
Creation and Rendering of Realistic Trees
Jason Weber1 Joseph Penn2

Teletronics International, Inc. Army Research Laboratory

"From such small beginnings - a mere grain of dust,
as it were - do mighty trees take their rise."

Henry David Thoreau from "Faith in a Seed"

ABSTRACT

Recent advances in computer graphics have produced images approaching
the elusive goal of photorealism. Since many natural objects are so
complex and detailed, they are often not rendered with convincing fidelity
due to the difficulties in succinctly defining and efficiently rendering their
geometry. With the increased demand of future simulation and virtual
reality applications, the production of realistic natural-looking background
objects will become increasingly more important.

We present a model to create and render trees. Our emphasis is on the
overall geometrical structure of the tree and not a strict adherence to
botanical principles. Since the model must be utilized by general users, it
does not require any knowledge beyond the principles of basic geometry.
We also explain a method to seamlessly degrade the tree geometry at long
ranges to optimize the drawing of large quantities of trees in forested areas.

1 INTRODUCTION

Historically, much of the effort in computer graphics has been directed
toward rendering precisely defined geometrical shapes such as manufactured
objects whose geometry must be clear-cut and well-defined. CAD tools that
are often used to design these objects can also be used to specify the
geometrical properties in terms of simpler surfaces or solid geometric
primitives. The complexity of many objects is generally low enough to
allow complex lighting and ray-tracing computations that approach
photorealism.

Natural objects offer a more profound challenge. A hillside may
contain hundreds of trees, billions of grass blades, and countless rocks,
pebbles, and ground variations. Each tree may easily be characterized by
hundreds of thousands of leaves and thousands of branches, branchlets, and
stems oriented in complex directions. A complex landscape could require
an unimaginable large number of polygons to define every minute facet.
As a result, complex natural backgrounds containing vegetation are often
neglected in high quality image generation and scene simulation because of
the difficulty of properly defining and rendering them in a reasonable time.
Emphasis is placed on the buildings, vehicles, and assorted manufactured
objects that are often the focus of the dominant action in a scene. Because
of speed requirements, two-dimensional texture-mapped trees drawn as
rotating billboards are common today in many real-time applications, but
their appearance can be objectionable. This is especially evident when a
viewer is in motion. See [ROHL94] for examples of 2D trees. As
simulations become more realistic, the deficiencies in the background
objects become more apparent.

We present a model to create and render trees. In designing this model,
we have set guidelines focused on the requirements of scene simulation.
The foremost requirement is the appropriate level of resolution and quality.
For items to appear realistic in a dynamic simulation, the viewer must get
the proper sense of rotational as well as translational motion when passing
or circling objects.

Realism also depends on the accuracy of textural effects due to leaves
and branches within the tree shadowing each other at various times of the
day. Therefore, all trees must be three-dimensional. Fortunately, as
background objects, trees would rarely be taller than 5 to 20 percent of
screen height. Therefore, fine details such as leaf curvature and vein
structure are not important. But, a tree's branch structure must be very
accurate at this resolution. Leaves do not completely conceal the underlying
branches of dormant or sparsely foliated trees.

1 weber@teleport.com, now employed at Dynamics Research Corporation
2 joseph@belvior-arl-irisgt.army.mil

The model must be capable of creating a wide variety of actual tree types
and related vegetation such as shrubs, bushes, and palms, as well as cacti
and even large grasses. Shrubs, for example, can be easily simulated with
the model since they really only differ from trees in that they are usually
shorter and have multiple trunks originating directly from the ground
[REIL91]. The model must be able to handle random parameters so that a
very large number of structural variations can be generated from the design
specifications of a particular tree species. It should also implement time-
dependent oscillations due to wind and other perturbations.

Use of the model must be understandable by a common user with only
a general knowledge of basic geometry, such as directly observable angles
and lengths. This excludes the use of any model parameters requiring
understanding of difficult principles such as differential equations.
Likewise, the model must be stable and easy to use. User-entered free-form
equations could easily cause unpredictable behavior. Aspects of the model
that may be difficult to control should be isolated from the user and be
represented by intuitive parameters. However, the model should not be
constrained in a way that interferes with the user's freedom of design.

The specification for the tree must be compact and be able to recreate
and render the tree geometry efficiently. This includes the ability to
degrade geometry to low resolution at long ranges, where increased speed
is necessary to render large forested areas. Any degradation must use
negligible overhead and be seamless, even in dynamic simulations where
ranges to trees are continuously changing.

This model was designed to successfully meet these criteria. We
demonstrate the tree model in our natural environment scene generator. We
have developed a compact but varied library of specification files for
generating trees that are used in simulating a wide variety of landscapes.

The following section briefly discusses other tree models. The third
section gives an overview of our observations of trees. The fourth section
goes into the specific details and equations explaining how our parameters
are used to create the geometric description. The fifth section explains our
method of drawing optimally-degraded instances of the trees at longer
ranges. The sixth section is a very short description of our project and how
we use the trees in our application. An appendix includes a listing of our
parameters and four sample tree specifications.

2 PREVIOUS MODELS

We will make some comparisons and contrasts to other tree models here
and throughout the paper. We cannot fully explain the previous work in
this space and will direct the reader to definitive references.

 Honda introduced a model using parameters to define the skeleton of
a tree [HOND71]. He clearly illustrated the difference between the
monopodial and dichotomous branching. In dichotomous branching, the
branches tend to split apart in different directions from the original.
Monopodial branching tends to act similarly except that one branch
continues inline from the original. Honda assumes that monopodial
branching is a special case concerning structures that are parallel to the line
of gravity.

Lindenmayer introduced a string rewriting system [LIND68] for cellular
interaction commonly called the L-system. This is later applied to plants
and trees and is extensively described in his book with Prusinkiewicz
[PRUS90] which describes the system with a few extensions, such as
allowing for context-sensitivity and random variations. Basically, the string
starts with a seed of a single character. A set of rules defines how to
substitute characters during an iteration of rewriting. Presumably, any one
character may be converted into several characters. This process is
continued iteratively and the string grows. After a designated number of
iterations, these strings can be interpreted as geometric commands. Rules
can be selected to produce the monopodial or dichotomous branching, as
desired.

Aono and Kunii stated that the L-system was not capable of producing
complex three-dimensional patterns of branching [AONO84]. They
demonstrated their models which also introduced interesting features such
as attraction, inhibition, and statistical variations of angles. They made a

Permission to make digital/hard copy of part or all of this work
for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial
advantage, the copyright notice, the title of the publication and
its date appear, and notice is given that copying is by permission
of ACM, Inc. To copy otherwise, to republish, to post on
servers, or to redistribute to lists, requires prior specific
permission and/or a fee.
©1995 ACM-0-89791-701-4/95/008�$3.50

119

detailed evaluation of the arrangement of branches or leaves on a parent
stem. Prusinkiewicz and Lindenmayer's book, printed later, argued that
Aono and Kunii's rejection of the L-system was no longer justified based
on their recent improvements.

Oppenheimer used fractals to form trees. He used parameters such as
branching angle, branch-to-parent size ratio, stem taper rates, helical twist,
and branches per stem segment. These specifications resemble our
approach. The Oppenheimer model, however, following the fractal theory
of self-similarity, uses the same specifications for every recursive level. He
introduces random variations to alleviate some of the self-similarity
[OPPE86]. We believe the self-similarity of fractals to be an unnecessary
constraint that limits models to a relatively small number of basic trees.
Oppenheimer's images appear to be influenced by Bloomenthal whose paper
concentrated on the quality of the surface geometry assuming that a
reasonable tree skeleton exists [BLOO85]. Bloomenthal splined between
points on the skeleton and used a ramiform to represent branch splitting.
He also used a bark texture map created from a digitized x-ray of a plaster
cast. However, such detail is only useful when the tree is viewed at very
close ranges.

