
Creation and Interaction with Large-scale Domain-Specific
Knowledge Bases

S. Bharadwaj+ L. Chiticariu∗ M. Danilevsky∗ S. Dhingra+ S. Divekar+

A. Carreno-Fuentes+ H. Guptaθ N. Guptaθ S.-D. Han+ M. Hernández∗

H. Ho+ P. Jainθ S. Joshiθ H. Karanamθ S. Krishnanθ

R. Krishnamurthy∗ Y. Li∗ S. Manivannan+ A. Mittalθ F. Özcan∗

A. Quamar∗ P. Raman+ D. Sahaθ K. Sankaranarayananθ J. Senθ

P. Sen∗ S. Vaithyanathan+ M. Vasa+ H. Wang+ H. Zhu∗

∗ IBM Research-Almaden + IBM Watson θ IBM Research-India

{shreyas.bharadwaj,chiti,mdanile,sdhingra,scdiveka,acarreno,sang-don.han,mahernan,ctho,rajase,yunyaoli,smaniva,
fozcan,ahquamar,pchozhi,senp,vaithyan,mitesh.vasa,haowang,huaiyu}@us.ibm.com

{higupta8,ngupta4j,pajain06,salijosh,hkaranam,sarkris5,arakeshk,diptsaha,kartsank,jaydesen}@in.ibm.com

ABSTRACT

The ability to create and interact with large-scale domain-
specific knowledge bases from unstructured/semi-structured
data is the foundation for many industry-focused cognitive
systems. We will demonstrate the Content Services system
that provides cloud services for creating and querying high-
quality domain-specific knowledge bases by analyzing and
integrating multiple (un/semi)structured content sources.
We will showcase an instantiation of the system for a finan-
cial domain. We will also demonstrate both cross-lingual
natural language queries and programmatic API calls for
interacting with this knowledge base.

1. INTRODUCTION
Knowledge bases (KBs) populated with facts extracted

and integrated from unstructured and/or semi-structured
data is the foundation of most modern artificial intelligent
systems. Not surprisingly, research on KB construction and
interaction has received wide attention from both academia
and industry [5, 7, 4] in recent years. Despite the success of
popular open-domain KBs such as FreeBase [3] and Yago [9],
constructing and querying domain-specific KBs remains an
open problem. The key challenges includes: (1) how to rep-
resent and incorporate domain knowledge; (2) how to enable
a robust platform-agnostic workflow for knowledge extrac-
tion and integration from different data sources in different
formats in both batch and incremental fashion; (3) how to

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 10, No. 12
Copyright 2017 VLDB Endowment 2150-8097/17/08.

Figure 1: Content Services: Architecture

monitor and maintain data quality; (4) how to store and
query the KB to support a wide-spectrum of use cases.

In this demo, we will showcase Content Services system
designed to meet these challenges. We will use the construct-
ing and interacting with a KB in the financial domain as a
representative use case to illustrate the inherent challenges
related to domain-specific KBs.

2. SYSTEM OVERVIEW
Figure 1 depicts the architecture of our Content Services

system. Content Services are comprised of a number of ser-
vices divided into three areas: Enrichment, Ontology, and
Knowledge Base. These services are deployed on top of a
scalable architecture, like Hadoop and Spark, for process-
ing large amounts of structured and unstructured content
sources and creating KBs of integrated entities. Each ser-
vice is exposed to users via REST APIs.

Enrichment Services are in charge of ingesting data from
multiple sources and processing that data in workflows of
analytic components. These workflows, deployed on top of
a scalable architecture such Hadoop and Spark, produce en-
tities (data objects) that are loaded into a KB using the
Knowledge Base Service. The Ontology Service is a reposi-
tory of schemas and vocabularies that describe the entities

1965



produced by enrichment, describe intermediate data pro-
duced and used by enrichment workflows, and help generate
queries over the KB. The Knowledge Base Service, which
may utilize Hadoop, RDBMS, or other appropriate data
stores stores and indexes the generated entities in the KB
and exposes appropriate interfaces to enable user interac-
tion. For the financial application, this includes a natural
language interface where users can interact with the KB
using natural language queries and an API which enables
programmatic access by user applications. The queries ex-
pressed using these interfaces are converted into an interme-
diate query expressed over the domain ontology using the
Ontology Query Language (OQL) that we have developed
[8]. The query language supports a wide range of queries,
including OLAP style, against the KB.

