observed and expected trinucleotide context (Figure 4b), 

cancer cell fraction (Figure 4c) and copy number segment logR ratios and B-allele 

frequencies (Figure 4d,e). These were reviewed across all simulations to verify 

simulated data. These results also confirmed that BAMSurgeon can now generate 

complex sub-chromosomal events, including large deletions or duplications (Figure 4f). 

General features of subclonal reconstruction 

We next sought to quantify how different factors impact subclonal reconstruction. We 

therefore simulated five tumours derived from different tissue types (prostate, lung, 

chronic lymphocytic leukaemia, breast and colon) from published subclonal structures 

(Supplementary Figure 3). We also analysed a real tumour (PD4120) sequenced at 

188x coverage with a high-quality consensus subclonal reconstruction based on the full-

depth tumour41 as the gold-standard. 

For each of these six tumours, we then down-sampled each tumour sequence to create 

a titration series in raw read-depth of 8x, 16x, 32x, 64x and 128x coverage. For each of 

the 30 resulting tumour-depth combinations, we identified subclonal copy number 

aberrations (CNAs) using Battenberg6, both with down-sampled tumours and with 

tumours at the highest possible depth to assess the influence of CNA detection 

accuracy, yielding 60 tumour-depth-CNA combinations. For each of these combinations, 

we identified somatic SNVs using four algorithms (MuTect42, SomaticSniper43, Strelka44, 

and MutationSeq45), as well as the perfect somatic SNV calls for the simulated tumours, 

yielding 290 synthetic tumour-depth-CNA-SNV combinations. We also applied these 

pipelines to the real PD4120 BAM (except those involving of perfect SNV calls) resulting 

in 40 additional depth-CNA-SNV combinations based on a real tumour, for a total of 290 

combinations. The somatic SNV detection algorithms were selected to span a range of 

variant calling approaches: SomaticSniper uses a Bayesian approach, MuTect and 

Strelka model allele frequencies while MutationSeq predicts somatic SNVs with an 
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ensemble of four classifiers trained on a gold-standard dataset. Finally, subclonal 

reconstruction was then carried out on each of these using two algorithms (PhyloWGS13 

and DPClust6), to give a final set of 580 tumour-depth-CNA-SNV-subclonal 

reconstruction algorithm combinations. Each combination was evaluated using the 

scoring framework outlined above (Figure 5, Supplementary Figure 4, 

Supplementary Tables 1,2). In general, MuTect and SomaticSniper are more sensitive 

to low frequency variants and potentially preferable for subclonal reconstruction46,47. 

MuTect achieved the highest SNV-detection sensitivity in our synthetic tumours (mean 

sensitivity 0.65 ± 0.037 standard error), followed by Strelka (0.59 ± 0.032), 

SomaticSniper (0.50 ± 0.031) and finally MutationSeq (0.46 ± 0.045). 

This large-scale benchmarking of 580 simulated tumours reveals general features of 

subclonal reconstruction accuracy. For example, consider SC1C: estimation of SNV 

cellular prevalence. All algorithms and SNV detection algorithms showed a consistent 

increase in accuracy with increasing sequencing depth for SC1C (Figure 5a, b). No 

somatic SNV detection algorithm matched the performance of perfect SNV calls (β = 

0.22, P = 0.0011, generalised linear model). By contrast, the use of high- vs. low-depth 

sequencing for subclonal detection of CNAs had no detectable influence on 

reconstruction accuracy in either real or simulated tumours (P>0.05; Supplementary 

Table 2). Interestingly, in SC1C, neither the use of low- vs. high-depth tumours for CNA 

detection nor the specific subclonal reconstruction algorithm used had a significant 

influence on the accuracy of subclonal reconstruction. Similarly, both PhyloWGS and 

DPClust performed interchangeably on this question in the simulated tumours (P=0.14, 

t=-1.47, Supplementary Figure 5g-l, Supplementary Tables 2). 