Reeves and Blau created trees and grasses by utilizing a particle system
[REEV85]. They primarily emphasized the forest environment instead of
concentrating on the structural detail of individual plants. In addition, they
decided to focus more on the visual results than the specific details of actual
botanical data. For our application, we followed similar guidelines.

De Reffye et al. have had impressive results with a strict botanical
model [REFF88]. Their system models growth to a certain age using
probabilities of death, pause, ramification, and reiteration. They admit that
it takes a considerable knowledge of both botany and of their model to
create images with great fidelity to nature.

Since all the models strive to achieve the same result, realistic trees,
they will all have some characteristics in common. Although our model
does not draw from any of the previous models, comparisons will be made
for the benefit of the reader.

3 APPROACH / OVERVIEW

We visualize the structure of a tree as a primary trunk consisting of a
variably curved structure similar to a cone. In some trees, this single
structure may split multiple times along its length, forming additional
similarly curved structures which can likewise split along their length
[CHND88]. This is how we visualize dichotomous branching. The
attributes of these "clones" closely match that of the remaining length of
their twin, except that they are generated using different random seeds.
After splitting, some will tend to curve more to compensate for the
directional change caused by the splitting angle.

Monopodial or "child" branches are formed from the trunk and any
existing clones. These branches can have entirely different attributes from
their "parents". Many attributes, such as length, are defined relative to the
corresponding attribute of their parents. For example, a child branch's
length is specified as a fraction of its parent's length. These branches,
themselves, can have sub-branches and so on. For the resolution
requirements of simulation, these levels of recursion can be generally be
limited to three or four. It is important to point out that nearly all of the
other models consider each branching, whether monopodial or dichotomous,
to be discrete levels. They often require nine or ten of these levels. While
this is primarily convention, it will be significant in optimized rendering
(Section 5). Also, branch level control can assist in designing a tree. We
usually begin by deactivating the rendering of all levels but the first (the
trunk). Once the trunk's appearance is acceptable, we activate and design
the second level, and so on, ascending degrees of complexity to the third
and fourth levels. This allows us to view the general shape and structure
of the tree without the visual confusion and performance loss due to
drawing minor branches and leaves. In many cases, foliated trees can be
drawn reasonably well in a final rendering without displaying any of the
minor branches.

Specific trees appear to form particular shapes [CHND88,CHAN82].
These shapes are usually the result of the lengths of the primary branches
according to their position on the trunk of the tree, e.g., a conically shaped
tree has larger main branches near the base of the trunk. Alternatively, it
is sometimes easier to define the general shape of the crown by envisioning
an invisible envelope around the tree which inhibits growth of branches.
In addition, many trees have branches that show a preference to curve
towards a vertical direction, either up or down, presumably responding to
the competing influences of light and gravity.

Cross-sectional variations can be particularly noticeable in the trunk.
The scale of the cross-section does not necessarily taper linearly as with a
perfect cone. Some cacti can even have periodic scaling in addition to
simple random variations. The radial distance about any particular cross-
section can also vary randomly and/or periodically. In addition, the radius
of the trunk clearly flares at the base of the many trees.

Wind causes complex oscillatory motion throughout the tree that varies
in amplitude and frequency determined by the length and thickness of the
trunk and branches.

These are the characteristics we have observed and incorporated into
our model. We model enough of the significant effects that a great variety
of trees and related objects can be incorporated into any simulation that
requires natural environments. Plate 1 shows twenty-four trees rendered
with the model.

4 TREE CREATION

The appendix lists most of the parameters currently used by our tree model.
It will be used for reference throughout this paper. For the benefit of
readers who wish to experiment with the demo program, the intuitive multi-
character variable names used in the parameter files will also be used in the
equations throughout this paper. We should stress that many of these
parameters have standard botanical names which we have neglected. We
are not trying to create a new convention, but merely attempting to clarify
the meanings of the parameters using simple geometric names recognized
by our potential end users. Many of the parameters are repeated for each
level of recursion to permit greater control and flexibility. Additional
parameters, mostly dealing with seasonal color and lighting properties, are
not listed and will not be discussed. The parameters are referred to in the
text by name and appear as bold italic, as in Shape. Where necessary,
parameters are prefixed by a number that distinguishes similar parameters
at different levels of recursion. Generalized parameters can appear in the
text with an n prefix, such as nTaper referring to 0Taper, 1Taper, 2Taper
and 3Taper. This refers non-specifically to any of the like parameters.
Many parameters are followed by a variation parameter with the same name
and a 'V' suffix, such as nLength and nLengthV. The variations are usually
positive numbers indicating the magnitude of variation about the previous
parameter. However, since a few special trees, like palms, require
exceptions to common trends [REIL91], some parameters use the negative
sign as a flag to activate a special mode. All angular parameters are
specified in degrees. Likewise, angles in the equations are in degrees,
unless otherwise stated. Except where noted, our equations describe
structures based on our physical observations and research in tree reference
manuals (see References).

Additionally, four trees parameter lists are given for comparison in
Appendix. These specifications were designed using photographs in tree
reference manuals. These trees, Quaking Aspen, Black Tupelo, Weeping
Willow, and California Black Oak, can be seen in Plates 1q, 2, 5, and 1a,
respectively. As trees vary widely and can be hard to identify even by
experts [SYMO58], these specific definitions could be used to represent
many different species of trees. Figure 1 is a diagram demonstrating some
of the parameters. It does not show a complete tree, but rather exaggerates
certain components to clarify their construction.

4.1 The Curved Stem

Our model is based on two elements, the stem and the leaf. We will use
the generic term "stem" to refer to the trunk or branches at any level of
recursion. The unit stem is a narrow near-conical tube whose relative z-axis
is coincident with its central axis. Note that each stem has it own relative
coordinate system. For a main branch whose z-axis points out
perpendicularly to the trunk's z-axis, the branch's y-axis points up toward
the sky and its x-axis points parallel to the ground surface, according to the
right-hand rule. The tube of a stem at a recursive level n is divided into a
number of near-cylindrical segments defined by nCurveRes. Each segment
is stored as a nearly-circular cross-section. These cross-sections are later
connected together to draw a triangular mesh. If nCurveBack is zero, the
z-axis of each segment on the stem is rotated away from z-axis of the
previous segment by (nCurve/nCurveRes) degrees about its x-axis. If
nCurveBack is non-zero, each of the segments in the first half of the stem
is rotated (nCurve/(nCurveRes/2)) degrees and each in the second half is
rotated (nCurveBack/(nCurveRes/2)) degrees. This two part curve allows
for simple S-shaped stems. In either case, a random rotation of magnitude
(nCurveV/nCurveRes) is also added for each segment. A special mode is
used when nCurveV is negative. In that case, the stem is formed as a helix.
The declination angle is specified by the magnitude of nCurveVary.

4.2 Stem Splits

A stem generally extends out to the periphery of the tree, potentially
splitting off cloned stems along its length. A cloned stem is considered at
the same recursive level as its twin and inherits all of its properties. The
frequency of splitting is defined by nSegSplits. This is the number of new
clones added for each segment along the stem and is usually between 0 and
1, with 1 referring to a dichotomous split on every segment. A value of 2

120

would indicate a ternary split. There is no pre-determined limit to the
number of splits per segment; but, since each clone can also generate its
own clones at the next segment, the resulting number of stems can easily
reach undesirable levels. For instance, with a nCurveRes of 5 and
nSegSplits of 2, one stem will eventually split off into 81 separate clones:
(nSegSplits+1)nCurveRes-1=34. Note in the top center diagram in Figure 1
where a tree has 0SegSplits of 1 and 0CurveRes of 3. The resulting
splitting results in a trunk with four total stems: (1+1)3-1 = 4. There is an
additional parameter nBaseSplits that specifies the equivalent of nSegSplits
at the end of the first segment of the trunk. This allows for an independent
number of splits at the base of the tree, thus permitting trees that seem to
have multiple trunks with few further splitting tendencies. Fractional values
of nSegSplits will cause additional splits to be evenly distributed throughout
all segments of all stems in that particular level of recursion. For example,
an nSegSplits of 1.2 will form one clone on 80% of the level n segments
and two clones on 20% of the segments. Note that this yields an average
number of 1.2 splits per segment. Using random numbers simplistically to
distribute the fractional part of nSegSplits is unacceptable because when, by
chance, several consecutive segments all get the extra split, they can form
an unnaturally large number of stems in close proximity on part of the tree.
To evenly distribute the splits, we use a technique similar to Floyd-
Steinburg Error Diffusion [FLOY76]. For each recursive level, a global
value holds an "error value" initialized to 0.0. Each time nSegSplits is
used, this error is added to create a SegSplitseffective which is rounded to the
nearest integer. The difference (SegSplitseffective-nSegSplits) is subtracted
from the error. So, if a value is rounded up, it is more likely that the next
value will be rounded down (and vice versa).

