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Abstract. One of the most significant challenges of human-robot
interaction research is designing systems which foster an appropriate
level of trust in their users: in order to use a robot effectively and
safely, a user must place neither too little nor too much trust in the
system. In order to better understand the factors which influence trust
in a robot, we present a survey of prior work on trust in automated
systems. We also discuss issues specific to robotics which pose chal-
lenges not addressed in the automation literature, particularly related
to reliability, capability, and adjustable autonomy. We conclude with
the results of a preliminary web-based questionnaire which illustrate
some of the biases which autonomous robots may need to overcome
in order to promote trust in users.

1 Introduction

Effective human-robot interaction depends not just on the design of
the interaction but also on the level of trust that the user has in the
robotic system. In their survey of trust and automation research, Lee
and See define trust as “the attitude that an agent will help achieve an
individual’s goals in a situation characterized by uncertainty and vul-
nerability” [20]. The level of trust that people have in an automated
system is a key factor that influences their use of that system. An
inappropriate level of trust may result in inappropriate use (misuse)
or disuse of automation, which may result in poor performance [20].
While considerable work has been done on trust in automation, we
feel that the added uncertainty and vulnerability inherently present in
robots necessitates dedicated work on trust and robotics.

People who place little trust in automation may disuse it. This lack
of usage has potential safety implications, as the automation may be
better equipped to handle crises than they are. For example, a crash
avoidance system in a car may be disabled or tampered with if the
driver considers past behaviors untrustworthy, yet the crash avoid-
ance system might be able to react more quickly than the driver in
some situations (e.g., [41]). As we have observed during the course
of our previous studies in human-robot interaction (HRI), robot users
who do not trust a robot often disengage its autonomous capabilities,
such as obstacle avoidance. This avoidance of automation, partic-
ularly when reverting to direct control (teleoperation), may lead to
damage of both the robot and its environment. For example, Yanco
et al. observed and evaluated robotic systems designed for urban
search and rescue (USAR) at the Robot Rescue Competition at AAAI
2002 [45]. During one of the system’s runs, there was a clear Plexi-
glas sheet present in the path of the robot. The sensors on the robot
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detected the Plexiglas, and because the robot was utilizing automa-
tion, the robot would not drive forward even when the user tried to
force it to drive forward. This frustrated the user, who switched to
manual control and drove through the Plexiglas sheet.

Problems can also arise when people place too much trust in an au-
tomated system. For example, robot users may incorrectly internalize
a certain level of trust (e.g., that the robot will not collide with nearby
humans) and inadvertently place themselves or others in harm’s way.
For example, during the experiments carried out by Desai [6], there
was an expert user who had been trained with the system and was
aware of the system’s capabilities and shortcomings. This user de-
cided to use the maximum level of autonomy supported by the sys-
tem. The robot performed poorly, but the user kept the system under
full automation for more than half the run. One of the statements that
the user made before starting the run indicated that the user was very
enthusiastic about autonomy and wanted to try it out. This statement
indicated a very high level of initial trust in the system. This attitude
combined with the fact that the user received little feedback about the
performance of the system resulted in a situation in which the user’s
trust was largely misplaced and the robot made numerous collisions.
One of the factors that made judging the robot’s performance diffi-
cult from the user’s perspective was the fact the user and the robot
were not collocated, so the user could not easily observe the robot or
its environment. This separation is not normally the case with most
automation systems.

Advances in social robotics may exacerbate situations in which
users mistrust a system. Related work by Parasuraman and Miller
[33] described how automation etiquette has an impact on user trust
and overall human-automation performance in traditional automation
tasks. Their study showed that “good automation etiquette can com-
pensate for low automation reliability,” suggesting that people place
more trust in a polite robot than is warranted by the robot’s actual
abilities. In addition, van Mulken [44] found that displaying infor-
mation in a personified manner did not affect trust. This indicates
that designers of social robots may need to consider how their robot
presents information (what level of politeness and personification) in
order to foster appropriate levels of trust in the system.

