
Creating the CIPRES Science Gateway for Inference of
Large Phylogenetic Trees

Mark A. Miller, Wayne Pfeiffer, Terri Schwartz
San Diego Supercomputer Center

9500 Gilman Drive La Jolla CA, 92093-0505

{mmiller, pfeiffer, terri}@sdsc.edu

ABSTRACT
Understanding the evolutionary history of living organisms is a
central problem in biology. Until recently the ability to infer
evolutionary relationships was limited by the amount of DNA
sequence data available, but new DNA sequencing technologies
have largely removed this limitation. As a result, DNA sequence
data are readily available or obtainable for a wide spectrum of
organisms, thus creating an unprecedented opportunity to explore
evolutionary relationships broadly and deeply across the Tree of
Life. Unfortunately, the algorithms used to infer evolutionary
relationships are NP-hard, so the dramatic increase in available
DNA sequence data has created a commensurate increase in the
need for access to powerful computational resources. Local laptop
or desktop machines are no longer viable for analysis of the larger
data sets available today, and progress in the field relies upon
access to large, scalable high-performance computing resources.
This paper describes development of the CIPRES Science
Gateway, a web portal designed to provide researchers with
transparent access to the fastest available community codes for
inference of phylogenetic relationships, and implementation of
these codes on scalable computational resources. Meeting the
needs of the community has included developing infrastructure to
provide access, working with the community to improve existing
community codes, developing infrastructure to insure the portal is
scalable to the entire systematics community, and adopting
strategies that make the project sustainable by the community.
The CIPRES Science Gateway has allowed more than 1800
unique users to run jobs that required 2.5 million Service Units
since its release in December 2009. (A Service Unit is a CPU-
hour at unit priority).

Categories and Subject Descriptors

H.3.4 [Systems and Software] Distributed systems.

General Terms
Management, Design.

Keywords
Science Gateway, TeraGrid, Cyberinfrastructure, Systematics,
Phylogenetics, CIPRES.

1. INTRODUCTION
Assembling the Tree of Life is one of the most complex and
difficult problems in modern science. The process of inferring
phylogenetic relationships among all living organisms requires
the collection and analysis of large amounts of data from as many
species as possible. Recent advances in DNA sequencing
technologies have dramatically increased both the number of
species for which data are available and the amount of DNA
sequence data available for many species. Moreover, the rate at
which new sequence data can be obtained has increased
dramatically, so it is now possible to rapidly acquire additional
data to resolve relationships that are uncertain. The increased
availability of sequence data provides an unprecedented
opportunity to explore evolutionary relationships more broadly
across all taxa, and more deeply to resolve relationships between
closely related taxa. This information is critical to understanding
the history of the relationships between organisms as well as the
origins of biological diversity.

Analyzing large amounts of sequence data requires access to
substantial computational resources. The algorithms used to infer
phylogenetic relationships from sequence data are NP-hard (c.f.
[1, 2]). Thus, while the increase in the amount of data allows
investigators to ask deeper questions and obtain more definitive
results, the requisite analyses can only be accomplished using
computational resources that scale with these large data sets. The
issue of resource access represents a significant problem for many
research groups, as they must now move beyond local desktop
resources to perform sequence alignment and tree inference
analyses.

The Web Portal is an obvious choice for providing location-
independent access to computational tools and resources for
inference of computational trees. Popular web applications such
as the Biology Workbench [3], Anabench [4], NC Bioportal [5],
and MIGenAS [6] provide access to molecular biology tools and
data in an integrated environment, while projects such as
Morphbank [7] and Morphobank [8] provide collaborative data
sharing workspaces for systematics researchers. Because tree
inference codes are computationally demanding, they are
typically not offered in public web portals, and when they are
available, the time allocated for analyses is inadequate for most
research data sets.