A different story emerged for SC2A - identifying the mutational profiles of individual 

subclones (Figure 5c,d). All algorithms performed relatively poorly, with major inter-

tumour differences in performance. Tumour T2 was systematically the most challenging 

to reconstruct and T6 the easiest (Figure 5c, Supplementary Table 5). This in part 

reflects the higher purity of T6, and indeed we see a strong association between 

effective read-depth and reconstruction accuracy in both the simulated and real 

tumours, with each additional doubling in read-depth increasing reconstruction score by 

about 0.1 (Figure 5d). At effective read-depths above 60x, the performance of all 

tumour-CNA-SNV-subclonal reconstruction combinations seemed to plateau, 

suggesting that a broad range of approaches can be effective for detection of subclonal 

mutational profiles at sufficient read-depth. Again, the use of high- vs. low-depth 

sequencing for subclonal CNA detection had no discernible influence (and this held true 

for all sub-challenges; Supplementary Table 2). By contrast, SC2A scores were 

strongly dependent on the SNV detection pipeline, with perfect calls out-performing the 

best individual algorithm (MuTect) by ~0.05 at any given read-depth. Differences in SNV 

detection algorithm sensitivity largely accounted for performance differences among 
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algorithms (βsensitivity = 0.30, P = 8.92 x 10-13, generalised linear models, 

Supplementary Table 3). MuTect, the most sensitive SNV detection algorithm, had the 

best performance and MutationSeq, the least sensitive, had the poorest. Broadly, 

SomaticSniper and Strelka showed similar performance, but interestingly showed 

significant tumour-by-algorithm interactions for several sub-challenges (Supplementary 

Figure 5a-f), which may reflect tumour-specific variability in their error profiles. Notably, 

MutationSeq performed much better on with the real tumour than with simulated 

tumours (Supplementary Figure 5a-f). 

In general, DPClust and PhyloWGS showed very similar performance, but with 

exceptions that reflect their underlying algorithmic features. First, in SC1A DPClust, 

which uses purity measures derived from CNA reconstructions, showed a significant 

and systematic advantage over PhyloWGS (βPhyloWGS = -0.42, P = 1.5 x 10-7, 

generalised linear model), which uses purity measures partially dependent on SNV 

clustering. The latter are more sensitive to errors in VAF due to low sequencing depth 

and this is reflected in the pattern of SC1A scores. Second, in SC2A PhyloWGS, which 

uses a phylogenetically-aware clustering model, had significantly better performance 

than DPClust, which uses a flat clustering model (Supplementary Figure 5g). Thus, 

our metrics are sensitive to differences in modelling approaches, which manifest in 

variability in performance on different aspects of subclonal reconstruction. Validating 

these results, for the real high-depth tumour, DPClust significantly outperformed 

PhyloWGS in SC1, while PhyloWGS was superior in SC2 (Supplementary Table 4). 

Robustness of subclonal reconstruction to CNA detection errors 

Surprised by the insensitivity of scores to the use of high- or low-depth sequencing data 

for subclonal CNA assessment, we sought to characterize the sensitivity of subclonal 

reconstruction to errors in CNA detection. We repeated the analyses described above 

using five types of CNA input: original (untouched), CNAs with doubled ploidy, CNA 

calls with a random portion of existing calls wrongly assigned (scramble) and CNAs with 

additional gains (scramble gains), or with additional losses (scramble loss). The latter 

three error types were titrated in intensity, scrambling 10%, 20%, 30%, 40% and 50% of 

all CNAs, gains and losses, respectively. 

The resulting 4,250 tumour-depth-CNA-SNV-reconstruction combinations were each 

assessed using our scoring metrics (Supplementary Table 1). For SC1 and SC2, 

incorrect ploidy impaired reconstruction accuracy overall (Figure 6A). As expected, 

scores decreased as the proportion of incorrectly assigned CNAs increased 

(Supplementary Figure 6a,b). The effect of incorrect calls on SC2A accuracy was only 

apparent at >32x coverage and was strongest with perfect and MuTect SNVs (Figure 

6B), suggesting the relative impact of CNA errors increases with reconstruction quality. 

Interestingly, PhyloWGS had significantly better performance for all subchallenges than 
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DPClust when CNA errors were introduced (SC1C: βPhyloWGS = 0.042, P = 6.06 x 10-10; 

SC2A: βPhyloWGS = 0.066, P = 1.85 x 10-10 generalised linear models; Supplementary 

Table 5). These results suggest that PhyloWGS’s strategy of incorporating CNAs in the 

allele count model may be more robust to errors in CNA detection than only using them 

to initially correct SNV VAFs (Supplementary Figure 5g, Online methods). As CNA-

handling in the presence of errors distinguishes algorithms with otherwise comparable 

performance, increasing robustness to errors in CNA calls may be a promising avenue 

for improvement of subclonal reconstruction algorithms. 