Due to potential problems with trusting a robotic system too much
or too little, it is important to develop a model that will allow a
robotic system to estimate its user’s current level of trust. In this pa-
per, we present an overview of previous work in trust in automated
systems and discuss specific areas in which robotics poses challenges
not previously addressed by this body of work. We also discuss a pre-
liminary web-based questionnaire which we conducted to examine
people’s attitudes toward robotic automation.



2 Research on Trust in Automation

Parasuraman and Riley define automation as “the execution by a ma-
chine agent (usually a computer) of a function that was previously
carried out by a human” [34]. Automation has traditionally been em-
ployed in systems that are complicated, tedious, or time critical, but
it has also been used for economic reasons [34]. When automation
was first introduced in the 1930’s, its use was limited to large in-
dustries; however, at the present, automation can be found in many
places, from home appliances to the Mars rovers.

Automation has always had weaknesses: namely, it has only been
effective in well-structured and controlled environments and contin-
ues to remain so. To avoid catastrophic failures in safety critical sys-
tems due to either flaws or limitations of automation, an operator
must be present at all times to take control of the system. Situations
of this kind in which a human operator is working with an automated
system are referred to as “human-in-the-loop control.” While utiliz-
ing a human operator may be beneficial in certain situations, address-
ing the inadequacies of automation for the human-in-the-loop control
creates a different set of problems. When an operator is added to the
system, improving overall system performance requires more than
simply optimizing operator performance and, separately, optimizing
automation performance. The interaction between the two needs to
be considered as well.

For several decades, researchers in the automation field have ex-
amined the factors which influence people’s trust of automated sys-
tems and how this level of trust, in turn, effects the way in which
people use, misuse, or disuse automation. Researchers have shown
that trust influences operators’ use of automation (e.g., [8, 19, 31]):
the more operators trust automation, the more they tend to use it.
Moreover, if an operator trusts his own abilities more than those of
the automated system, he tends to choose manual control; however,
if an operator trusts the automation more than his own capabilities,
he is more likely to choose automation over manual control.

Not only has it been demonstrated that a user’s level of trust af-
fects how much he will rely on an automated system, but numerous
studies have also been conducted to examine the factors which in-
fluence this level of trust (see [20] for an overview). Specifically,
Dzindolet et al. [8] demonstrated the impact of system performance
on user trust. The results of this study indicated that while users ini-
tially placed trust in a decision aid and agreed with its suggestions,
as users observed the system making errors they would distrust even
a generally high-performing aid unless provided with reasons as to
why the errors had occurred. However, providing this type of infor-
mation increased trust in the automated aid even when the aid per-
formed poorly. Besides the performance of the system, additional
factors contributing to a user’s trust of an automated system include
the recency of errors made by the system, the user’s prior knowl-
edge about the system’s performance, the user’s knowledge of the
capabilities of the system, and the user’s expectations of the system’s
performance [39].

Different models have been hypothesized regarding how these dif-
ferent factors influence each other and ultimately the operator’s re-
liance on automation. One such model was proposed by Riley [37]
and is shown in Figure 2. The dashed lines indicate the unproven
hypotheses and the solid lines indicate relationships that have been
proved by experiments. This model, like most, does not consider
some factors that are relevant to robots such as interface usability,
proximity to robot (co-located or remote-located), situation aware-
ness, dynamics of operating environment, etc. These factors heavily
influence automation in robotics. Since the performance of automa-

tion has an effect on users’ trust of automation it is important to con-
sider these factors. Of these factors, some work has been done on
interface usability [2] and situation awareness [23].

Figure 1 shows a generic trust model which has been augmented
with factors more relevant to robotics. Many researchers have proven
that the way the user allocates control or uses automation depends
on the amount of trust that the user has in the automation and the
amount of trust that user has in his own capabilities (e.g., [5, 8, 19,
21, 37]). A user’s trust of his own capabilities is most often referred
to as “self-confidence.” Some studies have reported a certain amount
of lag between changes in trust and self-confidence and an actual
change in allocation strategy; this lag is referred to as “inertia” [21].
Atoyan et al. found that interface design plays an important role in
influencing users’ trust in automation [2].

