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Recently many ideas have been proposed for the use of a longitudinal field for particle acceleration, fluorescent imaging, second-
harmonic generation and Raman spectroscopy. A few methods to enhance the longitudinal field component have been suggested,
but all have insufficient optical efficiency and non-uniform axial field strength. Here we report a new method that permits the
combination of very unusual properties of light in the focal region, permitting the creation of a ‘pure’ longitudinal light beam
with subdiffraction beam size (0.43l). This beam is non-diffracting; that is, it propagates without divergence over a long distance
(of about 4l) in free space. This is achieved by focusing a radially polarized Bessel –Gaussian beam with a combination of a
binary-phase optical element and a high-numerical-aperture lens. This binary optics works as a special polarization filter
enhancing the longitudinal component.

Over the past decade great success has been achieved in the creation
of radially polarized light1–3. However, the creation of
longitudinally polarized light has been a big challenge until now.
A plane electromagnetic wave is purely transversal. Thus, for
many years it was assumed that it was impossible to create
longitudinally polarized light in free space. Since then it has been
shown that any beam of finite diameter has a longitudinal field
component, even in free space4,5. A strong longitudinal
component appears at the focal region of a tightly focused laser
beam5–8. It also arises with the focusing of radially polarized
light1–3,9–13. Besides being of academic interest, this longitudinal
field has many attractive applications, for example, in particle
acceleration5,9,10,14, fluorescent imaging15, second-harmonic
generation16–18 and Raman spectroscopy19. It can permit the
achievement of higher resolution in z-polarized confocal
fluorescence microscopy20 and scattering scanning near-field
optical microscopy21.

The longitudinal field can be suppressed or enhanced by
amplitude, polarization and phase modulation of the incident
beam22. For example, a longitudinal field can be completely
suppressed in an azimuthally polarized beam1,23. Several methods
for enhancing the longitudinal field component have been
suggested2,9,22,24,25; however, all have insufficient optical efficiency
(at the level of a few per cent), and the strength of the
longitudinal component decreases rapidly away from the beam
waist. Conversion efficiency is a critical characteristic for real
applications, such as the use of radially and azimuthally polarized
laser radiation for material processing26, put into practice soon
after the development of effective methods for radial and
azimuthal beam polarization.

RESULTS

The conversion efficiency is not the only parameter that requires
improvement. In an ideal situation we want to have a
longitudinally polarized beam in free space with subdiffraction
size that is uniform along the optical axis (a so-called non-
diffracting beam). Although it seems to be rather questionable
that this problem can be solved (to the best of our knowledge
from the published papers), we want to demonstrate that it is
possible to combine all of these contradictory requirements using
a hybrid lens (a combination of a binary-phase optical element
and a high-numerical-aperture lens) to focus a radially polarized
Bessel–Gaussian beam27,28. Calculations show that it is possible
to achieve a high efficiency of conversion for a beam that is
almost longitudinally polarized along the optical axis. The full–
width at half-maximum (FWHM) of the beam is 0.43l and it
propagates without divergence for a distance of �4l.

DIRECT FOCUSING OF THE RADIALLY POLARIZED BESSEL–GAUSSIAN BEAM

First we review some effects of the non-diffracting beam problem.
This idea comes from the exact solution of the Maxwell equations
in terms of cylindrical waves. The zero-order Bessel beam mode,
with amplitude proportional to J0(krr)exp(– ikzz), where kr and kz

are wave vectors in the r and z directions, respectively, and J0 is
the zero-order Bessel function, propagates in free space without
diffraction6,9–11,24,29. This kind of beam exists in infinite free space
and is polarized perpendicular to the propagation direction in
the paraxial approximation. Although the zero-order Bessel
function is not square integrable and an infinite power is
therefore necessary to create a non-diffracting beam, some nearly

ARTICLES

nature photonics | VOL 2 | AUGUST 2008 | www.nature.com/naturephotonics 501

© 2008 Macmillan Publishers Limited.  All rights reserved. 