Taken together, these results suggest that subclonal reconstruction accuracy is highly 

sensitive both to SNV and CNA detection, with interactions between specific pairs of 

variant detection and subclonal reconstruction algorithms(Online methods; 

Supplementary Figure 6c,d). There is significant room for algorithmic improvements 

that capture inter-tumour differences and better model the error characteristics of 

feature-detection pipelines. 

Discussion 

Increasingly large numbers of tumours receive genomic interrogation each year as DNA 

sequencing costs diminish and evidence for clinical utility increases. Nevertheless, it 

remains common practice for only a single spatial region of a cancer to be sequenced. 

The reasons for this are myriad: costs of multi-region sequencing, needs to preserve 

tumour tissue for future clinical use and increasing analysis of scarce biopsy-derived 

specimens in diagnostic and metastatic settings. Whilst robust subclonal reconstruction 

from multi-region sequencing is well-known5–8, accurately reconstructing tumour 

evolutionary properties from single-region sequencing could open new avenues for 

linking these to clinical phenotypes and outcomes. 

We describe a framework for evaluating single-sample subclonal reconstruction 

methods, comprising a novel way of scoring their accuracy, a technique for phasing 

short-read sequencing data, an enhanced read-level simulator of tumour genomes with 

realistic biological properties and a portable software framework for rapidly and 

consistently executing a library of subclonal reconstruction algorithms. These elements, 

each implemented as open-source software and independently reusable, form an 

integrated system for quantitation of key parameters of subclonal reconstruction. We 

generate a 580-tumour titration-series for evaluating subclonal reconstruction sensitivity 

to both effective read depth and specific somatic SNV detection pipelines. These data 

give guidance for improving subclonal reconstruction: increasing effective read-depth 

above 60x, after controlling for tumour purity and ploidy. They also suggest 

reconstruction algorithm developers should consider accounting for the error properties 

of specific somatic variant detection approaches. 
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Lineage-tracing tools are emerging that will likely revolutionize our understanding of 

tissue growth and evolution, such as GESTALT48, ScarTrace49, and MEMOIR50. 

However, these are not applicable to the study of human cancer tissues in vivo. In many 

areas of biology, ground-truth is still either inaccessible or impractical to measure with 

precision. In cases like these, simulations are extremely valuable in providing a lower 

bound on error profiles and an upper bound on method accuracy. By incorporating all 

currently known features of a phenomenon, simulators codify our understanding. 

Divergence between simulated and real results quantitates the gaps in our knowledge. 

The creation of an open-source, freely available simulator capturing most known 

features of cancer genomes thus represents one avenue for exploring the boundaries of 

our knowledge. 

Large-scale benchmarking of multiple subclonal reconstruction methods using this 

framework on larger numbers of tumours is needed to create a gold-standard. Such a 

benchmark would both inform algorithm users, who will benefit from an understanding of 

the specific error profiles of different methods, and algorithm developers who will be 

able to update and improve methods while ensuring software portability. Tumour 

simulation frameworks provide a valuable way for method benchmarking, and can 

complement other approaches like comparison of single-region to multi-region subclonal 

reconstruction, and the use of model organism and sample-mixing experiments.  
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Accession Codes 
Sequences files are available at EGA under study accession number 
EGAS00001002092. BAMSurgeon is available at: 
https://github.com/adamewing/bamsurgeon. The framework for subclonal mutation 
simulation is available at: http://search.cpan.org/~boutroslb/NGS-Tools-BAMSurgeon-
v1.0.0/. The PhaseTools BAM phasing toolkit is available at 
https://github.com/mateidavid/phase-tools. Scripts providing the complete scoring 
harness are available at: https://github.com/Sage-Bionetworks/SMC-Het-Challenge. 
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Figure Legends 

Figure 1 | Features of tumour subclonal reconstruction 

Overview of the key performance aspects of subclonal reconstruction algorithms, 
grouped into three broad areas covered by three key questions: (SC1) ‘What is the 
composition of the tumour?’ This involves quantifying its purity, the number of 
subclones, and their prevalence and mutation loads; (SC2) ‘What are the mutational 
characteristics of each subclone?’ This can be answered both with a point-estimate and 
a probability profile, i.e. a hard or probabilistic assignments of mutations to subclones, 
respectively; (SC3) ‘What is the evolutionary relationships amongst tumour subclones?’ 
This again can be answered with both a point-estimate and a probability profile. MRCA: 
most recent common ancestor. 