When the user changes the allocation strategy, the performance
of the system inevitably changes. For the feedback loop to close,
the user needs to observe this change in performance. Depending on
the system, there might be a significant time delay before the user
observes the change in performance. This time delay may result be-
cause only cumulative feedback is provided to the user [8], or it may
be a result of the time required to send information to the user over
the communication channel. The significance of a particular amount
of time delay depends on the nature of the system. For example, a
delay of a few hundred milliseconds will have a drastic effect on a
USAR system but may have little effect on a Mars rover. The change
in system performance is also dependent on machine accuracy, and,
as explained in Section 3.1, the performance of automation in robotic
systems is generally not very high.
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Figure 1. A basic model of trust adapted for robotics. It shows that trust
and self-confidence influence automation allocation along with some factors

that would be more relevant to robotics like interface usability, lag, and
machine accuracy.

Table 3 at the end of this paper lists previous work related to trust
and automation. For a more comprehensive coverage of trust and au-
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Figure 2. Factors influencing automation use, according to Riley [37]. The dashed lines indicate the relationships that are yet to be proven and the solid lines
indicate the relationships that have been experimentally proven.

tomation, see Lee and See [20]. Table 3 lists experimental setup de-
tails such as the number of participants, background of participants,
and experiment task. It also lists the main contribution of the papers.
Most of the experimental setups were some form of automated deci-
sion aids. There were two studies that were based on questionnaires
( [16, 26]). Most of the experiments were modeled after systems that
were not very complex, such as orange juice pasteurization [19],
character identification [37], camouflaged soldier detection [9], etc.
Most of the studies recruited students. One study in which pilots par-
ticipated was [37]. It is important to note that while most of the stud-
ies utilized simulations, some of the simulations were modeled after
real systems ( [19, 28, 30]) while others were not.

In one of their experiments with simulated pasteurization plants,
Lee and Moray [22] found that automation allocation was dependent
on trust and self-confidence. They also found that operators exhib-
ited inertia, that there was a bias towards manual control, and that
this bias was even more prominent during the initial stages. In an-
other experiment, Lee and Moray also found that automation usage
is dependent on individual biases [19]. The bias towards manual con-
trol was also validated by Riley in his experiments with a character
identification system [37]; due to these findings in a small sample set
of users, he suggests running larger sets of participants.

As can be seen in Table 3, most trust in automation studies have
had relatively few participants. Riley also conducted similar experi-
ments with students and pilots and found that automation allocation
strategy followed the same pattern for both groups except that the pi-
lots relied on automation more than the students did. This difference
raises the question of testing systems with domain experts, which
is seldom done in automation research but is standard in human-
computer interaction for usability studies.

Dzindolet et al. conducted experiments with an automated deci-
sion aid for camouflaged soldier detection [9]. In one of their exper-
iments, they found that participants who had little information about
the reliability of the system considered the system trustworthy. This

bias is referred to as the “positivity bias”. The concept of the posi-
tivity bias was developed in the field of social psychology; the idea
is that people tend to be biased to think highly of other people when
adequate information about them is not available. If participants had
a positivity bias towards an automated system, the participants would
be more likely to use automated control (at least initially). However,
Dzindolet’s findings contradict those of Lee and Moray [22] and Ri-
ley [37], in which users showed an initial bias towards manual con-
trol.