In an attempt to meet community needs for access to tools and
resources for inferring evolutionary relationships, the CIPRES
(CyberInfrastructure for Phylogenetic RESearch) project created a
prototype web portal. The CIPRES Portal V 1.0 permitted users to
run the community tree inference tools GARLI [9], RAxML [10],
PAUP [11], and MrBayes [12], both as standalone tools, and with

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference’10, Month 1–2, 2010, City, State, Country.
Copyright 2010 ACM 1-58113-000-0/00/0010…$10.00.

the tool Rec-I-DCM3, a disc covering method to speed and
improve inference of large trees [13]. The demand for Tree
Inference analyses on the CIPRES Portal quickly exceeded the
computational resources available to the project, pointing to a
need to redesign the CIPRES Portal for greater scalability while
minimizing costs for the sake of sustainability.

The TeraGrid Science Gateway program[14] offers a solution that
is well suited for the present use case. It is designed to link
domain science communities to a scalable and sustainable set of
resources on the TeraGrid. The Science Gateway program allows
the community to create a domain work environment where
researchers can concentrate on domain problems without facing
the complexities of deploying jobs on distributed resources and
without the costs of acquiring and managing high-end
computational resources.

This paper describes the redesign and reimplementation of the
CIPRES Portal as the CIPRES Science Gateway (CSG), a
scalable, sustainable resource for systematics and evolutionary
biology.

2. MOTIVATION
As implied by its name, the CIPRES project’s goal was to create
tools and infrastructure to meet the computational needs of a well-
established phylogenetic research community. For this reason,
development of the CIPRES Portal was user-focused and
community-centric. In the three years following the release of the
CIPRES Portal V 1.0 (in May, 2007), we worked closely with the
target community to understand how best to meet user needs for
access to computational resources. User requirements were
gathered from conversations at professional meetings and through
issue reports/feature requests submitted to the CIPRES Portal.
The CSG design as well as implementation of its capabilities has
been dictated exclusively by user feedback.

The typical use case for phylogenetic research involves collecting
specimens in various locations around the world for 6-12 months,
obtaining DNA sequence data from these specimens, and then
analyzing the DNA sequence data to infer evolutionary
relationships among these specimens. The data analyzed may
represent a few or many species, one or more genes, and long or
short DNA (or protein) sequences. The focus may be on resolving
relationships within a small group (or clade), or placing an entire
clade accurately with respect to other clades in the larger Tree of
Life.

The use case described above requires easy access to high-end
computational resources, but has no need for public database
access. Each user creates their own data sets to analyze. Users
manipulate their data sets as plain text files in one of a handful of
community formats. The data sets are typically small (less than 5
MB), and can be easily exchanged even over fairly slow network
connections. Each data set has persistent value to the individual
user or user group and is proprietary until published, so data
sharing across the community is not desirable prior to publication.

While users require computational resources to run tree inference
analyses, they have not requested additional tools to display and
edit the resulting trees (i.e. post-tree analysis). These tools have
low computational requirements and typically feature
sophisticated graphical user interfaces, so they are well suited to
the desktop environment available to most users. Moreover, while

there are only a handful of tools for inferring phylogenetic trees,
many software packages are available for displaying, analyzing,
and editing phylogenetic trees. Each user’s environment for post-
tree analysis reflects the personal choices, as well as preferences
of their home laboratory and the current practices of their sub-
specialty of biology or biomedicine.

Based on the use case just described, we designed and
implemented the CIPRES Science Gateway to meet the following
design objectives:

1. Provide simple browser-based access to community tree
inference codes.

2. Store uploaded files and records of job runs in a persistent,
login-protected area.

3. Provide interfaces that are tailored to the user’s expertise,
from full command line options to simpler interfaces with
fewer choices

4. Provide easy access to the fastest available tree inference
codes run on scalable, sustainable computational resources.

5. Make it possible to add new tools quickly and update
existing tools and interfaces as new releases appear.

6. Minimize job loss due to system/hardware errors, and
elegant recovery from failures.

7. Minimize job loss due to file format/file translation errors.

8. Distribute jobs transparently across all available resources.

9. Provide programmatic methods to deploy jobs from and
deliver results to third party environments for post-tree
analysis.

The approaches used to meet objectives 1-6 are described in
Section 3. Community usage and management of the resource in
its current state is described in Section 4. Plans to address design
objectives 7-9 are described briefly in Section 5.