 

mailto:wang&lowbar;haifeng@dsi.a-star.edu.sg
http://www.nature.com/doifinder/10.1038/nphoton.2008.127
www.nature.com/naturephotonics


non-diffracting beams (for example, Bessel–Gaussian, Laguerre–
Gaussian, Hermite–Gaussian27,30–32) with finite power can be
realized and can propagate over a long range without significant
divergence. Following the general theory of focusing of polarized
beams4 one can write the following equations for the electric
fields near the focus z ¼ 0 for illumination of the high-aperture
lens with the waist of a radially polarized Bessel–Gaussian
beam9,11,28:

Er r; zð Þ ¼ A

ða
0

cos1=2 u sinð2uÞ‘ uð ÞJ1ðkr sin uÞeikz cos udu ð1Þ

and

Ezðr; zÞ ¼ 2iA

ða
0

cos1=2 u sin2 u ‘ uð ÞJ0ðkr sin uÞ eikz cos udu: ð2Þ

Here we have adopted notations similar to ref. 28:
a ¼ arcsin(NA/n), where NA is the numerical aperture and n ¼ 1
is the index of refraction of free space, J0(x) and J1(x) denote
Bessel functions, and the function ‘(u) describes the amplitude
distribution of the Bessel–Gaussian beam, which is given by28

‘ uð Þ ¼ exp �b2 sin u

sina

� �2
" #

J1 2g
sin u

sina

� �
; ð3Þ

where b and g are parameters that we take as unity in our
configuration. Illumination with a Laguerre–Gaussian beam is
very similar. The NA of the focusing lens is 0.95 (a � 71.88). The
corresponding field distribution is shown in Fig. 1.

The first zero point in the distribution of
radial electric density is r0 ¼ 1.07l in Fig. 1a,b. Then the integral
Fz ¼ 2p

Ð r0

0 jEzðr; 0Þj2r dr from the longitudinal component
characterizes the longitudinal energy within the directional lobe in
the focal plane. A similar integral Fr from the radial field
component characterizes the radial energy. The beam quality is
characterized by h ¼ Fz/(Fz þ Fr), which is 0.45 in Fig. 1a. Thus,
the parasitic radial field yields about 55% of the total electric
energy. This is quite a general effect, which one can also see with
other generalized Bessel–Gaussian beams30. This radial field also
leads to a broadening of the beam. As a result, the beam size
has a full-width at half-maximum (FWHM) as large as 0.68l,
which is larger than the diffraction limit for this focusing lens

l/(2NA) ¼ 0.526l. However, the beam size contributed by the
longitudinal field component is only 0.49l. Although it is
possible to enhance the longitudinal component of the beam in
the focal plane with higher NA, the depth of focus also decreases
with higher NA.

EFFECTS OF BINARY OPTICS

It is desirable to enhance the longitudinal field component and also
achieve long depth of focus. We show that it is possible to generate
this non-diffracting longitudinal beam by applying an additional
binary optical element on the lens aperture. As is shown in Fig. 2,
formally this corresponds to replacing the function ‘(u) in equations
(1) and (2) by the function ‘(u)T(u), where the transmission
function T(u) ¼ exp[iw(u)]. If the elements are set with w(u)¼ 0 or
w(u) ¼ p for different ranges of angle u this corresponds to a binary
mask33,34. We use a five-belt optical element with

T uð Þ ¼ 1; for 0 � u , u1; u2 � u , u3; u4 � u , a;
�1; for u1 � u , u2; u3 � u , u4:

�
ð4Þ

The four angles ui (i ¼1, . . . ,4), corresponding to four radial
positions ri ¼ sinui/NA (normalized to the optical aperture) were
optimized to increase the ratio of the longitudinal and radial
components within a long focal region. This is not a strictly
defined procedure. Ideally we want to obtain a very narrow
beam and also a very long depth of focus (a non-diffracting
beam). We want to have high beam quality, high beam
homogeneity and also high optical efficiency for conversion of
the radially polarized beam to a longitudinally polarized beam.
However, it is not possible to optimize all these mentioned
quantities simultaneously. In fact, each solution is some
compromise between these quantities, and each quantity can be
improved by trading off the others. This optimization problem
therefore depends on determining the priority of these quantities.

As an example we can suggest the set of angles found from the
reasonable optimization of all parameters:

u1 ¼ 4:968; u2 ¼ 21:798; u3 ¼ 34:258; u4 ¼ 46:878: ð5Þ

The corresponding positions ri are given by

r1 ¼ 0:091; r2 ¼ 0:391; r3 ¼ 0:592; r4 ¼ 0:768: ð6Þ

The transmission function T(u) on the aperture of the focusing
lens for this case is shown in Fig. 3a. The electric energy density
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profiles of the radial component, the longitudinal component, and
the total electric field of the beam in the focal cross-section are
shown in Fig. 3b. The FWHM of the longitudinal electric field
component energy density profile in Fig. 3b is 0.4l, which is
smaller than that shown in Fig. 1a (0.49l). The FWHM of the
total electric energy density spot in Fig. 3b is 0.43l, so the spot
area is 0.15l2, which is smaller than that obtained without the
binary optical element shown in Fig. 1a (FWHM ¼ 0.68l). Thus,
the beam area is reduced by 58%.