− 1Curve +− 1CurveV
 1CurveRes

1CurveRes=3

length1 = length0

 * ShapeRatio()

 * (1Length +− 1LengthV)

down1 =

 1DownAngle +− 1DownAngleV

length0 = (Scale +− ScaleV)

 *(0Length +− 0LengthV)

length0 * BaseSize

1

2

3

4
5

6
stems2 = 6

Leaves=2

radius1= radius *
length1

length0

RatioPower

radius0 * (1−0Taper) when 0<=0Taper<=1

radius0 = length0 * Ratio * (0Scale +− 0ScaleV)

 stems1=3, Levels=3, 0CurveRes=1

(not all branches and leaves are shown)

LeafScale

LeafScale*LeafScaleX

Connecting

stem not drawn

BaseSplits=2

0CurveRes=3

0SegSplits=1

0CurveRes=3

0SplitAngle

Top View

1Rotate

 +− 1RotateV

down2 = 2DownAngle +−

 2DownAngleV

y y

y

x
x

x

z

z

z

Figure 1: Tree Diagram

If there are any clones, then the z-axes of the stem and its clones each
rotate away from the z-axis of the previous segment by

anglesplit = (nSplitAngle±nSplitAngleV) - declination

limited to a minimum of 0, where the "declination" angle (defined here as
the angle of a stem from the tree's positive z-axis) can be found by taking
the inverse cosine of the z component of a unit z vector passed through the
current matrix transformation of the relative coordinate system. The first
clone continues the original mesh and cannot rotate around the z-axis or it
would twist the mesh (i.e., if one rotated one of the circular faces on a
cylinder about the longitudinal axis, the resulting section of geometry would
render as a hourglass shape). This anglesplit is later distributed over the

remaining segments in the reverse direction so that the stem will tend to
return to its originally intended direction. This compensation prevents
overspreading due to large numbers of stem splits. The extent that any
level of stems spreads out can be easily controlled using the curve
parameters.

A stem and its clones are also spread apart by rotating them about an
axis that is parallel to the z-axis of the tree. This parallel axis of rotation
intersects at the point where the split occurred. Note that they are not
rotated about the relative z-axis of the stem as this would disturb the proper
orientation of the relative x and y axes. In the normal case of a single
clone, the original stem (which is continued after its clone is created) is
rotated about the parallel axis by an angle of magnitude:

[20 + 0.75 * (30 + | declination-90 |) * RANDOM0 to 1
2]

The sign of this angle is random as well. This equation diverges two
nearly-horizontal branches by 20 to 50 degrees about the parallel axis, but
allows near-vertical branches to spread up to 140 degrees. Excessive
rotation for a near-horizontal branch could cause a very unnatural effect.

4.3 Stem Children

One could theoretically build a tree just from clones, but the variety of trees
you could produce would be greatly limited. The even distribution that
makes the splits controllable also makes the shape formed from the resulting
stems and clones very uniform. Also, many trees do not exhibit a clear
splitting nature and have branches that grow from other branches in a spiral
or nearly coplanar manner. For this, we can spawn children, which are
considered one recursive level below their parents. Although a child can
have entirely different attributes from its parent, some of these attributes are
defined relative to its parent's equivalents. Note that the other models
generally only allow each tree to be dichotomous, monopodial, or
somewhere in between. Honda recognized a problem with excessive
branching and sought to resolve it with branch interactions and unequal
flow rates [HOND81]. Since our clones and children allow for dichotomous
and monopodial branching simultaneously, we rarely encounter this
problem. Also, since our parameters can address the character of an entire
stem and not just its segment-to-segment nature, we allow users to make
changes on a level they can more easily understand and visualize.
nBranches defines the maximum number of child sub-stems that a
particular level of stems can create over the length of all of its segments.
The actual number of children from any stem might be less than this
maximum. The number of successive child stems (really "grandchildren")
is computed as

stems = stemsmax * (0.2 + 0.8 * (lengthchild/lengthparent) /lengthchild,max)

for the first level of branches, and

stems = stemsmax * (1.0 - 0.5 * offsetchild/lengthparent)

for further levels of branches, where offsetchild is the position in meters of
the child along the parent's length (from the base). Any stem that has been
cloned or is, itself, a clone reduces its propensity to form clones by half.
Given a normalized position "ratio" from 0.0 to 1.0, a function
ShapeRatio(shape, ratio) uses various pre-defined relations:

Shape Result
0 (conical) 0.2 + 0.8 * ratio
1 (spherical) 0.2 + 0.8 * sin(π * ratio)
2 (hemispherical) 0.2 + 0.8 * sin(0.5 * π * ratio)
3 (cylindrical) 1.0
4 (tapered cylindrical) 0.5 + 0.5 * ratio
5 (flame) ratio/0.7 ratio≤0.7

(1.0 - ratio)/0.3 ratio>0.7
6 (inverse conical) 1.0 - 0.8 * ratio
7 (tend flame) 0.5 + 0.5 * ratio/0.7 ratio≤0.7

0.5 + 0.5 * (1.0 - ratio)/0.3 ratio>0.7
8 (envelope) use pruning envelope (see Section 4.6)

Generally, the Shape parameter is used as the index to this table of curves.
These shapes correspond to generic shapes defined in the botanical tree
texts, previously referenced.

The maximum relative length (lengthchild,max) of any recursive level of
stems is nLength±nLengthV which is defined as a fraction of its parent's
specific length. For example, a child with lengthchild,max of 0.3 and a 10
meter long parent could reach a maximum length of about 3 meters. A
length is computed by

lengthchild = lengthtrunk * lengthchild,max *

ShapeRatio((Shape,(lengthtrunk-offsetchild)/(lengthtrunk-lengthbase))

for the first level of branches and

121

lengthchild = lengthchild,max * (lengthparent - 0.6 * offsetchild)

for further levels of branches, where lengthbase is the fractional bare area at
the base of the tree calculated as (BaseSize*scaletree) and scaletree defined
as (Scale±ScaleV) in meters . The trunk has no parent, so its length is
defined by

lengthtrunk = (0Length ± 0LengthV)*scaletree

If nDownAngleV is positive, the z-axis of a child rotates away from the z-
axis of its parent about the x-axis at an angle of
(nDownAngle±nDownAngleV). However, if nDownAngleV is negative,
the variation is distributed along the height of the tree by

downanglechild = nDownAngle ± [nDownAngleV *

(1 - 2 * ShapeRatio(0, (lengthparent - offsetchild) /

(lengthparent - lengthbase)))]

This can be used to linearly change the down angle based on the position
of the child along its parent, as with the Black Tupelo's main branches seen
in Plate 2b. Note how they are angled upward near the crown of the tree
and angled downward near the bottom. If nRotate is positive, each child
formed along the parent is placed in a helical distribution by rotating about
the z axis of its parent relative to the previous child by the angle
(nRotate±nRotateV). In the special case where nRotate is negative, each
child is rotated about its parent's z-axis relative to its parent's y-axis by the
angle (180+nRotate±nRotateV) on alternating sides of the parent branch.
This allows for a nearly coplanar child stem distribution. Since the y-axis
of any stem with a small downangle points back toward its parent, the
planar distribution from such a stem is aligned with that parent. This makes
it easy to design trees where sub-branches tend to spawn parallel to the
ground surface. This effect is most obvious in the tree shown in Plate 1v.