Figure 2 | Quantifying performance of subclonal reconstruction 
algorithms 

(a) Tree topologies and mistake scenarios. For each of 30 tree topologies with 
varying number of clusters and ancestral relationships, 7-8 mistake scenarios (MS) 
were derived and scored using the identified metrics for SC2 and SC3. For each tree 
topology a panel of 9 experts independently ranked the mistake scenarios from best to 
worse. (b) Expert ranking. One tree topology is shown with 6 of the 7 mistake 
scenarios together with the ranks of four experts and two of the metrics. The trivial all-
in-one case, i.e. identifying only one cluster is not shown and correctly ranked last by all 
metrics and experts. (c) Density distributions of Spearman’s correlations between 
metrics and experts across tree topologies. For SC2 and SC3, we show the 
Spearman’s correlations between JS+AUPR/2 and the experts, and AUPR and the 
experts, respectively. (d) All average correlations between experts and metrics for 
SC2 and SC3. Heatmaps of average Spearman’s correlations across tree topologies 
between experts and metrics for SC2 and SC3. Controls are randomised ranks. 
Asterisks show equivalent metrics (non-significantly better or worse according to a 
Mann-Whitney U test p>0.05 but better than the others p<0.01). 

Figure 3 | Simulating subclonal CNAs in Tumour BAM files and 
spiking somatic mutations 

Example case of read number adjustment to simulate subclonal copy number 
aberrations (CNAs). (a) Desired structure of the tumour being simulated. (b) Read 
number adjustment calculations. The copy number total (CNT) for each chromosome 
is its copy number by adjusted by node cellular prevalence summed across all nodes. 
The maximum CNT across the genome is retained to normalise copy number for all 
chromosomes. The number of reads assigned to each chromosome at each node (the 
chromosome’s effective read number) is then computed as the product of the node’s 
cellular prevalence, the chromosome’s copy number, and the total tumour depth 
normalised by the maximum CNT. (c) Separation per chromosome phase and per 
node and new pipeline to simulate tumour BAM files with underlying intra tumour 
heterogeneity. The first tumour clone (70% CP) has a gain in one copy (referred to as 
copy A) of chromosome 1 and one of its descendant subclones (55% CP) bears a loss 
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of the Y chromosome. After adjusting read number for CNAs in each BAM 
corresponding to a node, BAMSurgeon spikes in additional mutations including the new 
features (complex structural variants, SNVs with trinucleotide contexts and replication 
timing effects, etc.), and then merges the extracted reads into a final tumour BAM file. 

Figure 4 | Simulated realistic tumour genomes 

(a) Tumour design. Simulation T2 with 55% purity (fraction of cancer cells) and two 
subclones. Whole-chromosome copy number events (e.g. clonal loss of chromosomes 
8, 12 and 17), number of SNVs and SVs are shown for each node. (b) Single 
nucleotide variant trinucleotide contexts. Observed vs. expected frequencies of 
trinucleotide contexts in the SNVs. (c) Population frequency (cancer cell fraction, 
CCF) of the variants for T2. Observed vs. expected CCF distributions; false positive 
SNVs due to mutation calling as well as copy-number errors lead to errors in the 
inferred CCFs. (d) Observed (green) vs. expected (blue) logged coverage ratio 
(LogR) and B-allele frequencies (BAF) of copy number segments along the 
genome for T2 (e) Observed vs. expected BAF and logR across all segments and 
across all simulations. (f) Simulation of sub-chromosomal copy number events and 
rearrangements. LogR and BAF tracks showing how one large deletion and one large 
duplication simulated on chromosome 17 are correctly being called. Structural variants 
as called by Manta (Online methods) are shown as vertical lines, true positives are at 
the breakpoints defining the copy number events. 

Figure 5 | Error profiles of subclonal reconstruction algorithms 

To identify general features of subclonal reconstruction algorithms, we created a set of 
tumour-depth-CNA-SNV-subclonal reconstruction algorithm combinations by using the 
framework outlined in Figure 3 and 4 to simulate five tumours with known subclonal 
architecture, followed by evaluation of two CNA detection approaches, five SNV 
detection methods, five read-depths and two subclonal reconstruction methods. The 
resulting reconstructions were scored using the scoring harness described in Figure 2, 
creating a dataset to explore general features of subclonal reconstruction methods. All 
scores are normalised to the score of the best performing algorithm when using perfect 
calls at the full tumour depth. Scores exceeding this baseline likely represent noise or 
overfitting and were capped at 1. (a) For SC1C (identification of the number of 
subclones and their cellular prevalence), all combinations of methods perform well. (b) 
By contrast, for SC2a (detection of the mutational characteristics of individual 
subclones), there is large inter-tumour variability in performance. (c) Score for SC1c 
(same as a) as a function of effective read-depth (depth after adjusting for purity and 
ploidy) improves with increased read-depth, and also changes with the somatic SNV 
detection method, with MuTect performing best, but still lagging perfect SNV calls by a 
significant margin. (d) Scores in SC2A show significant changes in performance as a 
function of effective read-depth. 