3 Automation and Trust in Robotics

While the broad range of automation research provides a context for
examining issues of trust with robots, there are a number of factors
that limit how well this work generalizes to the robotics domain. For
example, studies of automated systems have tended to utilize sys-
tems such as autopilots, flight management systems, vision systems
for target or obstacle identification, and factory control systems [20].
Participants interact with a simulated system, which allows experi-
menters to inject errors and observe how participants’ level of trust
of and use of the system change as a result. The systems used in these
experiments generally have no physical embodiment and do not in-
teract with the physical world. Furthermore, these automated systems
tend to be designed for rigid tasks; that is, each system performs only
one very specific type of task. Robots are generally designed to ac-
complish a wider range of tasks: an assistive robot might be needed
to fetch a cup of coffee from the kitchen one day and a hat from the
closet the next, and a robotic system for USAR can be deployed at
different disaster areas with different physical layouts and charac-
teristics, such as a collapsed building or a mine shaft. In fact, it is
quite common for robots to be used for tasks their designers never
envisioned. Thus, the implications of these automation studies for
physically embodied robots with noisy sensors operating in dynamic
environments are less clear.



3.1 Automation Reliability

Reliability is one characteristic which has been shown empirically
to affect a user’s trust in a system [5, 9, 37]. Designing automation
for robotics is more challenging than for other automated systems
because of the difficulties in modeling the robot and its environment
and the challenges posed by poor sensor data. Designing automation
requires modeling an existing system. Regardless of the implemen-
tation architecture, building such a model requires that all possible
states be mapped to an action. This mapping is easy to do for tra-
ditional automated systems, such as the orange juice pasteurization
plant utilized in Lee and Moray’s experiments [19]; however, cre-
ating this mapping is difficult to do when the number of possible
states is very large or dynamic. Designing automation for such sys-
tems requires many approximations, reducing the reliability of au-
tomation even in the presence of perfect sensor information. Robots
designed for urban search and rescue, assistive technology, or un-
manned surveillance must operate in unknown, unstructured, and dy-
namic environments. This lack of environmental constraints makes
designing automation to cover all possible circumstances the robot
might encounter very difficult. As a result, these types of robotic sys-
tems are likely to have lower reliability than other automated sys-
tems.

Automation performance not only depends on the implementation
of automation by the designers, but it is also heavily dependent on
information from sensors. Most automation experiments conducted
regarding trust have been in simulation (e.g., Table 3). In these ex-
periments, the reliability of automation is artificially controlled; most
often, the reliability is constant throughout the entire experiment or
constant for relatively large time periods. This type of experimental
design may help to highlight the effect that reliability has on trust
and control allocation; however, since the resulting models are de-
rived from simulated systems, their applicability to real, physical
systems remains unclear. This issue is very important in robotics be-
cause most sensor modalities used are either unreliable (i.e., sonar,
infrared, etc.) or their accuracy is dependent on environmental fac-
tors (such as light, reflectivity of surfaces, other characteristics of sur-
faces, etc). This suggests that at the very least, for robotics, simulated
experimental setups with reliability modeled after real world systems
or real world experiments are needed. While studies have been con-
ducted which examine the effects of reliability on trust, given the dy-
namic nature of reliability in robotics, a comprehensive study of the
effects of reliability in robotics is required to either validate existing
trust models or modify them.

3.2 Automation Capability

Automation capability defines to what extent system operations can
be controlled by automation, whereas automation reliability defines
how well system operations can be performed. In most previous au-
tomation experiments, automation capability has not been an issue;
however, in robotic systems, the maximum capability of automation
must be considered separately from reliability.

In most automation experiments conducted to date, the automated
system is capable of performing the entire operation. This capability
is due in part to the oversimplified nature of the experimental setup.
An example would be controlling the valves in a pasteurization plant
or correctly indicating the presence of a camouflaged soldier in an
image. From the operator’s perspective, the mental model of the au-
tomation’s capability is relatively static: the automation always has
the capability to complete the task at hand; however, this may not be