3. ARCHITECTURE/IMPLEMENTATION
3.1 Basic Architecture
The CIPRES Portal V 1.0 was created using a set of CORBA-
based software libraries from the CIPRES Project. These libraries
were adequate to create a web application that could check
uploaded file formats and deliver files to community tree
inference codes run on a computational cluster. However, adding
new command line options for each program was difficult, and
the libraries did not provide a mechanism for adding login-
protected user areas, so the architecture of CIPRES Portal V 1.0
was not adequate to meet the requirements of our project.

As a result, the web application for the CIPRES Science Gateway
(CSG) was based on an entirely different architecture called the
Workbench Framework (WF) [15]. The WF is a software
development kit (SDK) designed to generically deploy analytical
jobs and database searches to a generic set of computational
resources and databases. The WF contains modules to manage
submission of jobs to analytical tools on various computational
resources and modules to manage queries to data resources. A
schematic of the WF architecture used for the CIPRES Science

Figure 1. Schematic Diagram of the CIPRES Science Gateway architecture

Gateway is shown in Figure 1. The modules in the WF are as
follows:

Broker Module. The Broker Module provides access to all
application-specific information in a Central Registry This
Registry contains information about all data types required as
input and output for each application along with the formats
accepted by each tool. Concepts and concept relationships are
formulated in XML files and read by Central Registry API-
implementing classes. By defining tools and data types in a single
location within the application, new tools and data types can be
added with no impact on the functioning of the application
outside the Registry.

User Module. The User Module manages all user-initiated
activities. This module passes user-initiated queries and tasks
from the interface to the executive portions of the infrastructure
via data and task management modules. It also stores all user data
and task information in a MySQL database (although any
conventional RDBMS can be used). A user management module
supports individual user roles, permitting the assignment of
individual user accounts, the sharing of data between accounts,
and selective access to tools and data sources that may be
proprietary.

Tool Module. The SDK design includes a Tool Executive Module
that manages the translation of tasks submitted by users into
command lines and submission of the command line strings along
with user data for execution by appropriate compute engines. As
part of this process, the Tool module handles data formatting for
jobs, and job stagingaging. It also keeps track of which tools can
be run on which computational resources, and the status of those

resources. The design allows great flexibility in determining what
assets the CSG can access for job execution. Computational
resources can be added through editing the tool resource
configuration file, and the application can send command lines
and receive output via essentially any well defined protocol (e.g.
Unix command line, web services, ssh, drmaa, gram, gsissh, etc.).

Presentation Layer. The CSG Presentation Layer accesses SDK
capabilities through the J2EE front controller pattern [16] which
involves only two Java Classes. As a result, the WF is neutral
with respect to interface access. We sought a presentation layer
that would provide lightweight access through a web browser and
that would preserve flexibility for alternative access routes. We
investigated a range of architectures, from web-services based
architectures to the Enterprise Java Beans (EJB) framework. We
adopted an architecture based on Linux, Apache Tomcat,
MySQL, and Java Struts2. This open source software stack
provides the capabilities needed to manage the web application in
a sustainable manner and provides sufficient structure and
stability. The Presentation Layer supports access by browser
(thin) clients and will support programmatic access via SOAP and
ReST services.

The browser interface is based on the look and feel of popular e-
mail clients and supports data and task management in user-
created folders. The interface allows users to create a login-
protected personal account. Registered users can store their data
and records of their activities indefinitely. Alternatively, the tools
can be used under a guest account, but data in guest accounts is
lost once the user migrates away from the web site. The

application currently provides access to approximately 20
command line tools. Uploaded user data is checked for format.
Users can also manually specify data types and formats.

External Resources. The generic design of the WF architecture
supports access to a wide variety of computational resources and
databases, whether local or remote. Access can be accomplished
through a combination of individual mechanisms, including ssh,
GRAM/Globus, SOAP, ReST services, etc. At present, parallel
tools run on TeraGrid resources, and serial tools are run on the
fee-for-service UCSD Triton Resource.