2.1 Enrichment Services
Enrichment Services allows users to register analytic com-

ponents, which can be combined into a workflow that ingests
and uses a domain ontology to transform raw data into an
entity-centric KB. Enrichment exposes four types of ana-
lytic services: Annotation for information extraction, Data

Transformation for mapping and filtering data, Entity Res-

olution for matching mentions of the same object, and Ma-

chine Learning for scoring documents based on a previously
trained model. The Enrichment Service is designed with the
following desiderata in mind.
Enable independent development of components and

composition of workflow. Workflows are described by
customized declarative specifications that stitch multiple an-
alytics components into a DAG of operations (dataflow de-
scription), declare where the input data is located (source
description), and describe the conditions needed to start the
execution of each component (schedule description).

In the data flow description, each analytic component has
a descriptor that specifies its intrinsic properties (such as
the runtime engine as well as its required parameter values)
and its extrinsic properties (such as the inputs and output
connections and their types). The system verifies that the
data types between connecting components are compatible.
At execution time, when the system needs to run a com-
ponent, it will consult its descriptor and start the required
runtime engines and pass the input data into that engine.
The system can be executed in different parallel platforms
(e.g. Hadoop/Spark) to achieve parallelism.
Handle continuous incoming data. The schedule de-
scription specifies when the run of a component can be trig-
gered, and the type of data window. For example, a com-
ponent can be executed at certain time every day or week,
or when new input data is available. A component may just
require the input data to run, or require all past input. As
the input data from different sources arrive at different rates
and volumes, the Scheduler is responsible for starting vari-
ous components to run when their conditions are met, and
for passing appropriate output to downstream components.
In particular, it ensures that each component has complete
input data when it runs.
Maintain well defined states. Each flow can be stopped
and resumed by user requests (e.g. to accommodate a sched-
uled machine maintenance). It may also transition into a
failure state, and be resumed after the failure is corrected,
be resumed, preserving previously completed data.
Monitor data quality. A challenge when dealing with

Figure 2: Query Services Architecture

long-running flows is monitoring the quality of the generated
data. The Quality Evaluation service allows users to regis-
ter pre-defined queries that must be run whenever a compo-
nent is executed. These queries can be specified to profile
the generated data through statistical summaries (number
of records, field value histograms, etc.) or constraints (val-
ues that should not be null, relationships between different
fields, etc.). The results of these queries are stored together
with the data results and can be queried by users to moni-
tor for changes in expected values and/or trends, and detect
data outliers and unexpected behavior.

2.2 Query Services
We provide query services over the enriched data via two

separate interfaces: a programmable API and Natural Lan-
guage Query (NLQ). Both interfaces use OQL expressed
against the domain-specific ontology. In this section, we
briefly introduce OQL and various components that are used
in query services (see Figure 2).
Ontology Query Language: In the Content Services sys-
tem, KBs are associated with ontologies and can be queries
with Ontology Query Language (OQL). OQL operates on a
set of ontology concepts and relationships, and provides an
abstraction for expressing queries independent of the under-
lying back-end data store.

OQL can express sophisticated queries that include aggre-
gations, unions and nested sub queries among others. Each
OQL query block consists of a SELECT clause and a FROM
clause, with optional WHERE/GROUOP BY/ORDER BY/
FETCH FIRST/HAVING clauses. An OQL query operates
on the set of tuples constructed by the Cartesian product of
the concepts referred to in the FROM clause.

OQL allows three types of predicates in the WHERE
clause: (1) predicates for comparing concept properties with
constant values, (2) predicates for expressing joins between
concepts and (3) predicates for comparing concept proper-
ties with a fixed set of values, potentially computed via a
nested query. OQL is also composable and allows arbitrary
level of nesting in the SELECT, FROM, WHERE and HAV-
ING clauses. For more details we refer the reader to [8].
Ontology-to-Database Mapping: The enriched data is
transformed into a relational format and stored in a RDBMS.
For every concept in the ontology and its data properties,
one or more relational tables are created. For functional re-
lationships in the ontology, primary key and foreign key con-
straints are generated. Attributes which need to be indexed
in the database are annotated in the ontology. The enriched
data, which is in JSON format, is first transformed to CSV
using Spark SQL, and then loaded into the RDBMS. We
also keep track of the ontology-to-database mapping, which

1966



Figure 3: Financial Flow.