We shall characterize the conversion efficiency of our system as
the ratio of the total energy within the focal volume after
conversion to its original energy within the focal volume before
conversion. Remember that both the energy density and the focal
volume are changing. Numerical integration yields a conversion
efficiency above 20%. At the same time the beam quality after
conversion almost doubles from h ¼ 0.45 to h ¼ 0.81.

A contour plot of the total electric energy density image is shown
in Fig. 4a and the radial and longitudinal components in
Fig. 4b,c. One can see that the total depth of focus is about 4l,
with very uniform axial electric energy density; in other words it is
a non-diffracting beam. The modulation function produces a
uniform axial electric energy density over a finite range, which is
different from that generated by a sinc variation35. The radially
polarized field given by equations (1) and (2) produces an
azimuthally polarized magnetic field with an Hw component only
(similar to the field around a linear conductor carrying current).
This field can be found from Maxwell’s equations, yielding
Hw ¼ 2i(@z Er 2 @rEz)/k; that is,

Hw ¼ 2A

ða
0

cos1=2 u sinðuÞ‘ uð ÞT uð ÞJ1ðkr sin uÞeikz cos u du: ð7Þ

The density distribution of the magnetic field component Hw is
shown in Fig. 4d. In the focal plane z ¼ 0 the field (6) is purely
real. Different signs of this field correspond to clockwise and
anticlockwise field directions.

DISCUSSION

In principle it is possible to further enhance the longitudinal field
by using a lens of higher NA. However with NA . 1, the field
attenuates exponentially36, so the non-diffraction characteristic of
the beam is lost. It is also possible to improve the longitudinal
field component (and obtain longer depth of focus) by applying

more belts, for example, seven belts instead of the five belts in
equation (4). However, the efficiency of optical conversion also
drops with an increase in the total number of belts. Thus, the
five-belt optical modulation is a compromise between the
longitudinal field strength and optical efficiency.

Once again it should be emphasized that a method has been
proposed for the formation of uniform, longitudinally polarized
light along an axis in free space, where the vanishing of one field
component is created by the binary optical element. It is different
from the near-field region between two different materials with
evanescent or plasmonic waves. The necessary conditions for the
field localization in the latter case are fulfilled in a natural way
due to exponential electric energy density attenuation. The binary
optical element here works like a special polarization filter, which
diffracts the radial field component away from beam centre more
than the longitudinal field, thus making the beam in the focal
region substantially longitudinally polarized. The non-diffraction
characteristic of this beam may reduce the diffraction angle of the
particles being accelerated5,9,10,14; this makes it easier for focusing
in second-harmonic generation polarization microscopy16–18, for
the coupling of light to SNOMs (scanning near-field optical
microscopes) or nanoplasmonic devices19,36,37, and enables pure
longitudinal field optical coherence tomography38. It is different
from the non-diffraction linear polarized light suggested in ref. 34,
where the super-resolution effect was obtained in the direction
perpendicular to the polarization direction, the resolution in the
polarization direction being degraded by the cross-polarization
effect caused by the binary optical element.

To achieve a better understanding of the mechanism that makes
the longitudinal field propagate without divergence, we further
investigate the Poynting vector field of the focused radially
polarized Bessel–Gaussian beam for arrangement without and
with the binary optical element, as shown in Fig. 5a,b,
respectively. The time-averaged Poynting vector is determined by

kSl ¼ c

4p
Re E�H�ð Þ; ð8Þ
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where the asterisk denotes the operation of complex conjugation.
This field is axially symmetric because of the condition Sw ¼ 0.
Thus, the field lines of the Poynting vector follow the equation
dr/dz ¼ Sr/Sz. The Poynting vector field contains circular
singular lines, which for the radially polarized Bessel–Gaussian
beam are distributed in the focal plane z ¼ 0. A cross-section of
these lines by the yz-plane corresponds to the singular points
1 to 8 in Fig. 5a. The singularities consist of four couples of
saddle- and centre-type points, which are shown with larger scale
in Fig. 5c (for the couple comprising points 1 and 2). One can
see a similar behaviour for the couple formed of singular points
3 and 4, and so on. Centre-type points 1, 3, 5 and 7 are situated
inside the loop of separatrix. They correspond to points with
Hw ¼ 0. Saddle-type points 2, 4, 6 and 8 correspond to points
with Er ¼ 0.