Aono and Kunii go into detail about the proper divergence and
branching angle [AONO84]. These correspond to our rotation and down
angles, respectively. They note the Schimper-Braun law which states that
this divergence angle is a fraction of 360 degrees based on a Fibonacci
sequence of 1/2, 1/3, 2/5, 3/8, ... , resulting in possible angles of 180, 120,
144, 135, and so on. Our results show that any number near 140 degrees
works well in most situations. Aono and Kunii also note that the branching
angle (our down angle) appears to be smaller for branches that form later
as the tree matures. De Reffye attributes this to gravity affecting the
increased mass of older branches and simulates the effect including elastic
curvature using Young's modulus [REFF88]. The change in the branching
angle can result in large angles at the base of the tree and smaller angles
along the height of the tree. We implement this linearly with the negative
nDownAngleV as noted above. However, Aono and Kunii state that
changing their model to implement this effect does not add much realism.
We find the effect, as implemented in our model, to be very substantial,
especially in dormant or sparsely foliated trees.

4.4 Stem Radius

For all levels except the trunk, the radius at the base of a stem is defined
as a function of the radius of its parent stem. The trunk's radius is
proportional to the scale of the entire tree.

radiustrunk = lengthtrunk * Ratio * 0Scale trunk

radiuschild = radiusparent * (lengthchild / lengthparent)
RatioPower branches

The maximum radius of a stem is explicitly limited to the radius of the

parent at the point from which it was spawned. The radius of the stem can

be tapered along its length. In the simplest form, this can be used to render

the stem as a bent cone. However, there are other variations that allow for

other cases according to the following chart:

nTaper Effect

 0 Non-tapering cylinder

 1 Taper to a point (cone)

 2 Taper to a spherical end

 3 Periodic tapering (concatenated spheres)

Any fractional value from 0 to 3 is permitted to allow adjustment for a
desired effect. The periodic tapering can be seen in the cactus of Plate 1(L)
which has an 0Taper of 2.2. For a normalized position Z from 0 to 1 along
the length of a stem, the following equations compute radiusZ, the tapered
radius in meters:

unit_taper = nTaper 0 ≤ nTaper < 1

unit_taper = 2 - nTaper 1 ≤ nTaper < 2

unit_taper = 0 2 ≤ nTaper < 3

taperZ = radiusstem * (1 - unit_taper * Z) (purely tapered radius)

and when 0 ≤ nTaper < 1

radiusZ = taperZ

or when 1 ≤ nTaper ≤ 3

Z2 = (1 - Z) * lengthstem

depth = 1 (nTaper < 2) OR (Z2 < taperZ)

depth = nTAPER - 2 otherwise

Z3 = Z2 nTaper < 2

Z3 = |Z2 - 2 * taperZ * integer(Z2 / (2 * taperZ) + 0.5)| otherwise

radiusZ = taperZ (nTaper<2) AND (Z3 ≥ taperZ)

radiusZ = (1-depth) * taperZ +

depth * sqrt(taperZ
2 - (Z3 - taperZ)2) otherwise

where 'depth' is a scaling factor used for the periodic tapering. This
periodic tapering is useful for some cacti, where annual growth can
accumulate in segments [HAUS91]. Similarly, it can be used as a rough
approximation of the scales on palm trees.

In addition to tapering, the trunk may also vary its radius by other
means. Flaring creates an exponential expansion near the base of the trunk.
At the unit position Z from 0 to 1 along the length of a stem, the following
flareZ scales the radiusZ computed above.

y = 1 - 8 * Z
flareZ = Flare * (100y - 1) / 100 +1

where the value of y is limited to a minimum of zero. Note that this
equation scales the radius by a minimum of 1 and a maximum of about (1
+ Flare).

The trunk can also have an irregular non-circular cross-section. This
can be very apparent in the large supporting "knees" of cypress trees
[REIL91]. These variations are also clearly present on some cacti, which
can have pronounced ribs or ridges [HAUS91]. Lobes specifies the number
of peaks in the radial distance about the perimeter. Even numbers can
cause obvious symmetry, so odd numbers such as 3, 5, and 7 are preferred.
The LobeDepth specifies the magnitude of the variations as a fraction of the
radius as follows:

lobeZ = 1.0 + LobeDepth * sin (Lobes * angle)

given a specific "angle" from the x-axis about the z-axis. Note that a
LobeDepth of zero effectively turns lobing off. The lobeZ value
cumulatively scales radiusZ as did flareZ. Finally, a simple scaling factor
(0Scale±0ScaleV) can also be applied to the trunk.

Bloomenthal modeled this flaring and lobing using an "equipotential
curve surrounding the points of intersection of the tree skeleton with the
plane of the contour" [BLOO85], essentially the blended circumference of
several circles moving further away from the center of the trunk near the
base of the tree.

4.5 Leaves

The recursive proliferation of children is limited by Levels. This specifies
the maximum level of stems that will be created starting from 0 for the
trunk, usually to 3 or 4. If Leaves is non-zero, then leaves are used as the
last level of recursion. The leaves use the nDownAngle, nDownAngleV,
nRotate, and nRotateV from the that level of recursion. Any leaves or
stems beyond level 3 will simply use the parameters of level 3. Our most
common configuration is to set Levels to 3 and Leaves to a non-zero value
which would give you the following levels of recursion: trunk (0), branches
(1), sub-branches (2), and leaves (3). Some trees, such as the weeping
willow, require sub-sub-branches as well. Leaves specifies the density in
the same manner as nBranches did for stems. As with stems, the actual
density used is also dependent upon other factors such as the length of the
parent branch relative to the maximum length for the parent's level. Given
that the leaves are at the second level of recursion or further, the following
density is used:

leaves_per_branch = Leaves *

ShapeRatio(4 (tapered), offsetchild/lengthparent) * quality

given a quality factor supplied by the parent program that is usually near 1.
This quality factor is also used to scale the leaves to maintain consistent
coverage. This distribution of leaves has the natural effect of preferentially
placing leaves near the outside of the tree. For a negative value of Leaves,
a special mode is used in which the leaves are placed in a fan at the end of
the parent stem, as with some palm fronds. The angle over which the
leaves fan out is specified by nRotate. Note that when in fan mode,
nRotate is not needed for its original purpose. A negative value can also

122

be applied to nBranches with similar results, but we have not yet modeled
any trees requiring this attribute. We realize that these negative flags can
become a bit confusing, but they are only used in a few special cases.
Many users will never need them.

Leaves can assume many different shapes [CHND88]. We allow for a
few common geometries of leaves based on LeafShape. This parameter is
used as an index to a list of pre-defined leaf shapes, such as oval, triangle,
3-lobe oak, 3-lobe maple, 5-lobe maple, any 3 leaflets. Each shape can be
sized and scaled. For optimum coverage versus computational expense, the
oval leaves are most commonly used. The pre-defined leaf geometries are
stored with unit width and length. They are scaled as they are used to
create the tree geometry. The length of the leaves, in meters, is determined
by [LeafScale / sqrt(quality)]. The width, in meters, is determined by
[LeafScale*LeafScaleX / sqrt(quality)].