describes how the ontology elements (concepts, properties,
and relations) are mapped to database objects (e.g., tables,
views, columns, and referential integrity constraints).
Translation Index: Translation Index (TI) is essentially
a semantic index of key properties of concepts that require
disambiguation. It generates variants for each data property
value in the KB, and maintains a map that allows reverse
look-up for the values. In the context of financial domain,
TI indexes properties such as company.name, person.name,
metric.name, insider.title etc. and generates variants for
each such property value. For example, given a person name
is ‘John K. Doe’, TI generates variants such as ‘John Doe’,
‘John D.’, ‘J. Doe’, ‘John’, ‘Doe’ and so on. Variants are
generated using a combination of techniques such as map-
ping rules, dictionaries, and regexes. When a user query
contains any of these variants, TI responds with a match
and confidence. Confidence depends on the nature of variant
generation and ranges between ‘high’, ‘medium’ and ‘low’,
so ‘John Doe’ gets a high confidence whereas ‘John’ gets a
low confidence. The response contains not just the origi-
nal value ‘John K. Doe’ but also the ontology URI for the
corresponding property.
Query Translator: The Query Translator takes an OQL
query constructed against the domain ontology as input,
along with the ontology itself and the corresponding Ontology-
to-Database Mapping. The Query Translator then generates
the corresponding SQL queries to run against the RDBMS
and returns the response in JSON format.

There are more than one mapping from a given ontology
to a relational schema, and the query translator handles dif-
ferent mappings using the ontology-to-database mappings.
For example, a child concept in an inheritance hierarchy
could result in a child table in the relational schema, and
the attributes that are inherited from the parent can either
be stored in the parent table or replicated in the child table.
In the former case, the translator inserts the necessary join
with the parent table to pick up the attributes, if needed.
You can find more details about the query translator in [8].

3. FINANCIAL CONTENT KB
Figure 3 depicts an instantiation of the Enrichment Flow

of Content Services for the financial domain. The flow in-
gests public filings from SEC and FDIC (in XBRL and
HTML), transforms the data via a series of analytics mod-
ules, and constructs a KB with facts about financial entities
and their relationships, similar in spirit to [2]. Note that
this is not a trivial linear flow of simple operations.

Figure 4 shows a pre-defined ontology, designed by do-
main experts, that drives the population of financial entities

Figure 4: Financial Ontology.

and their relationships. For example, both banks and public
companies have related metric information, but only Public
Metrics are additionally identified as belonging to particu-
lar statements (e.g., Income Statement), thus necessitating
additional concepts such as PublicStatement. As another
example, there should only be one instance for a yearly met-
ric for a company in any given year.

The input data for this flows is in different formats and
arrives from two sources at different frequencies and vol-
umes. Each component of the workflow is a complex ana-
lytic operation (more than simple filters and joins operations
in ETL-like workflows) that deals, in many case, with large
data sets and, thus, must be executed on different scalable
platforms (e.g. Hadoop/Spark). Since data is arriving at
regular intervals, the workflow must be ready to start pro-
cessing new data as it arrives. Moreover, each component
of the workflow might have a different trigger. Most compo-
nent in the workflow can start executing when a new batch

of data appears on its input side, process that batch alone,
and produce an output batch. However, the last component
in our flow does entity resolution, an aggregate operation
that require all input batches, not just the most recent one.
If this workflow fails at certain point, it must be able to
resume and recover from previous failure.

The resulting Financial Content KB consists of 20, 000
US public companies and 10, 000 banks, 180, 000 insiders,
and 96-million and 480-million unique metric data points
for public companies and banks respectively.

4. INTERACTION WITH THE KB

4.1 Cross-lingual Natural Language Query
The NLQ component translates the input natural lan-

guage query into OQL, which is executed by Query Services.
The NLQ component includes three parts: (i) Ontology

Evidence Annotator (OEA) that takes the input query and
map the tokens to the elements of the domain ontology or to
the instances in the KB along with the corresponding ontol-
ogy elements (“Alibaba” → Company.name) using Transla-
tion Index and semantic constraints (“Show me investments
in Alibaba” → Prefer “Alibaba” as Investee as compared
to Investor); (ii) Ontology-driven Interpretations Generator
that maps all the evidences produced by OEA, and to On-
tology graph to produce ranked list of interpretations and
(iii) Ontology Query Builder that translates each such in-
terpretation into the intermediate OQL query.

NLQ can take input queries in different languages to query
the underlying monolingual KB. OEA addresses all the lin-
guistic challenges related to the query by generating a language-
agnostic evidence set. To do so, OEA relies on (a) Multi-

1967



lingual Semantic Role Labeling [1] that helps parsing the
query tokens and identifying semantic constraints and (b)
Multilingual Translation Service that maps query tokens in
the input language to an ontology element 1.