3.2 Command-Line Tool Scalability
The WF achieves scalable implementation of new tools by taking
advantage of the XML specification of the Pasteur Institute
Software Environment (PISE) for command line tool interfaces
[17]. PiseXML files specify point-and-click interfaces and use
embedded Perl scripts to transform user input into Unix command
lines. The WF interface generation tool uses the instructions in the
XML files to create .jsp pages that collect user input and assemble
the input into command line strings that can be delivered to
individual tools. This strategy of reusing PiseXML files offers
scalability from several perspectives:

• Developers can expose, test and edit interfaces quickly.

• All command-line options of any tool can be exposed easily.

• Hierarchical logic (preconditions) and control parameters can
be exposed in the .jsp interface form using Javascript.
Functionally, this means click boxes and entry boxes in the
interface are activated or deactivated based on choices the user
makes, and that the interface can prevent inappropriate entries and
provide users with robust error messages.

• The presentation is flexible, since all interfaces in the
application can be modified at once by changing the module that
interprets the XML file. This means new presentation paradigms
can be adopted simply by modifying the .jsp creation software,
and new features can be introduced through modification of the
XML standard. This technology allows us to sustain the evolution
of the resource to meet the needs of a dynamic community.

• The XML specification we use is closely related to the PISE
and Mobyle XML [18] specifications, so interfaces created for
either of these projects can be incorporated into the CSG portal,
and vice versa.

3.3 Access to the Fastest Available Codes
The CIPRES Science Gateway offers three parallel codes on
TeraGrid: MrBayes, RAxML, and GARLI. We conducted
extensive benchmarking for these codes to determine the optimal
configuration (in terms of processes and threads) for runs of
various types on each TeraGrid resource. The portal interface was
then adapted to automatically configure the correct number of
processors and threads based on user-entered problem
specifications. The codes currently offered by CSG for use on
TeraGrid are described further below:

MrBayes: The initial TeraGrid portal release offered the standard
version of MrBayes (3.1.2), which is parallelized with MPI in a
coarse-grained fashion across the different run-chain instances of
a single analysis. In February 2010, the standard version was

replaced with a new hybrid MPI/OpenMP version of MrBayes
3.1.2 [12] in the CSG interface. This version adds OpenMP code
to exploit fine-grained parallelism within each run-chain instance.
The OpenMP code allows jobs to be divided over a larger number
of processors, therefore reducing the clock time required for
individual job runs. To our knowledge, this code is the fastest
version of MrBayes available anywhere. MrBayes hybrid code
jobs execute on up to 32 cores.

RAxML: The initial portal release offered RAxML V. 7.2.3. This
version confined runs to a single 8-core node. To improve the
flexibility of the code, MPI code was added, creating a hybrid
MPI/Pthreads version [19]. This innovation makes RAxML more
scalable for three common types of analyses:

1. Multiple maximum likelihood searches on the same data set,
starting from different initial trees.

2. Multiple bootstrap searches, which are maximum likelihood
searches on data sets obtained by randomly resampling the
columns of the multiple sequence alignment.

3. A comprehensive analysis that combines the two preceding
analyses.

The new hybrid code parallelizes over the number of searches, so
multiple nodes can be used. The hybrid code was provided via the
CIPRES Portal in February of this year as RAxML 7.2.6. This
code is the fastest version of RAxML available anywhere. The
hybrid code executes on up to 40 cores.

GARLI: The Portal offers GARLI 1.0, which includes an MPI
implementation. There are two conditions for MPI use: when the
number of searches conducted (nsearch) is increased in parallel
with the number of cores employed (this is common, but not a
default situation) and when bootstrapping is employed (this is part
of routine analysis). In both situations, the parallel efficiency is
very high (77-94%), because these situations are embarrassingly
parallel and can be scaled efficiently to a large number of cores.
GARLI executes on up to 100 cores.

3.4 Access to scalable compute resources
The CIPRES Portal V 1.0 deployed serial jobs to a 16-node/128-
processor computational cluster purchased for the CIPRES
Project. While serial runs were efficient, they increased the wall
time for each job. Moreover, to insure fair access to all users, jobs
were restricted to 72 hours. This imposed a strict upper limit on
the size of jobs that could be run through the portal, which in turn
prevented the portal from meeting the needs of users with very
large data sets.