the case with robotics. In several robotic domains, systems employ
discrete levels of autonomy for different reasons. These levels of au-
tonomy define what tasks the automation can perform. Parasuraman
et al. have described a classic example illustrating how different lev-
els of autonomy can be utilized [35]. USAR systems developed by
INL [3], and UML [17] have several discrete autonomy levels, requir-
ing the user to accurately learn, remember, and use the correct mental
model for automation. The need for a complicated model of automa-
tion capability has the potential to drastically increase the chance
of misplaced trust in automation. UML has also implemented sliding
scale autonomy for USAR [6]. According to Desai and Yanco, a slid-
ing scale autonomy system is a continuum of autonomy levels from
full teleoperation to full autonomy [7]. From an automation point of
view, a sliding scale system might be better than a discrete autonomy
system, but the influence of such sliding scale autonomy on trust has
yet to be studied.

3.3 Changing Levels of Autonomy

Furthermore, the fact that robotic systems may operate under chang-
ing levels of autonomy is generally not addressed in this literature.
In some robotic systems, the user specifies the desired level of au-
tonomy; in others, the robot may change its own level of auton-
omy without specific human direction to do so. Desai [6] lists fac-
tors in the robotics application domain that could govern the mini-
mum as well as maximum amount of automation a system can have.
Some robot application domains, such as urban search and rescue
(USAR), can have very unstructured environments [29], which re-
quire the presence of a human operator to assist the automated sys-
tem. A robotic system with different levels of autonomy requires that
the user develop an allocation control strategy to decide how much
autonomy the system should have at any given time. However, most
of the research regarding allocation control strategy that has been
done has been mainly in the field of industrial automation or avia-
tion automation. Most often in such situations, the automation can
either be turned on or turned off (e.g., [5, 21, 37]). Most autonomous
robotic systems employ a discrete autonomy system in which there
are several autonomy levels to choose from, which complicates the
problem of automation allocation: the user must now decide not only
whether or not automation must be used but also how much; thus the
level of autonomy must also be considered as a factor related to the
user’s trust of the system.

In robotics, adjustable autonomy systems are sometimes referred
to as mixed initiative autonomy (MIA) systems. However, the term
“adjustable autonomy” is also used to refer to systems in which the
operator and the automated system can both change the level of au-
tonomy. A system like this was implemented by Desai [6]. In do-
mains like USAR, in which the operator may utilize a robot for long
periods of time, it is very difficult for the operator to maintain sit-
uation awareness the entire time. The widely accepted definition of
situation awareness is “the perception of the elements in the environ-
ment within a volume of time and space, the comprehension of their
meaning and the projection of their status in the near future” [10].
Situation awareness can be easily lost if the robot is operating au-
tonomously. This lack of good SA might result in an accident if the
automation fails for some reason. MIA systems can prevent these
types of failures by gradually handing over control to the operator
as the automation starts to fail. By transferring control to the oper-
ator gradually, the operator gains time to regain SA. The MIA sys-
tem implemented by Desai [6] can also take over some amount of
control from the operator if the automation detects that the opera-



tor is performing errors that the automation could avoid if it were in
control. The effects of automation failures on trust in MIA systems
have not been studied. Some researchers have tried to treat robots
as peers rather than just tools (e.g., Marble et al. [25] and Fong et
al. [11]). Such systems would implement some sort of MIA, which
makes studying the effects of MIA on trust even more important.

3.4 Prior Work on Trust in Robotic Systems

To date, there has been little work examining issues of trust directly
with robots, although some work has been conducted involving sim-
ulated robots. Dassonville et al. [4] conducted a study in which par-
ticipants used a joystick to control a simulated PUMA arm. Errors
were introduced into the simulation, and participants were asked to
rate the reliability, performance, and predictability of the joystick’s
behavior (as well as how difficult it was to make such ratings). The
results of the study were consistent with prior work in autonomous
systems that suggest that the user’s self-confidence is a significant
factor which influences use of such systems.