Figure 6 | Impact of CNA error profiles on subclonal reconstruction 

(a) Effect of CNA errors on mean SC1c scores and SC2a (b) scores (with standard 
errors shown) at 100x across somatic SNV detection algorithms. (c) Effect of CNA 
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errors on mean SC1c and SC2a (d) scores (with standard errors shown) at various 
depths when scores for perfect calls are set to zero to yield depth-adjusted scores. 

Supplementary Figure Legends 

Supplementary Figure 1 | Behaviour of Scoring Metrics 

(a) The score for each candidate mutation cluster assignment score (SC2) metric 
considered with an increasing proportion of mutations assigned to the wrong useful 
clusters. (b) The score for each candidate SC2 metric considered with an increasing 
proportion of mutations in noise clusters. (c) The score for each candidate SC2 metric 
considered as the number of predicted clusters increases. The true number of clusters 
(four) is marked by the vertical line. Excess clusters retain correct co-clustering and are 
subsets of the true clusters. (d) For each potential SC2 scoring metric, the proportion of 
simulation runs that satisfied each of the four desirable metric properties for a given 
simulation parameter setting. Each property is tested by fixing all but one of the 
simulation parameters and then looking at the effect of changing the fourth parameter 
on the metric score. 

Supplementary Figure 2 | Mutation Phasing 

(a) Example of the PhaseTools algorithm constructing an extended phase set from four 
heterozygous sites by leveraging NGS and parent phasing. ngs_phasing of 5 
heterozygous sites in the child and the corresponding NGS-phased sites in the mother 
and father, shown with informative NGS fragments. Heterozygote variants boxed 
together represent phase sets. There is not enough information to construct a single 
phase set. (b) parent_base phasing uses parental genotypes to assign parent of origin 
to the 5 hets in the child. Hets 2 and 5 remain unresolved while heterozygotes 1, 3, and 
4 show at least one unambiguous parent of origin. (c) parent_ngs phasing extends 
parent_base phasing with parental NGS fragments from ngs_phasing. The linked NGS 
fragment in sites 2 and 3 (T, T) of the maternal genotype is not informative as site 3 is 
homozygous, however the linked NGS fragment in sites 2 and 3 (T and A) of the 
paternal genotype is heterozygous and therefore informative. The phasing proposed by 
ngs_father of sites 3 and 4 (GG/AC) contradicts parent of origin information in hets 3 
and 4 (A and G). This event is recognised as a pre-meiosis recombination event in the 
child and the ngs_father phasing is ignored. (d) ngs+parent_ngs phasing extends 
ngs_child phasing with parent_ ngs, giving priority to ngs_child phasing. NGS fragments 
such as hets 2 and 3 (T and T) take precedent over any phasing assigned by 
parent_ngs phasing see hets 2 and 3 (C and T) and indicate probable recombination 
events (shown with diagonal lines). Two possible sets of recombination events are 
shown. The proximity between phased heterozygotes determines which recombination 
events are most probable. Here, the recombination events shown on the right are 
selected, as recombination between sites 1 and 2 is more likely than recombination 
between sites 3 and 4, as sites 1 and 2 are further apart. The final phase sets are 
shown. (e) Schematic of phase-set reconstruction. Priority is given to procedures on the 
left. (f) Genome-wide logR and BAF tracks from a simulated BAM using the original 
“naive” BAMSurgeon. (g) Same as (a) with the new proposed BAMSurgeon pipeline 
and additional whole-chromosomal events. (h) Comparison of expected and observed 
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VAFs for SNVs on chromosome 17 of a tumour simulated with the “naive” BAMSurgeon 
(top panel) and the new pipeline (bottom panel) with Pearson correlations. As naive 
BAMSurgeon does not simulate allele-specific gains and losses, copy number 
alterations in one allele do not produce the expected allele-frequency changes for each 
phase. Tumour structure showing a clonal deletion and duplication on the chromosome 
is specified in the top right panel. Allele-specific copy number events for phase B (phase 
A has no copy number alterations) and the subclone where they occur are shown in the 
top heatmap. Expected VAFs were calculated by summing CNA-adjusted CCF of the 
leaf subclones were the SNV was present, adjusting for the frequency of the SNV in 
those subclones and standardizing by the total CNA-adjusted depth n that region. (i) 
Independent component analysis of the intra-tumour heterogeneity metrics presented in 
Sun et al. on 1,366 3D simulated training tumours (Sun et al. simulator) and 5x3-region 
BAMs derived from 5 simulated 3D test tumours (Sun et al. simulator) using 
BAMSurgeon. The 5 regions were classified correctly using an SVM predictor (Online 
Methods). 