The CIPRES Science Gateway offers parallelized MrBayes,
RAxML, and GARLI codes described above on the Abe and
Lonestar TeraGrid clusters. These clusters each have more than
1,000 nodes with 8 and 4 cores per node, respectively, which
provides a huge improvement in scalability over the original
CIPRES Cluster. Abe also allows run times of up to 7 days, while
Lonestar allows runs of 2 days.

3.5 Minimal job loss from external system
errors
In the current use case, many large jobs require 7 days to execute,
and such jobs often remain in a resource queue for several days

before beginning to execute. As a result, the job submission and
monitoring mechanism used by CSG must be robust to scheduled
and unscheduled outages of external compute resources, pausing
of resource schedulers, and outages of the web application. Our
initial implementation employed a system where a unique process
was used to monitor each job created. Not only did this present
scalability problems as the number of submitted jobs grew, but
loss of a monitoring process for any reason caused the application
to lose track of the job’s progress. When this happened, job
results could not be returned automatically to the user. Jobs that
had a combined queue and run time of over 14 days suffered a
significant risk of loss. In the initial release of the CIPRES
Science Gateway, up to 15% of all jobs could be lost due to
resource and application outages under normal use conditions.

To mitigate this issue, a new submission mechanism was
developed. Instead of having one process monitor each job, the
web application stages the input, submits the job, and creates an
entry in a Running Task table. The CSG web application handles
job submission by creating a job submission script, staging it to
the TeraGrid host along with the job’s input files, and doing a
Java runtime exec of Globus “gsissh” to remotely run commands
on the TeraGrid host that submit the job script to the scheduler.
File staging is handled via the Java CoG Kit GridFTP API.

A curl command in the job submission script notifies a servlet in
the web application when the job finishes, and the servlet marks
the entry in the Running Task table as DONE. However, when
jobs time out or are terminated abnormally or the CSG web
application is down, the “curl” notification will not occur. To
compensate, a daemon process named “checkJobsD” contacts
Teragrid hosts (via “gsissh qstat” or “gsissh bjobs”, for example)
to see which jobs have finished. A separate daemon named
“loadResultsD” polls the Running Task table for jobs that are
DONE and transfers the results from the execution host to CSG’s
database.

This approach is more scalable, because a separate process is not
required to monitor each remote job and because the web
application and the daemons that monitor jobs and transfer results
can be run on separate hosts. The new mechanism uses fewer
socket connections, has a lower CPU requirement, and requires
less memory. The approach is more robust because it does not
lose track of jobs and results when connectivity to TeraGrid
machines is temporarily lost, when the web application goes
down, or a TeraGrid host goes down.

4. MANAGING PORTAL USAGE
In December 2009, the tools for accessing MrBayes, RAxML, and
GARLI on TeraGrid resources were released in the CSG. The
number of unique users of these tools increased from 90 to 280
per month between December 2009 and August 2010. In each
month, an average of 100 new users ran jobs for the first time. In
July and August, approximately 180 users returned to run
additional jobs. In a recent survey, 84% of 187 respondents
reported that the Gateway allowed them to perform work that
would be difficult or impossible to accomplish in any other way
[24].

Figure 2 shows the rate of job submission and Service Unit (SU)
consumption for the Gateway (an SU is a CPU-hour at unit
priority). The number of jobs run per month has increased 4-fold

since December 2009, while the number of SUs used per month
has increased approximately 10-fold. The CIPRES Science
Gateway is currently the most active TeraGrid gateway, as
measured by both the number of users and the number of Service
Units consumed per month. Importantly, the rate of SU
consumption is still increasing, and it could be several months
before we know if a plateau has been reached.

The upward trend demonstrates the success of the CSG as a
resource for phylogenetic tree inference, but it also presents a
challenge. The TeraGrid annual allocation for the CSG is 2.7
million SUs, and at the present rate of consumption that allocation
will be consumed in less than 6 months. Clearly a management
plan is required to control the use of resources, and to ensure fair
access to as many users as possible.