More recently, Freedy et al. [13] have examined trust in the context
of mixed-initiative command and control systems using the MITPAS
(Mixed-Initiative Team Performance Assessment System) Simula-
tion Environment. The researchers constructed a quantitative mea-
sure of trust by assuming that people use a rational decision model
such that “trust behavior is reflected by the expected value of the de-
cisions whether to allocate control to the robots on the basis of past
robot behavior and the risk associated with autonomous robot con-
trol” [13]. For their evaluation, participants were asked to assume
the role of a controller of an Unmanned Ground Vehicle (UGV); the
UGV was able to autonomously target and fire, but participants were
instructed to take control of the UGV if its autonomous behaviors
would lead to a time delay or a failure. The experimenters varied the
competency of the UGV’s firing behavior and recorded participants’
choices to override the UGV. The results suggested that participants
who were able to ascertain whether the UGV was very competent or
incompetent adjusted their behavior accordingly, seeming to trust the
system to continue to maintain the same level of competence. In the
case in which the system was of indeterminate competence, it was
more difficult for users to adjust their behavior. Because the entire
experimental setup took place in a video game-like environment, it
is unclear how these results would generalize to physical robots.

While relatively little work has been done investigating trust in
robots, there is a large body of research on trust in different types
of technologies. Because we are interested in developing a model
of trust for human-robot interaction, we have examined trust mod-
els that were developed for other technology domains. For example,
Song et al. [40] developed a neural network-based trust model for
understanding users’ acceptance of recommendations from a system
of heterogeneous agents. Another agent-related trust model was de-
veloped by Rehak et al. [36], who used fuzzy numbers to represent
trust in cooperating ubiquitous devices. McKnight et al. [27] devel-
oped a trust model to understand users’ acceptance of a website of-
fering legal advice. However, all of these systems differ from robots
in the same ways that the systems previously studied in the automa-
tion literature do. To advance the field of human-robot interaction, a
systematic study of trust in human-robot interaction is necessary to
build trust models in this domain.

4 Web-Based Questionnaire on Attitudes Towards
Robotic Automation

To examine people’s perceived level of comfort with robotic automa-
tion, we have conducted a preliminary web-based questionnaire. Par-
ticipants were recruited through Mechanical Turk, a website which
allows individuals and companies to post human intelligence tasks
which are accepted and completed by online workers [42]. Partici-
pants were asked about a (fictitious) new car that had the ability to
park itself automatically. In order to examine participant’s initial bi-
ases towards the system, participants were not given any information
about the competence or reliability of the fictitious car. Participants
were asked to envision parking at a grocery store and to rank the fol-
lowing situations in order of how comfortable they would feel in each
situation from 1 (most comfortable situation) to 6 (least comfortable
situation):

• You park your car manually.
• Another driver manually parks their car next to your car.
• Another car automatically parks itself next to your car.
• Your car automatically parks itself (and you cannot override it).
• Your car automatically parks itself (but you can override it).
• You take a taxi and the taxi driver parks the taxi.

We received 176 responses to the questionnaire (69.3% female,
30.1% male, 0.6% unknown). Participants reported their ages as fol-
lows: 18 to 25, 22.1%; 26 to 35, 36.3%; 36 to 45, 22.1%, 46 or
older, 18.1%; unknown, 1.1%. 97.7% of respondents reported having
prior experience driving a car. The mean rankings of each scenario
are shown in Table 1. We conducted a Friedman two-way analysis
of variance to compare the rankings for the scenarios, which pro-
vided evidence for significant differences among the six rankings,
χ2(5) = 319.79, p < 0.001. In order to determine which scenar-
ios’ rankings were significantly different from each other, we used
Wilcoxon matched-pairs signed-ranks tests with the Bonferroni cor-
rection (Table 2).

Overall, 65% of respondents indicated they would be most com-
fortable manually parking their own car (mode rank = 1), and 55% of
respondents indicated they would be least comfortable if the car was
parking itself and they had no means to override it (mode rank = 6).
While a taxi passenger also has no means to “override” a taxi driver,
participants tended to feel less comfortable with the automated sys-
tem. Similarly, 38.6% of participants ranked the situation in which
another driver manually parks a car next to theirs as the second most
comfortable (mode rank = 2), yet 36.4% of participants ranked the
situation in which another car automatically parks itself next to theirs
as their second to least comfortable (mode rank = 5), even though
they would have no control over the other car in either case. This
suggests that people may tend to trust a robotic system less than an-
other person even in circumstances for which there may not logically
be any difference in terms of the person’s control over the situation.