4.6 Pruning

Pruning is used to force a tree to fit inside a specific envelope. We
originally avoided such a feature since we felt that the shape of a tree
should proceed from its underlying structure, not from the use of artificial
boundaries. We now concede that under the influence of certain
environmental conditions or to control an "uncooperative" tree, pruning can
be very useful. Prusinkiewicz demonstrates pruning applied to the L-system
model [PRUS94]. Essentially, growth of branches is blocked by the edge
of the envelope boundary. Since the L-system progressively grows
connecting nodes, the model can simply hinder growth near a boundary.
Our model must approach the problem differently. Since our stems often
reach from the trunk to the tree's outer edges simply chopping off the ends
of the offending branches,will make the tree's appearance suffer. While this
may be the effect from some actual physical pruning, we would rather use
pruning as a tool to influence the shape of a tree through the underlying
structure. To do this, every stem must adjust its length to fit inside the
envelope. Each stem must "know this new length" before it spawns any
children since each child's length is dependent on its parent's length.
Generally, the child branches are recursively spawned during the formation
of the parent's segment from which they grow. This is necessary since the
child must use a geometric transformation relative to the transformation of
that segment. At that point, the ultimate extent of the parent is not known,
so there must first be a non-recursive probing pass for each stem to measure
and rescale its length and then a fully-recursive second pass to actually form
the geometry and spawn the children. Note that the probing must also that
each of the stem's clones fits. If any stem or clone punctures the boundary,
its length can be iteratively reduced and re-probed until it fits.

While the model is capable of using any arbitrary envelope such as the
topiary dinosaur in Prusinkiewicz's paper, the general user should be more
comfortable with an easily selected simple envelope. Figure 2 shows a
pruning envelope.

scaletree =(Scale +− ScaleV)

scaletree * BaseSize

scaletree * (1−BaseSize)

 * PruneWidthPeak

scaletree * PruneWidth

curvature from PrunePowerLow,

less than 1 in this example

(convex)

curvature from PrunePowerHigh,

greater than 1 in this example

(concave)

length0 = scaletree *

 (0Length +− 0LengthV)

Figure 2: Pruning Diagram

The envelope covers a pseudo-ellipsoidal shape with a top at scaletree

and bottom at (BaseSize*scaletree) in meters. The maximum width of the
envelope is (PruneWidth*scaletree) in meters. This maximum width occurs
at a position along the tree's z-axis as specified by PruneWidthPeak. This
peak is defined as the distance from the bottom of the envelope as a
fraction of the total height of the envelope. A PruneWidthPeak of 0.5
would center the peak as with a standard ellipsoid. The curvature of the
envelope can also be independently controlled above and below the peak
using PrunePowerHigh and PrunePowerLow, respectively. A power of 1
gives a linear envelope from PruneWidth to 0 over the distance from

PruneWidthPeak to the top or bottom of the envelope. A power of 2 gives
a rounded concave envelope, while a power of 0.5 gives a rounded convex
envelope. To determine whether a given transformed point (x,y,z) is inside
the envelope, the boolean 'inside' is computed as:

r = sqrt (x2 + y2 + z2)

ratio = (scaletree - z) / (scaletree *(1-BaseSize))

inside = [r / scaletree < PruneWidth *

ShapeRatio(8 (envelope), ratio)]
where ShapeRatio(8, ratio) is defined as

[ratio / (1 - PruneWidthPeak)]PrunePowerHigh

when ratio < 1 - PruneWidthPeak, or

[(1 - ratio) / (1 - PruneWidthPeak)]PrunePowerLow

when ratio ≥ 1 - PruneWidthPeak. ShapeRatio(8, ratio) always returns
0 when ratio is not in the range of 0 to 1. The Shape parameter can use
this index of 8 for a custom shape even if pruning is not turned on. This
allows the user to define a shape not covered by the predefined shapes. If
Shape is 8 and pruning is on, the tree will tend to match the customized
shape even before pruning takes place. This may cause some strongly
curved stems to fall short of the envelope's edge.

The effects of pruning can be diminished by using the PruneRatio.
This defines a weighted average between the unpruned original length and
the completely pruned length. A PruneRatio of 1 activates full pruning
while a PruneRatio of 0.0 effectively turns pruning off. Thus with values
between 0 and 1, partial pruning can be utilized to avoid artificially smooth
boundaries. Plate 7 demonstrates the use of the pruning envelope to control
the weeping willow.

4.7 Wind Sway

We model stem bending as the deflection of an elastic rod with a circular
cross-section fixed on one end. This rod has a uniformly distributed force
applied to it. The solution of this is a classic problem of mechanics where
applying the Myosotis method yields useful solutions for the deflection
[HART77]. We then consider this rod as a kind of pendulum [HALL88].
The entire system is then modeled as the superposition of coupled
oscillators whose periods and phase angles differ so that the paths of points
on a stem are very complex Lissajous figures [ALON70]. These results
confirm our general observation that light to moderate winds induce trees
to move so that branches sway at various directions and rates of oscillations.
We currently model the oscillatory effects observed for light to moderate
winds only.

In our model, tree movement is simulated by introducing time-variant
curvature changes to the stem segments. This effect is added to the
structural curvature introduced by nCurve and nCurveBack causing
rotations between segments about both the x and y axes. With wind speeds
varying from windspeed to (windspeed+ windgust), the sway angles swayx and
swayy at unit position Z from 0 to 1 of a segment along the length of a stem
are computed at any "time" (in seconds) using:

a0 = 4 * lengthstem (1 - Z) / radiusZ (degrees)

a1 = windspeed / 50 * a0 (degrees)

a2 = windgust / 50 * a0 + a1/2 (degrees)

bx = sway_offsetx + radiusstem / lengthstem * time/15 (radians)

by = sway_offsety + radiusstem / lengthstem * time/15 (radians)

swayx = [a1 * sin(bx) + a2 * sin (0.7 * bx)] / nCurveRes (degrees)

swayy = [a1 * sin(by) + a2 * sin (0.7 * by)] / nCurveRes (degrees)

The angles sway_offsetx and sway_offsety are randomly selected for each
stem in the tree. When the wind sway is activated, each tree geometry
description must be reformed for each frame in an animation to adapt to the
new angles. By using the same random seed, a specific tree will always
have the same basic geometry, perturbed only by the wind-activated
curvature variations. The angles swayx and swayy cause rotations between
segments about the x and y axes, respectively.

4.8 Vertical Attraction

With even hemispherical illumination (sky shine), tree shoots grow upwards
because they are negatively geotropic and positively phototropic. An
upward growth tendency is usually a subtle effect and can be implemented
using the declination and orientation of each segment in each stem. For
sub-branches and beyond, this curving effect is used in addition to the other
curvature effects. The trunk and main branches do not use these functions

123

since any such effect can be more easily controlled through the previous
curve parameters. The AttractionUp parameter specifies the upward
tendency. Zero denotes no effect and negative numbers cause downward
drooping as in the Weeping Willow. A magnitude of one results in a
tendency of each stem to curve just enough so that its last segment points
in a vertical direction. Higher magnitudes cause stems to curve toward the
vertical much sooner. Very high magnitudes such as 10 may result in
snaking oscillations due to over-correction. This is not necessarily an
undesirable result since branches on some trees exhibit a distinctly
sinusoidal shape characteristic. Once the effects of nCurve are introduced
to a segment, curve_upsegment is computed for each segment as

declination = cos-1(transform_zz) (radians)

orientation = cos-1(transform_yz) (radians)

curve_upsegment = AttractionUp * declination *

cos (orientation) / nCurveRes (radians)

where transform_zz is the z component of a unit z vector passed through the
current viewing transformation and transform_yz is the z component of a
unit y vector passed through the current viewing transformation. This
curve_upsegment is added to the segment's curvature.

4.9 Leaf Orientation

Left alone, the modeled leaves will generally assume seemingly random
orientations. However, in reality, leaves are oriented to face upwards and
outwards, presumably to optimize the available direct (sun) and scattered
(sky) light. We can use the declination and orientation of each leaf to rotate
them toward the light. The necessary rotations are computed based on the
current viewing transformation and are applied prior to creating the leaf into
the geometric description. The effect, fractionally controlled by "bend", is
applied by obtaining the leaf's position (leafx, leafy, leafz) and normal
(leafnx, leafny, leafnz) in tree coordinates from the current transform matrix,
then computing the current and desired angles:

thetaposition = atan2 (leafy, leafx)
thetabend = thetaposition - atan2 (leafny, leafnx)

then computing the change:

rotatez (bend * thetabend)

then recomputing declination, orientation, and normal vector using new
transform:

phibend = atan2 (sqrt(leafnx
2 + leafny

2), leafnz)
rotatez (-orientation)
rotatex (bend * phibend)
rotatez (orientation)

Plate 6 shows the bending effect applied to a Sassafras tree. The modified
leaf orientations greatly increase the diffusive reflections from the tree. The
increased variations improve the overall appearance.