We examined the rate of consumption for individual users
between April and August, 2010. Table 1 shows user accounts
that were active in this time period, binned according to monthly
SU consumption. The results show that 75% of users consumed
less than 100 SUs per month. In the aggregate, these users
consumed less than 20% of all SUs. The jobs run by these users
do not represent heroic computations, but users relate that access
to TeraGrid for jobs of this magnitude makes it possible to
complete analyses overnight that might require 10 days on their
local resources.

Table 1. Monthly Per User consumption of SUs between April
and August, 2010.

SUs /month Number of Users % total SU

 < 100 536 (75.3%) 19

100 - 500 86 (12.1%) 9

500 - 2000 53 (7.5%) 10

2000 - 5000 24 (3.4%) 17

5,000 - 10,000 9 (1.3%) 14

> 10,000 3 (0.4%) 31

Month

2 4 6 8 1 0 1 2

J
o

b
s

 /
 m

o
n

th

1000

2000

3000

4000

Jan Mar JulMay

S
U

 s / m
o

n
th

 (in
 th

o
u

san
d

s)

200

400

600

800

Sep

Figure 2. Jobs Run (black) and Service Units consumed
(red) per month by the CIPRES Science Gateway Dec,
2009 – Aug, 2010.

At the other end of the spectrum, three power users consumed
31% of all SUs used between April and August; and the top 12
users consumed 45% of all SUs. This level of consumption by
individual users is not sustainable in the current TeraGrid Science
Gateway community allocation model. It is therefore necessary to
develop and implement a policy that provides access to the largest
possible user group, while at the same time ensuring responsible
use of TeraGrid resources.

Based on the usage demographic shown in Table 1, the following
policy was devised for managing use of TeraGrid resources
through the CIPRES Science Gateway. First, the Gateway will
continue to allow any user to create an account and deploy
phylogenetic analyses on the CIPRES Science Gateway. This is in
keeping with the “open access” spirit of the TeraGrid Science
Gateway program. To insure usage consistent with the “equal
access” spirit of TeraGrid, any user who consumes more than 2%
of the total community allocation for any given month will be
contacted and asked to establish a personal account (see below).
Users who consume more than 3% of the total community
allocation in a month will lose the ability to submit new jobs to
the TeraGrid, pending establishment of a personal account.

The mechanism for establishing a personal account is by
requesting a personal or project allocation from the TeraGrid
Resource Allocation Committee (TRAC). Typically a user would
request up to 50,000 SUs as a development allocation. The user
will provide this information to the web application through a
web form, and jobs run from their account will be charged to their
personal allocation. In the event that more than 50,000 SUs are
needed, the user can request a research allocation from the
quarterly TRAC competition. The goal of this policy is to allow
users to continue to access computational resources through a
simple and familiar interface, while at the same time requiring
that high-end users are subject to peer review and remain
accountable for use of their computational time. The TRAC peer
review process insures that when very large amounts of resources
are used to address a scientific question, the approach used to
address that scientific question has been validated, and that the
use of these resources follows best known practices of TeraGrid
users for efficiency.

Implementing the usage policy described above requires a set of
administrative tools. The functionalities required include: tools to
disable submissions from a user account, tools to monitor SU
consumption by individual users, and tools that allow users to
charge their usage directly to a personal allocation obtained from
TRAC. The ability to disable submissions from specific user
accounts was accomplished simply by adding a column for the
property canSubmit to the User data table, where the property
canSubmit is required for job submission. Users who exceed their
allowed monthly usage will have their canSubmit privileges
suspended until the end of the current calendar month.

Usage by individual accounts is monitored by merging job
submission records from the CSG Web application (which
associate the TeraGrid resource scheduler jobid with the user
account) with records from the TeraGrid job database (which
associates the TeraGrid resource scheduler jobid with the SU
charge). This is currently done manually, however, we are
creating tools to perform this task automatically, making it
possible to monitor usage in real time, and to create automatic
triggers to impose the usage policies described above.

The ability to charge to a personal user allocation rather than to
the CSG community allocation can be accomplished in a
straightforward way. A web form will be provided that allows the
user to associate their personal TeraGrid allocation identifier with
their CSG account. Jobs submitted from their CSG login will then
be charged to their personal allocation instead of the CSG
community allocation. Implementation of this capability is in
progress.