The Poynting vector field for the longitudinally polarized beam
in Fig. 5b contains eight further singular points when compared
with Fig. 5a. Couples of these points (9, 10, and so on) are
distributed at some distances z = 0 from the focal plane.
Comparing Fig. 5a and Fig. 5b one can clearly see that the time-
averaged Poynting vector field near the axis becomes more
homogeneous after phase modulation. It is of purely geometrical
origin. Phase modulation permits the inversion of the positions
of the saddle and centre points (1 and 2) in Fig. 5c and Fig. 5d.
The field is less homogeneous from the side of the separatrix
loop (because the loop contains infinite vertical derivations).
Thus, the field near the axis in Fig. 5d is more homogeneous
than that in Fig. 5c. In a similar way the inhomogeneity that is
produced by the loop around point 3 (situated below saddle
point 4), is compensated due to the homogenizing action of
inversely situated loops of the separatrices around the near points
6, 10 and 12 (situated above the corresponding saddle points).

Similar singularities of the Poynting vector for a focused beam
are well known6,39. They also arise for example, during scattering of
light by nanoparticles and nanowires near plasmon resonance
frequencies37,40,41. It is important here that the Poynting vector
field near the axis is almost uniform along the propagation
direction (see the almost straight lines in Fig. 5b at r/l , 0.3).

To show the field polarization we plot in Fig. 6a the distribution of
the averaged electric field, where the radial component is understood
as modulus jErj ¼ [Er(r, z)Er*(r, z)]1/2 and the longitudinal
component as the modulus jEzj ¼ [Ez(r, z)Ez*(r, z)]1/2. The
direction of this vector was selected with positive sign along the
z-axis. One can see that in the periphery of the beam incoming
radiation there is a noticeable contribution of radially polarized
light, but in the near-axial region, where the basic electric energy
density is localized (see Fig. 4a), the field has practically
homogeneous longitudinal polarization. In contrast to the usual
situation in which a beam diverges after the focal plane and
attenuates exponentially42–44, our longitudinally polarized beam
looks like a needle as shown in Fig. 4a.

The dynamic distribution of the field Re E(r, z, t) is quite
complicated; it is shown in Fig. 6b,c for the moment of time
t ¼ 0. Once again, we can see from the figure that the field is
essentially longitudinally polarized near the axis. Various
peculiarities, such as dislocations of the wavefront and optical
vortices, exist for this field. Although these peculiarities do not
influence our basic effect (longitudinally polarized light needle),
they may be of interest in other applications45.

In conclusion, we have proposed the generation of a
longitudinally polarized beam by focusing a radially polarized
beam using a binary optical element and a lens. This binary
optical element works like a special polarization filter, which
diffracts the radial field away from the centre of the beam more
than the longitudinal field, thus making the beam in the focal
region substantially longitudinally polarized. This beam
propagates without divergence for over 4l (a non-diffracting
beam). It is also highly localized in the transverse direction with
FWHM ¼ 0.43l (subdiffraction beam). The suggested method
achieves the required combination of conversion efficiency,
uniformity and field localization.

Note that recent methods for creation of a needle of linearly
polarized light have been suggested both theoretically34,46 and
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experimentally38,47,48. Now we can see that the formation of a
needle of longitudinally polarized light is also possible with the
help of phase modulation.

Received 8 January 2008; accepted 21 May 2008; published 22 June 2008.
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laser-beam focusing. Phys. Rev. D 42, 1807–1818 (1990).
11. Bouchal, Z. & Olivik, M. Non-diffractive vector Bessel beams. J. Modern Opt. 42, 1555–1566 (1995).
12. Sheppard, C. J. R. & Török, P. Electromagnetic field in the focal region of an electric dipole wave.

Optik 104, 175–177 (1997).
13. Sun, C.-C. & Liu, C.-K. Ultrasmall focusing spot with a long depth of focus based on polarization

and phase modulation. Opt. Lett. 28, 99–101 (2003).
14. Rosenzweig, J., Murokh, A. & Pellegrini, C. A proposed dielectric-loaded resonant laser accelerator.

Phys. Rev. Lett. 74, 2467–2470 (1995).
15. Novotny, L. et al. Longitudinal field modes probed by single molecules. Phys. Rev. Lett. 86,

5251–5254 (2001).
16. Bouhelier, A. et al. Near-field second-harmonic generation induced by local field enhancement.

Phys. Rev. Lett. 90, 013903 (2003).
17. Biss, D. P. & Brown, T. G. Polarization-vortex-driven second-harmonic generation. Opt. Lett. 28,

923–925 (2003).
18. Yew, E. Y. S. & Sheppard, C. J. R. Second harmonic generation polarization microscopy with tightly

focused linearly and radially polarized beams. Opt. Commun. 275, 453–457 (2007).
19. Hayazawa, N., Saito, Y. & Kawata, S. Detection and characterization of longitudinal field for

tip-enhanced Raman spectroscopy. Appl. Phys. Lett. 85, 6239–6241 (2004).
20. Huse, N., Schonle, A. & Hell, S. W. Z-polarized confocal microscopy. J. Biomed. Opt. 6,

480–484 (2001).
21. Xiao, M. Theoretical treatment for scattering scanning near-field optical microscopy.