5 DEGRADATION AT RANGE

A tree generated with our algorithm may have on the order of 5000 to
100,000 facets. The detail can be increased automatically for even higher
resolution images, such as the Weeping Willow in Plate 3 boosted to over
1 million facets. Currently, a high-end graphics workstation may be capable
of only about 50,000 facets in real time. The high resolution of the trees
is necessary to have an accurate representation at close ranges of 10 to 50
meters or in equivalent magnified views of greater ranges, as in narrow
fields-of-view. However, at long ranges, such as 1000 meters, a much
lower resolution tree could be rendered faster with little or no loss in
apparent quality.

At first thought, it may seem useful to form multiple geometric
descriptions of the same tree at different "levels of detail". At longer
ranges, progressively lower resolution geometric descriptions would be used.
This approach has two problems. First, each instance of a tree consumes
resources. An average tree's geometric description may use about 1Mb of
RAM. Also, it may require 1 to 10 seconds to form the data. These
numbers become much more significant when multiplied by, perhaps, 100
instances. While this could be managed, a more critical second problem
arises with the quantization of the resolution. In a still picture, the changes
between resolutions would not be very apparent since the variably resolved
trees appear as different trees. However, in a dynamic simulation, specific
trees would switch from one resolution to the next. This would result in
wide "resolution waves" flowing through forest canopies. This is
unacceptable for realistic simulation.

A method is needed that uses a single geometric description and renders
it at an optimal resolution for any range. The changes between the
differently resolved geometries must be very fine, preferably corresponding

with removal or modification of each facet one at a time. There should be
negligible overhead (CPU and RAM) involved with this reinterpretation of
the specified geometry.

Since the trees are not arbitrary objects, we can fit a range-degradation
algorithm to their expected geometry. Each tree geometry is organized into
four discrete geometric descriptions: 3 stem levels and the leaves. Any
stems beyond the third level are grouped with the third level. The deeper
levels of stems are rarely visible at long ranges and are often obscured by
the leaves. Oppenheimer recognized that he could use polygonal tubes for
large-scale details and vectors (lines) for the smaller details [OPPE86]. He
warns that artifacts can occur if the "cutover" level is not deep enough. He
also states that many small branches can be rendered as triangular tubes.
Our method of rendering makes similar approximations for efficiency.

To most efficiently use the CPU and memory, our technique does not
convert the geometry, it merely re-interprets it. With progressively
increasing ranges, a tree will re-interpret stem meshes as lines and leaf
polygons as points. With longer ranges, some individual stems and leaves
will disappear altogether. The specific geometry at any range can be
rendered properly by altering limits and increments in the loops that draw
the data. Although we speak of removing items one by one, we do not
actually mark or delete them. We merely change the loop parameters that
scan the stored geometry so that items are skipped. Any number of
arbitrarily-ranged trees can be drawn in any order. The time and space
overhead required to compute and hold these boundary limits is negligible.
A 100,000 facet tree geometry may be rendered at 2 kilometers as about 30
lines and 1000 points. This allows vast expanses of trees to be drawn very
quickly. A viewer can then move close to any of these trees and see them
at their full resolution.

Since the items in each geometric description are ordered in the same
manner as they were created, they generally start from the bottom of the
tree and work up. The items are not randomly organized; therefore, we
cannot simply remove objects one at a time in order from the top or bottom
of the list. This could cause the top of the tree to be heavily degraded
while the bottom remained unchanged, or vice versa. Instead, we group the
items of a type of geometry into groups of a small size which we will call
"masses". The number of elements per mass is determined by an
appropriate "mass_size". We use a mass_size of 16 for all the stems and
4 for the leaves. Curve fitting equations give a value between 0 and
mass_size. To explain, we will use the general term "primitive" to refer
non-specifically to polygons, lines, or points and the general term "item" to
refer non-specifically to leaves, trunk, branches, or sub-branches. The total
number of elements in the geometric description of any item is given as
"total_numberitem". Of this, we wish to draw a certain fraction of these
items using a specific primitive. The portion to be drawn is specified by
the non-integer "numberprimitive,item", which is between 0 and
mass_sizeprimitive,item. For example, a mass_sizelines,1 of 16 divides up main
branch lines into masses of 16. A numberlines,1 of 5 says that for every 16
cross-sections of recursion level 1, there should be lines connecting the first
five. Fractional numbers will draw an additional item for a percentage of
the masses. If there were 160 main-branch cross-sections (10 masses) and
numberlines,1 of 5.3, then the first 3 masses would show 6 of 16 lines and the
last 7 masses would show 5 of 16 lines. A loop to draw the reduced
portion of the item using a specific primitive would be:

int_numberprimitive,item= integer(numberprimitive,item)
massesprimitive,item = total_numberitem / mass_sizeprimitive,item

changeprimitive,item = massesprimitive,item *
(numberprimitive,item - int_numberprimitive,item)

for mass = 0 to massesprimitive,item

{
start = mass * mass_sizeprimitive,item

end = start + int_numberprimitive,item

if mass < changeprimitive,item

end = end + 1

for index = start to end
drawprimitive,item(index)

}

To compute the necessary numberprimitive,item, we need to first convert the
range to a calibrated scale. This adjusts for the current image size and
vertical field of view. A modified range value, r2, is computed as:

r2 = range * 1000 / heightimage * Field_Of_Viewy / 60

This compensates for the effect of a telephoto lens that causes a tree to
appear to be much closer.

The following equations outline how numberprimitive,item is computed for
different levels at different ranges. First, we use the general quality factor
supplied by the parent program (usually between 0 and 1) to determine
some general scaling factors:

124

s = quality / 2 tree is evergreen, or in summer and fall
s = quality otherwise

d = 100 in spring
d = 200 otherwise

Then, we compute the polygons, lines, and points needed for each display
item as follows.

Level 0 Stems (trunk)

r2 <100 don't draw trunk lines (can appear as seam)
100 < r2 draw all trunk lines

r2 < 300 numberpolygons,0 = mass_sizepolygons,0

300 < r2 < 800 numberpolygons,0 = mass_sizepolygons,0 * [1.5 - r2/600]
800 < r2 don't draw trunk polygons at all

Level 1 Stems (main branches)

r2 < 200s numberpolygons,1 = mass_sizepolygons,1 * [1.5 - r2/600]
(bounded 0 to mass_sizepolygons,1)

numberlines,1 = mass_sizelines,1

200s < r2 < 2000s don't draw polys
numberlines,1 = mass_sizelines,1 *

[2.2 - 1.2 (r2/200s)0.3]
2000s < r2 draw nothing for main branches

Level 2 Stems (other branches)

r2 < 50s numberpolygons,2 = mass_sizepolygons,2

numberlines,2 = mass_sizelines,2

50s < r2 < 100s numberpolygons,2 = mass_sizepolygons,2 * [2 - r2/50s]
numberlines,2 = mass_sizelines,2

100s < r2 < 500s don't draw polys

numberlines,2 = mass_sizelines,2 * [2 - (r2/100s)0.5]
500s < r2 draw nothing for secondary branches

Leaves

r2 < d/4 numberpolygons,3 = mass_sizepolys,3

numberpoints,3 = mass_sizepoints,3

d/4 r2 < d numberpolygons,3 = mass_sizepolys,3 *

[4/3 - r2 / (3d/4)]
numberpoints,3 = mass_sizepoints,3

d < r2 numberpolygons,3 = 0

numberpoints,3 = mass_sizepoints,3 * [1.5 - r2 / 2d]
(minimum of 1)

The effects of these equations can be seen in Table 2 which summarizes the
total number of triangles, lines, and points. Triangles refer to elements of
the triangular meshes which comprise the polygons.