5. FUTURE WORK
In view of the heavy use of the CSG to run large computational
jobs, our future work will focus on improving the efficiency of
the resource and on simplifying the user experience. The key
priorities in the regard are design goals 7-9 in Section 2.

5.1 Minimize job loss due to file format/file
translation errors.
Approximately 5% of all job submissions fail each month because
users upload an input file in a format that is not correct for their
selected code, or because the input file contains a formatting
error. To improve the efficiency of user submissions we plan to
create infrastructure to insure that each uploaded dataset is
formatted correctly and that the dataset selected for a given job is
appropriate for the code selected. The WF contains a module that
detects the format of uploaded files, and the WF Central Registry
is designed to associate each code with its accepted input and
output formats. Future work will focus on further development
and implementation of these capabilities for the CIPRES Science
Gateway so that users will be warned 1) if they upload a data set
with a formatting error, and 2) if they attempt to analyze a data set
in a format that is not understood by their chosen code.

5.2 Distribute jobs transparently across all
appropriate resources
At present the CSG runs each code on a single TeraGrid machine.
This can be problematic when the resource used is under heavy
load or is offline for maintenance. Adding a meta-scheduling
capability to the CSG would allow user submissions to be
deployed automatically on the most appropriate resource, based
on availability and current traffic levels. We plan to add this
capability using a tool such as SWARM [20], a job scheduling
Web service framework developed specifically for use in
TeraGrid Science Gateway applications.

5.3 Simplify Job Submission/Results
Retrieval
Our design goal for the CSG is to integrate its functionalities as
seamlessly as possible into the workflow of all users. The CSG
user community is diverse, and each user has a specific set of
tools for creating data matrices and a specific set of tools for post-
tree analysis. Various user groups conduct analyses in web
applications such as Morphobank [8] or Morphbank [7], via
locally installed interfaces (e.g. Mesquite [21] or Topali [22] a
new simple graphical user interface for RAxML [23]). We plan to
provide programmatic access to CSG capabilities so individuals
using one of these community tools can deploy jobs to the CSG
and receive their results within their normal working
environment. This will be less cumbersome than submitting jobs

to the CSG via a web browser. The current presentation layer for
the CSG is designed to support access via both thick and thin
clients, and programmatic access by ReST services is supported.

6. CONCLUSIONS
The CSG has accomplished the primary goal of the Science
Gateway program. It provides a significant and growing
population of domain scientists with access to fast tree inference
codes and scalable TeraGrid resources. The overhead of accessing
these resources would have been prohibitive for the vast majority
of these users. In a recent user survey 96% of respondents state
that the CSG benefits their research in a tangible way, while 84%
indicate that it permits them to do research that would be difficult
or impossible to conduct in any other way. The success of the
CSG also raises some issues as well. The magnitude of user
demand for computational resources is already stretching the
limits of what can be managed in the context of the TeraGrid
Science Gateways program. The challenge will be to develop
policies and techniques to manage this demand, so successful
Science Gateway projects can be both scalable and sustainable,
while using the national cyberinfrastructure in a responsible way.

7. ACKNOWLEDGEMENTS
This work was supported in part by National Science Foundation
awards NSF EF 01-31648 (MM and TS) and OCI-932251 (WP)
as well as National Institutes of Health award 5R01GM073931
(MM). The work was also supported in part by National Science
Foundation funding of TeraGrid computational resources at the
National Center for Supercomputing Applications and the Texas
Advanced Computational Center. The authors thank Nancy
Wilkins-Diehr, Paul Hoover and Lucie Chan for helpful
discussions.

8. REFERENCES
[1] Morrison, D. A. 2006. Multiple Sequence Alignment for

Phylogenetic Purposes. Australian Systematic Biology 19,
479-539.

[2] Morrison, D. A. 2006. Phylogenetic analyses of parasites in
the new millennium. Advances in Parasitology 83, 1-124.

[3] Subramaniam, S. 1998. The biology workbench - A seamless
database and analysis environment for the biologist.
Proteins-Structure Function and Genetics 32, 1, 1-2.