J. Opt. Soc. Am. A 14, 2977–2984 (1997).
22. Sheppard, C. J. R. & Choudhury, A. Annular pupils, radial polarization and superresolution.

Appl. Opt. 43, 4322–4327 (2004).
23. Machavariani, G. et al. Efficient extracavity generation of radially and azimuthally polarized beams.

Opt. Lett. 32, 1468–1470 (2007).
24. Sheppard, C. J. R. High-aperture beams. J. Opt. Soc. Am. A 18, 1579–1587 (2001).
25. Dorn, R., Quabis, S. & Leuchs, G. The focus of light—linear polarization breaks the rotational

symmetry of the focal spot. J. Modern Opt. 50, 1917–1926 (2003).

26. Meyer, M., Romano, V. & Feurer, T. Material processing with pulsed radially and azimuthally
polarized laser radiation. Appl. Phys. A 86, 329–334 (2007).

27. Sheppard, C. J. R. & Wilson, T. Gaussian-beam theory of lenses with annular aperture.
Microw. Opt. Acoust. 2, 105–112 (1978).

28. Youngworth, K. S. & Brown, T. G. Focusing of high numerical aperture cylindrical-vector beams.
Opt. Express 7, 77–87 (2000).

29. Durnin, J., Miceli, J. J. Jr, & Eberly, J. H. Diffraction-free beams. Phys. Rev. Lett. 58,
1499–1501 (1987).

30. Campos, J. et al. Axially invariant pupil filters. J. Modern Opt. 47, 57–68 (2000).
31. Li, Y., Lee, H. & Wolf, E. New generalised Bessel–Gaussian beams. J. Opt. Soc. Am. A 21,

640–646 (2004).
32. Visser, T. D. & Foley, J. T. On the wavefront spacing of focused, radially polarized beams.

J. Opt. Soc. Am. A 22, 2527–2531 (2005).
33. Sheppard, C. J. R. Binary optics and confocal imaging. Opt. Lett. 24, 505–506 (1999).
34. Wang, H. et al. Subwavelength and super-resolution non-diffraction beam. Appl. Phys. Lett. 89,

171102 (2006).
35. Sheppard, C. J. R. Synthesis of filters for specified axial properties. J. Modern Opt. 43,

525–536 (1996).
36. Zhan, Q. Evanescent Bessel beam generation via surface plasmon resonance excitation by a radially

polarized beam. Opt. Lett. 31, 1726–1728 (2006).
37. Luk’yanchuk, B. S. & Ternovsky, V. Light scattering by a thin wire with a surface-plasmon resonance:

Bifurcations of the Poynting vector field. Phys. Rev. B 73, 235432 (2006).
38. Liu, L. et al. Binary-phase spatial filter for real-time swept-source optical coherence microscopy.

Opt. Lett. 32, 2375–2377 (2007).
39. Boivin, A., Dow, J. & Wolf, E. Energy flow in the neighbourhood of the focus of a coherent beam.

J. Opt. Soc. Am. 57, 1171–1175 (1967).
40. Wang, Z. B. et al. Energy flow around a small particle investigated by classical Mie theory. Phys. Rev. B

70, 035418 (2004).
41. Tribelsky, M. I. & Luk’yanchuk, B. S. Anomalous light scattering by small particles. Phys. Rev. Lett.

97, 263902 (2006).
42. Lezec, H. J. et al. Beaming light from a subwavelength aperture. Science 297, 820–822 (2002).
43. Kalosha, V. P. & Golub, I. Toward the subdiffraction focusing limit of optical super-resolution.

Opt. Lett. 32, 3540–3542 (2007).
44. Hao, B. & Leger, J. Experimental measurement of longitudinal component in the vicinity of focused

radially polarized beam. Opt. Express 15, 3550–3556 (2007).
45. Vasnetsov, M. & Staliunas, K. Optical Vortices (Nova Science, Commack, 1999).
46. Wang, H. & Gan, F. High focal depth with a pure-phase apodizer. Appl. Opt. 40, 5658–5662 (2001).
47. Wang, H. & Gan, F. Phase-shifting apodizers for increasing focal depth. Appl. Opt. 41,

5263–5266 (2002).
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