Item 5m 30m 60m 120m 240m 600m 1200m
Level 0 Triangles 1440 1440 1440 1440 1440 760 0
Level 0 Lines 0 0 0 36 36 36 36
Level 1 Triangles 960 960 960 0 0 0 0
Level 1 Lines 240 240 240 223 153 35 0
Level 2 Triangles 17736 14580 0 0 0 0 0
Level 2 Lines 5912 5912 5363 2648 0 0 0
Leaf Triangles 53248 53248 49800 28200 0 0 0
Leaf Points 13312 13312 13312 13312 11944 1664 1664

Table 2: Number of elements drawn at specific ranges
 in summer on Quaking Aspen

Plate 4 shows the Quaking Aspen rendered at the ranges listed in Table
2, excluding 5 meters, progressively zoomed by powers of two.

6 APPLICATION

Our project involves the development of software to produce accurate and
realistic high resolution imagery in both the visible and infrared spectrums.
The emphasis is on positioning vehicles in the context of natural
environments for studies of detection and recognition by both humans and
machines. The backgrounds and vehicles must be of equally high fidelity
to alleviate any bias in the testing.

The software utilizes readily available elevation maps and creates
synthetically-generated shading variations for numerous natural effects.
Readily available feature maps are usually at a poor resolution and often
only describe trees as deciduous, coniferous, neither, or both. This is

inadequate for our needs. We create our own feature maps from any
available information such as scenario data (meteorological, topographical,
vegetative type and placement, etc.), satellite imagery, and photographs,
both aerial and at ground level. We describe vegetation using a 16-bit
raster feature map where 14 bits specify 14 trees or related objects (not
mutually-exclusive), and 2 bits specify 3 types of grass (mutually-
exclusive). Any of the 14 trees (from a larger list) and 3 grass types can
be selected differently for any specific scene. For any one of the 14
selected trees, any number of variations can be specified. These variations
use the same parameter file, but are generated from a different random seed.
During rendering, these variations of a tree type are spread randomly over
positions where the appropriate bit for that tree is set in the vegetation
feature map. This can prevent large forests of similar tree types from
appearing too uniform and self-similar. Other feature maps are used for
soils, rocks, waterways, and roadways. Currently, we generally resolve
elevation and features maps at 1 or 2 meters per sample. The grass
resembles that of Reeves and Blau's particle grass [REEV85]. In our case,
the grass is drawn as curved lines composed of Gouraud-shaded segments.

Shadowing within the trees is produced using a standard shadow map
technique [FOLE92]. The shadow map can be used to mark which
geometric components (polygons, lines, points) will be shadowed before
rendering takes place. This technique is only valid if each rendered instance
of each specific geometric description has the same rotational orientation
about its z-axis. Otherwise, the shadows would be rotated with the tree.
This restriction is usually acceptable since each tree selected can have
multiple variations, each of which can be randomly scaled for each instance.

Plate 3 shows various images of a visual simulation from different
points of view. Plate 3f was made from an altered scenario with higher tree
density. A moderate haze was applied to the image in Plate 3b.

7 CONCLUSION

We have introduced a model based on geometrical observables to create and
render three-dimensional trees for simulating natural scenery. A wide
variety of complex realistic tree structures can be generated quickly using
a small number of parameters. The resulting images appear quite similar
to images of real botanical trees. We have demonstrated the efficient use
of the model with our synthetic scene generator.

We explained a range degradation methodology to smoothly degrade the
tree geometry at long ranges. This is used to optimize the drawing of large
quantities of trees in forested areas.

Our attention in designing the model was focused on allowing a general
user to create trees that generally match images from books or photographs.
The user needs no knowledge of botany or complex mathematical
principles, only a basic understanding of geometry. We concentrated on the
general structural appearance of a tree instead of the biological and
biophysical principles that produced its structure.

Currently, the rendering of our trees at close range is not quite fast
enough to meet the needs of real time simulation. A high end graphics
workstation may only be able to draw one very close tree or a few dozen
long range trees in real time. However, newer hardware will inevitably
bring higher performance. In the near future, tree models such as this will
be important in many areas of computer graphics.

ACKNOWLEDGEMENTS

All images were created with the CREATION software developed by
Teletronics and the Modeling Simulation Branch of the US Army Research
Laboratory.

Thanks to the US Army Research Lab who supported this project and
helped with this paper, specifically Teresa Kipp, John Ho (retired),
Gertrude Kornfeld (retired), Hung Nguyen, E. "Glenn" Dockery, Michael
Lander, Janice Colby, and Giap Huynh, and also Dickson Fang and Scott
Hawley of Teletronics. Thanks also to Dynamics Research Corporation.

REFERENCES

[ALON70] M. Alonso, E. Finn. Physics. Addison-Wesley, Reading,
Massachusetts, 1970, pp. 160-166.

[AONO84] M. Aono, T. Kunii. Botanical Tree Image Generation. IEEE
Computer Graphics and Applications. May, 1984, pp.10-34,
Volume 4, No.5.

[BLOO85] J. Bloomenthal. Modeling the Mighty Maple. Proceedings
of SIGGRAPH '85 (San Francisco, California, July 22-26,
1985). In Computer Graphics Proceedings, Annual
Conference Series, 1985, ACM SIGGRAPH, pp. 305-311.

[CHND88] P. Chandler, A. Cook, G. DeWolf, G Jones, K Widin.
Taylor's Guide to Trees. Houghton Mifflin Company, Boston,
1988.

125

[CHAN82] F. Chan, F. Ching, W Collins, M. Evans, W. Flemer, J. Ford,
F. Galle, R Harris, R. Korbobo, F. Lang, F. Mackaness, B.
Mulligan, R. Ticknor. Trees. The American Horticultural
Society, Mount Vernon, Virginia, 1982.

[COLL74] G. Collingwood, W. Brush. Knowing Your Trees. The
American Forestry Association, Washington, DC., 1974.

[FOLE92] J. Foley, A. vanDam, S. Feiner, J. Hughes. Computer
Graphics, Principles and Practice, Second Edition. Addison-
Wesley, Reading, Massachusetts, 1992.

[FLOY76] R. Floyd, L. Steinburg. An Adaptive Algorithm for Spatial
Grey Scale, Proceedings SID. 1976, pp. 75-77.

[HALL88] D. Halliday, R, Resnick. Fundamentals of Physics, 3rd Ed.
J. Wiley & Sons, New York, 1988, pp. 306-322.

[HAUS91] E. Haustein. The Cactus Handbook. Hamlin, London, 1991.
[HART77] J. Den Hartog. Strength of Materials. Dover, Mineola, 1977,

pp. 79-88.
[HOND71] H. Honda. Description of the Form of Trees by the

Parameters of the Tree-like Body: Effects of the Branching
Angle and the Branch Length on the Shape of the Tree-like
Body. Journal of Theoretical Biology. 1971, pp. 331-338.

[HOND81] H. Honda, P. Tomlinson, J. Fisher. Computer Simulation of
Branch Interaction and Regulation by Unequal Flow Rates in
Botanical Trees. American Journal of Botany. 1981, pp.
569-585.

[LIND68] A. Lindenmayer. Mathematical Models for Cellular
Interactions in Development, I&II. Journal of Theoretical
Biology. 1968, pp. 280-315.

[OPPE86] P. Oppenheimer. Real Time Design and Animation of Fractal
Plants and Trees. Proceedings of SIGGRAPH '86 (Dallas,
Texas, August 18-22, 1986). In Computer Graphics
Proceedings, Annual Conference Series, 1986, ACM
SIGGRAPH, pp. 55-64.

[PAGE93] J. Page. Planet Earth: Forest. Time-Life Books, Alexandria,
Virginia, 1983.