[4] Badidi, E., De Sousa, C., Lang, B. F., Burger, G. 2003.
AnaBench: a Web/CORBA-based workbench for
biomolecular sequence analysis. BMC Bioinformatics 4, 63 -
72.

[5] The NC BioPortal Project [http://www.ncbioportal.org/]

[6] Rampp, M., Soddemann, T., Lederer, H. 2006. The
MIGenAS integrated bioinformatics toolkit for web-based
sequence analysis. Nucl Acids Res 34, (Web Server issue),
W15–W19. .

[7] Erickson, G., Jörgensen, P., Jörgensen, C., Riccardi, G.,
Ronquist, F., van Engelen, R. 2007. Morphbank: Web Image
Database Technology for Comparative Morphology and
Biodiversity Research http://www.morphbank.net/

[8] O'Leary, M. A., Kaufman, S. G. 2008. MorphoBank 2.7:
Web application for morphological phylogenetics and
taxonomy. http://www.morphobank.org.

[9] Zwickl, D. J. 2006. Genetic algorithm approaches for the
phylogenetic analysis of large biological sequence datasets
under the maximum likelihood criterion. The University of
Texas at Austin.

[10] Stamatakis, A. 2006. RAxML-VI-HPC: Maximum
likelihood-based phylogenetic analyses with thousands of
taxa and mixed models. Bioinformatics 22, 21, 2688-2690.

[11] Swofford, D. L. 1999. PAUP*. Phylogenetic Analysis Using
Parsimony (*and Other Methods), version 4.0
http://paup.csit.fsu.edu/

[12] Ronquist, F., Huelsenbeck, J. P. 2003. MrBayes 3: Bayesian
phylogenetic inference under mixed models. Bioinformatics
19, 12, 1572-1574.

[13] Roshan, U., Moret, B. M. E., Williams, T. L., Warnow, T.
2004. Rec-I-DCM3: A Fast Algorithmic Technique for
Reconstructing Large Phylogenetic Trees. In: IEEE
Computational Systems Bioinformatics Conference (CSB)
98-104.

[14] Wilkins-Diehr, N., Gannon, D., Klimeck, G., Oster, S.,
Pamidighantam, S. 2008. TeraGrid Science Gateways and
Their Impact on Science. Computer 41, 11, 32-41.

[15] Rifaieh, R., Unwin, R., Cleary, J. M., Brown, C. J., Miller,
M. A. 2007. SWAMI: The Next Generation Biology
Workbench http://www.ngbw.org

[16] Core J2EE Patterns - Front Controller
[http://java.sun.com/blueprints/corej2eepatterns/Patterns/Fro
ntController.html]

[17] Letondal, C. 2001. A Web interface generator for molecular
biology programs in Unix. Bioinformatics 17, 1, 73-82.

[18] Neron, B., Tuffery, P., Letondal, C. 2005. Mobyle: a Web
portal framework for bioinformatics analyses. In: NETTAB
2005.

[19] Pfeiffer, W., Stamatakis, A. 2010. Hybrid MPI/Pthreads
parallelization of the RAxML phylogenetics code. In: Ninth
IEEE International Workshop on High Performance
Computational Biology (HiCOMB 2010) Atlanta.

[20] Pierce, M., Pallickara, S. 2008. Swarm: Scheduling large-
scale jobs over the loosely-coupled hpc clusters. . In: IEEE
Fourth International Conference on eScience: 285-292.

[21] Maddison, D. R., Maddison, W. P. 2007. Mesquite: A
Modular System for Evolutionary Analysis
http://mesquiteproject.org/mesquite/mesquite.html

[22] Milne, I., Lindner, D., Bayer, M., Husmeier, D., McGuire,
G., Marshall, D. F., Wright, F. 2008. TOPALi v2: a rich
graphical interface for evolutionary analyses of multiple
alignments on HPC clusters and multi-core desktops
Bioinformatics 25, 1, 126-127.

[23] Silvestro, D., Michalak, I. 2010. RAxML Graphical User
Interface http://sourceforge.net/projects/raxmlgui

[24] Miller, M.A. 2010. CIPRES Science Gateway survey results.
http://www.phylo.org/tools/survey2.html