Nomura et al. have demonstrated empirically that people’s nega-
tive attitudes towards robots will affect their interactions with robots
[32]. The types of biases which we observed in this survey represent
negative attitudes which may impact how robotic automation is uti-
lized. In order to improve HRI given these biases, a robotic system
will need to adjust its interactions to align with the amount of trust
placed in it by the user. For example, the robotic system could al-
ter of warning thresholds (e.g., collision warnings or status warnings
such as battery level), how often it asks for help, and which level of
autonomy to use. Strategies for modeling human behavior within a
robot have been examined (e.g., [12]), but more work is needed.



Table 2. p-values from Wilcoxon matched-pairs signed-ranks tests between the rankings for each scenario. All values less than 0.003 (adjusted from 0.05)
indicate statistical significance.

Scenario Self Another Driver Taxi Self Another Driver Self
Manual Manual Auto : Override Auto Auto : No Override

Self : Manual p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001
Another Driver : Manual 0.81 0.60 p < 0.001 p < 0.001
Taxi 0.48 p < 0.001 p < 0.001
Self : Auto : Override p < 0.001 p < 0.001
Another Driver : Auto p < 0.001

Table 1. Mean ranking, mode ranking, and percentage of participants
whose responses matched the mode ranking, where 1 = most comfortable

situation and 6 = least comfortable situation.

Scenario Mean Rank Mode Rank Participants
at Mode

Self : Manual 1.74 1 65.3%
Another Driver : Manual 3.31 2 38.6%
Taxi 3.36 3 27.3%
Self : Auto : Override 3.19 4 27.3%
Another Driver : Auto 4.36 5 36.4%
Self : Auto : No Override 5.04 6 55.1%

5 Conclusion and Future Directions

Prior work on trust in automated systems provides a foundation for
understanding and modeling trust in human-robot interaction, but
much work remains to be done. Because of the challenges of mod-
eling a robot’s sensors, actuators, and its environment as well as the
challenges of interpreting noisy sensor data, automation for robotic
systems is likely to be less reliable than the systems used in previous
work on automation. In addition, a robot may be used in a variety
of situations for a variety of tasks, and a robot may not always have
the capability to complete every aspect of the task at hand. Thus,
robotic systems may have a lower level of automation capability
than the systems utilized in automation research. Adjustable auton-
omy and mixed-initiative robotic systems, including systems which
may change their autonomy level dynamically, introduce additional
complexity which may affect the user’s trust in the system. Our web-
based questionnaire also illustrates that users may be biased against
robotic autonomy, even compared with situations in which there may
be little difference in terms of their own control (i.e., a person riding
in a car being parked by another person as opposed to by an auto-
mated system).

Further research is needed in order to create models of trust which
are specifically tailored towards human-robot systems. The field of
HRI should begin to investigate the question of trust through empir-
ical studies, particularly relating to those factors which distinguish
robots from other automated systems. Studies in which participants
must execute a task with a real robotic system could include measures
of perceived reliability and the system’s actual reliability to compare
how these factors influence participants’ use of the system and re-
ported trust of the system. For tasks in which robotic automation is
only sometimes helpful, a careful examination of how participants
understand the system’s capabilities, and how this impacted trust in
the system, would also be helpful. Examining the effects of chang-
ing levels of autonomy on trust, as well as the effect of automation
failures, is another possible research area. In order to build systems
which promote appropriate levels of trust, HRI designers will need
to consider how to design both the robot’s form and its interactions
such that it provides feedback which will help the user understand
the robot’s capabilities and limitations.
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