[PRUS90] P. Prusinkiewicz, A. Lindenmayer. The Algorithmic Beauty
of Plants. Springer-Verlag, New York, 1990.

[PRUS94] P. Prusinkiewicz, M. James, R. Me ch. Synthetic Topiary.
Proceedings of SIGGRAPH '94 (Orlando, Florida, July 24-29,
1994). In Computer Graphics Proceedings, Annual
Conference Series, 1994, ACM SIGGRAPH, pp. 351-358.

[REEV85] W. Reeves. Approximate and Probabilistic Algorithms for
Shading and Rendering Structured Particle Systems.
Proceedings of SIGGRAPH '85 (San Francisco, California,
July 22-26, 1985). In Computer Graphics Proceedings,
Annual Conference Series, 1985, ACM SIGGRAPH, pp. 313-
322.

[REFF88] P. de Reffye, C. Edelin, J. Françon, M. Jaeger, C. Puech.
Plant models faithful to botanical structure and development.
Proceedings of SIGGRAPH 88 (Atlanta, Georgia, August 1-5,
1988). In Computer Graphics Proceedings, Annual
Conference Series, 1988, ACM SIGGRAPH, pp. 151-158.

[REIL91] A. Reilly. The Secrets of Trees. Gallery Books, New York,
1991.

[ROHL94] J. Rohlf, J. Helman.. IRIS Performer: A High Performance
Multiprocessing Toolkit for Real-Time 3D Graphics.
Proceedings of SIGGRAPH '94 (Orlando, Florida, July 24-29,
1994). In Computer Graphics Proceedings, Annual
Conference Series, 1994, ACM SIGGRAPH, pp. 381-394,
specifically Figures 14 and 17 on page 394.

[SYMO58] G. Symonds. The Tree Identification Book. William Morrow
& Company, New York, 1958.

[TOOT84] E. Tootill, S. Blackmore. The Facts on File Dictionary of
Botany. Market House Books LTD, Aylesbury, UK, 1984,
p.155.

APPENDIX: Parameter List

Parameter
Shape
BaseSize
Scale,ScaleV,ZScale,ZScaleV
Levels
Ratio,RatioPower
Lobes,LobeDepth
Flare

0Scale,0ScaleV
0Length,0LengthV, 0Taper
0BaseSplits
0SegSplits,0SplitAngle,0SplitAngleV
0CurveRes,0Curve,0CurveBack,0CurveV

1DownAngle,1DownAngleV
1Rotate,1RotateV,1Branches
1Length,1LengthV,1Taper
1SegSplits,1SplitAngle,1SplitAngleV
1CurveRes,1Curve,1CurveBack,1CurveV

2DownAngle,2DownAngleV
2Rotate,2RotateV,2Branches
2Length,2LengthV, 2Taper
2SegSplits,2SplitAngle,2SplitAngleV
2CurveRes,Curve,2CurveBack,2CurveV

3DownAngle,3DownAangleV
3Rotate,3RotateV,3Branches
3Length,3LengthV, 3Taper
3SegSplits,3SplitAngle,3SplitAngleV
3CurveRes,3Curve,3CurveBack,3CurveV

Leaves,LeafShape
LeafScale,LeafScaleX
AttractionUp
PruneRatio
PruneWidth,PruneWidthPeak
PrunePowerLow,PrunePowerHigh

Description
general tree shape id
fractional branchless area at tree base
size and scaling of tree
levels of recursion
radius/length ratio, reduction
sinusoidal cross-section variation
exponential expansion at base of tree

extra trunk scaling
fractional trunk, cross-section scaling
stem splits at base of trunk
stems splits & angle per segment
curvature resolution and angles

main branch: angle from trunk
spiraling angle, # of branches
relative length, cross-section scaling
stem splits per segment
curvature resolution and angles

secondary branch: angle from parent
spiraling angle, # of branches
relative length, cross-section scaling
stem splits per segment
curvature resolution and angles

tertiary branch: angle from parent
spiraling angle, # of branches
relative length, cross-section scaling
stem splits per segment
curvature resolution and angles

number of leaves per parent, shape id
leaf length, relative x scale
upward growth tendency
fractional effect of pruning
width, position of envelope peak
curvature of envelope

Quaking Aspen
7
0.4
13, 3, 1, 0
3
0.015, 1.2
5, 0.07
0.6

1, 0
1, 0, 1
0
0, 0, 0
3, 0, 0, 20

60, -50
140, 0, 50
0.3, 0, 1
0, 0, 0
5, -40, 0, 50

45, 10
140, 0, 30
0.6, 0, 1
0, 0, 0
3, -40, 0, 75

45, 10
77, 0, 10
0, 0, 1
0, 0, 0
1, 0, 0, 0

25, 0
0.17, 1
0.5
0
0.5, 0.5
0.5, 0.5

Black Tupelo
4
0.2
23, 5, 1, 0
4
0.015, 1.3
3, 0.1
1

1, 0
1, 0, 1.1
0
0, 0, 0
10, 0, 0, 40

60, -40
140, 0, 50
0.3, 0.05, 1
0, 0, 0
10, 0, 0, 90

30, 10
140, 0, 25
0.6, 0.1, 1
0, 0, 0
10, -10, 0, 150

45, 10
140, 0, 12
0.4, 0, 1
0, 0, 0
1, 0, 0, 0

6, 0
0.3, 0.5
0.5,
0
0.5, 0.5
0.5, 0.5

Weeping Willow
3
0.05
15, 5, 1, 0
4
0.03, 2
9, 0.03
0.75

1, 0
0.8, 0, 1
2
0.1, 3, 0
8, 0, 20, 120

20, 10
-120, 30, 25
0.5, 0.1, 1
0.2, 30, 10
16, 40, 80, 90

30, 10
-120, 30, 10
1.5, 0, 1
0.2, 45, 20
12, 0, 0, 0

20, 10
140, 0, 300
0.1, 0, 1
0, 0, 0
1, 0, 0, 0

15, 0
0.12, 0.2
-3
1
0.4, 0.6
0.001, 0.5

CA Black Oak
2
0.05
10, 10, 1, 0
3
0.018, 1.3
5, 0.1
1.2

1, 0
1, 0, 0.95
2
0.4, 10, 0
8, 0, 0, 90

30, -30
80, 0, 40
0.8, 0.1, 1
0.2, 10, 10
10, 40, -70, 150

45, 10
140, 0, 120
0.2, 0.05, 1
0.1, 10, 10
3, 0, 0, -30

45, 10
140, 0, 0
0.4, 0, 1
0, 0, 0
1, 0, 0, 0

25, 0
0.12, 0.66
0.8
0
0.5, 0.5
0.5, 0.5

126

COMPUTER GRAPHICS Proceedinas,~ An0ual Conference Series, 1995

Plate 1: (a,b) Black Oak, (c,d) Sassafras,
(e,f) Swamp Oak, (g) Cottonwood,
(i,j) Lombardy Poplar, (k) Queen Palm,
(m,n) Rock Elm, (o) Black Spruce,
(q,r) Quaking Aspen, (s) Balsam Fir,
(u) Bamboo, (v) generic, (w) Jack Pine,

(h) Tamarack,
(1) cactus,
(p) Austrian Pine,
(t) White Cedar,
(x) Longleaf Pine

Plate 2: Black Tupelo,
(a) with leaves (b) without leaves

127 127

SIGGRAPH 95, Los ~ . C . a l ~ u s t 6~11, t995

ii~i!!~i~!~i:~ii~ ~:!~ii!~i ~ ~i ~,~ ~

i!~'iii, i i ~i ~ '~ ~"~ii~~

Plate 4: Range Degradation

Plate 3: Scene from (a) Northeast, (b) Northwest, (c,d) South, (e) Overhead; and (if) with Modifications Plate 5: Weeping Willow

Plate 6: Sassafras with leaves (a) unmodified, (b) re-oriented Plate 7: Weeping Willow: (a) unpruned, (b) pruned

128