4.2 Programmable API
The programmatic API enables developers to interact with

the KB without explicit knowledge of the KB schema, while
building useful applications from the content. The param-
eterized API calls generate OQL queries, which are then
executed against the runtime, and the response is returned
in JSON format.

4.3 Rich Entities
The entity-centric views provided by ontology driven KBs

enable querying for individual real-world entities, as well as
exploring entity information (such as the address or most
recent net revenue of a company) through explicit querying.
In practice, however, users must often resort to issuing many
point queries in order to gather all relevant and context-
specific information about a given entity.

To enhance user experience and ameliorate the problem of
the user needing to issue many queries, we propose the con-
cept of Rich Entities. These rich entities comprise all the rel-
evant and context-specific information for given real-world
entities, and serve as efficient and meaningful responses to
user queries against these entities in a KB. The metadata
that describes the structure and composition of a rich entity,
such as Company or Insider, can be viewed in terms of a pre-
defined subgraph of the domain ontology graph, and there-
fore a predefined OQL query that is executed at runtime to
retrieve the Rich Entity information. Figure 6 shows an ex-
ample Insider Rich Entity , presenting the name, current job
title, and recent employment history in one visualization.

5. SYSTEM DEMONSTRATION
The demo will showcase different query classes supported

by the Financial Content KB via a web based natural lan-
guage interface as well as a programmatic REST based API
with the following demo scenarios.
Demo Scenario 1: The first step to build an effective
board of directors is to find the right candidates. Imag-
ine that we are looking for people with the following profile
to seat on the board for a start-up providing healthy kids’
lunches: Retail grocery store industry experience, familiar
with children-related product/services, proven track record
as a board member, and bandwidth to serve on the board.

The search for such a candidate would require us to issue
a set of queries against the KB as described below.
Q1: Show me the common insiders for Whole Foods Mar-

kets The results (Figure 5) list people on the board of Whole
Foods Markets, a popular US-based retail grocery store com-
pany, and also gives us information about the other com-
panies that they have been associated with while on the
board of Whole Food Markets. As can be see, Linda A.

Mason has also served on the Board of Bright Horizons Fam-
ily Solutions, a nation-wide child-care provider. Thus she
also meets the second requirement of being familiar with
children-related product/services.

1This dictionary can be manually provided or populated semi-
automatically [6].

Figure 5: Common Insiders with Whole Foods.

Figure 6: Rich Entity for Linda Mason.

Q2: Which company boards has Linda Mason served on in

the last 10 years Figure 6 shows the rich entity associated
with Linda Mason providing her employment history includ-
ing the key positions that she has held across all companies
in the recent past.
Demo Scenario 2: We will also showcase the Financial
Content API that enables programmatic access to the KB
by user applications. In the demo, we will show a Swagger
interface (omitted in the interest of space) where the users
can interact with the API and provide appropriate parame-
ters for generating different query templates. The users will
be able to see the query template, the OQL query generated
and the JSON response to the query received from the KB.

6. REFERENCES
[1] A. Akbik and Y. Li. Polyglot: Multilingual semantic role

labeling with unified labels. ACL (Demo), pages 1–6, 2016.
[2] S. Balakrishnan and et al. Midas: Integrating public

financial data. In Proc. SIGMOD, pages 1187–1190, 2010.
[3] K. Bollacker, R. Cook, and P. Tufts. Freebase: A shared

database of structured general human knowledge. In Proc
AAAI, volume 2, pages 1962–1963, 2007.

[4] D. A. Ferrucci and et al. Building Watson: An overview of
the DeepQA project. AI Magazine, 31(3):59–79, 2010.

[5] T. Mitchell and et al. Never-ending learning. In AAAI, 2015.
[6] F. J. Och and H. Ney. A systematic comparison of various

statistical alignment models. Computational Linguistics,
29(1):19–51, 2003.

[7] C. D. Sa and et al. Deepdive: Declarative knowledge base
construction. SIGMOD Record, 45(1):60–67, 2016.

[8] D. Saha and et al. Athena: An ontology-driven system for
natural language querying over relational data stores. Proc.
VLDB Endow., 9(12):1209–1220, Aug. 2016.

[9] F. M. Suchanek, G. Kasneci, and G. Weikum. Yago: a core
of semantic knowledge. In WWW, pages 697–706, 2007.

1968