Supplementary Figure 3 | Real and Simulated Subclonal Structures 

True subclonal structures of the simulated tumours (T2, T3, T4, T5 and T6) that were 
simulated with their desired and observed variant allele frequency histograms and logR 
profiles. In each panel, we show the phylogenetic tree, inspired by published 
reconstructed tumours, and the mutations associated with each (sub)clone. The top 
figures compared expected cancer cell fractions of the SNVs under a diploid setting, 
against the inferred cancer cell fractions from the simulated data. T5, for which the 
inferred purity is over-estimated due to the limitations of the copy number detection 
algorithm to identify subclonal whole genome duplication, shows an observed space 
that departs from the expected. The bottom figures compare the observed and expected 
BAF and logR of the genomic segments identified by the copy number detection 
algorithm. 

Supplementary Figure 4 | Subclonal Reconstruction Scores 

Subclonal reconstruction scores based on the five tumours with each somatic SNV 
detection algorithm-depth-algorithm combination. All scores are normalised to the score 
of the best performing algorithm using perfect calls at the full tumour depth. Scores 
exceeding this baseline likely represent noise or overfitting and were capped at 1. (a) 
Scores for 1A are uniformly high. (b) Scores for SC1B improve with depth and but not 
continuous as the metric reflects a true proportion. (c) Clonal fraction is low below 32X 
but rapidly increases at higher depths, with some inter-tumour variability. (d,f) Scores 
for SC2B (d) and SC3B (f) closely mirror those of SC2A and SC3A (e), respectively. 
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Supplementary Figure 5 | Covariates of Scoring Accuracy 

SC2A score increases with effective depth for all tumours but the effect of the somatic 
SNV detection algorithm depends on the tumour. (a) T2 (b) T3 (c) T4 (d) T5 (e) T6 (f) 
real PD4120. (g) A summary of the differences between DPClust and PhyloWGS. 
PhyloWGS incorporates CNAs and phylogenetic structure into the generative model 
sampled through Markov chain Monte-Carlo (MCMC). (h-l) Comparison of subclonal 
reconstruction scores for each sub-challenge using PhyloWGS (x-axis) and DPClust (y-
axis). Somatic SNV detection algorithms are coded by colour and tumours are coded by 
symbol. P-values and effect size for a t-test between algorithms on score are shown. 

Supplementary Figure 6 | Effects of Noise in CNA Detection on 
Reconstruction Accuracy 

Effect of proportion of CNAs scrambled on a representative tumour (T2) at 128x 
sequencing coverage. (a) Allele specific copy number profiles as increasing proportions 
of CNAs are randomly assigned to a wrong copy number state. (b) Effect of increasing 
the proportion of wrongly assigned CNAs on SC2a scores at 128x for different somatic 
SNV detection algorithms and SRC algorithms. (c) Deriving an imperfect “truth” from 
real data and scoring runs against it. We took data from 538 donors from the PCAWG 
study41 and executed DPClust on different sets of SNVs: a consensus set of SNVs was 
used as “truth” and three individual somatic SNV detection pipelines (MuTect, DKFZ 
and Sanger on mutations in a (C>T)pG context). We also executed PhyloWGS on the 
consensus sets. We then scored SC1C for each run against the “truth”. (d) We took 
data from 10 donors from the PCAWG study with at least 5 tumour regions or 
metastases sequenced and ran DPClust in 5 dimensions to derive a “truth” from it. We 
scored each one-dimensional DPClust run on individual region against the “truth” 
derived from the multi-dimensional run for SC1C and SC2A and compared them against 
scores obtained from randomised 1C and 2A inputs (Online Methods). 
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