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Summary 

Background: As healthcare increasingly digitizes, streaming waveform data is being made 

available from an variety of sources, but there still remains a paucity of performant clinical 

decision support systems. For example, in the intensive care unit (ICU) existing automated alarm 

systems typically rely on simple thresholding that result in frequent false positives. Recurrent 

false positive alerts create distrust of alarm mechanisms that can be directly detrimental to 

patient health. To improve patient care in the ICU, we need alert systems that are both pervasive, 

and accurate so as to be informative and trusted by providers. 

Objective: We aimed to develop a machine learning-based classifier to detect abnormal 

waveform events using the use case of mechanical ventilation waveform analysis, and the 

detection of harmful forms of ventilation delivery to patients. We specifically focused on 

detecting injurious subtypes of patient-ventilator asynchrony (PVA). 

Methods: Using a dataset of breaths recorded from 35 different patients, we used machine 

learning to create computational models to automatically detect, and classify two types of 

injurious PVA, double trigger asynchrony (DTA), breath stacking asynchrony (BSA). We 

examined the use of synthetic minority over-sampling technique (SMOTE) to overcome class 

imbalance problems, varied methods for feature selection, and use of ensemble methods to 

optimize the performance of our model.  

Results: We created an ensemble classifier that is able to accurately detect DTA at a 

sensitivity/specificity of 0.960/0.975, BSA at sensitivity/specificity of 0.944/0.987, and non-

PVA events at sensitivity/specificity of .967/.980. 

Conclusions: Our results suggest that it is possible to create a high-performing machine 

learning-based model for detecting PVA in mechanical ventilator waveform data in spite of both 



intra-patient, and inter-patient variability in waveform patterns, and the presence of clinical 

artifacts like cough and suction procedures. Our work highlights the importance of addressing 

class imbalance in clinical data sets, and the combined use of statistical methods and expert 

knowledge in feature selection.  

Keywords: Patient Ventilator Asynchrony; Respiration, Artificial; Machine Learning; Intensive 

Care Units; Decision Support Systems, Clinical 

Introduction  
The intensive care unit (ICU) is a highly complex and fast-paced environment where 

clinicians need to make life-saving decisions using large amounts of diverse, and often complex 

data from multiple patient monitoring and management devices. As healthcare increasingly 

digitizes, high volume, streaming waveform data are being made available from an increasing 

variety of sources, but there remains a relative paucity of analytic clinical decision support 

systems. Existing automated alarm systems typically rely on simple thresholding that result in 

frequent false positive alarms due to transient abnormalities, signal noise, and the presence of 

artifacts resulting from patient movement or other aspects of routine care.[1-7] In this regard, the 

more rarely that an abnormality occurs, the higher chance that the specificity value of an alarm 

system will be low.[8] A low alarm specificity has been shown to cause alarm fatigue, giving rise 

to the potential for clinicians to miss truly life-threatening changes in physiology, such that 

patients may physiologically deteriorate until a major problem is finally recognized.[7]  

While lack of device integration and access to data, variable data quality, and limited 

computational resources in modern electronic health record systems (EHR) have historically 

limited advancement in patient monitoring systems,[9-11] more recent efforts to incorporate 

advanced computing environments and a renewed interest in the application of machine learning 



models to complex classification problems in healthcare have expanded the potential for 

innovation.[12-17] The development of new healthcare-specific analytic software capable of 

translating these data into reliable, actionable information for clinical decision support is 

paramount to realizing the potential value of these rich data sources, and improving outcomes in 

the ICU. These problems are underscored in the use case of mechanical ventilation (MV). 

Modern mechanical ventilators are sophisticated computerized life support devices that 

precisely regulate the delivery of oxygen, pressure, and air flow to patients with respiratory 

failure to support oxygenation, ventilation, and the work of breathing. While ventilators can be 

life-saving, they can also injure the lung and cause substantial patient distress when ventilator 

settings are not synchronized with patient respiratory drive, a phenomenon known as patient-

ventilator asynchrony (PVA). PVA has been linked to increased work of breathing, patient 

discomfort, increased sedation requirements, and in a small study, increased mortality.[18,19] 

Like many other physiologically injurious events, immediate detection of PVA can be possible 

via bedside examination, but rapid detection can be delayed for various reasons.[20] This 

challenge has been recognized by researchers, and developing effective automated PVA 

recognition algorithms is desirable to ameliorate the associated issues.  

Automated PVA detection algorithms have mostly focused on detecting harmful variants 

of PVAs that either cause delivery of an excessive volume of air to a patient,[18,21-23] or PVAs 

that detrimentally increased work of breathing for patients.[21,24-27] To the best of our 

knowledge, all such efforts to date have relied on heuristic rules to set thresholds that distinguish 

a breath as either PVA or non-PVA. Only one publication to date has attempted to improve 

specificity of these models by development of rules to detect artefactual events such as suction 

and cough that may be confused with true PVA.[28] In most cases, researchers have either 



removed these artefactual events or excluded them from analysis, potentially limiting 

generalizability to real-world datasets. Furthermore, creating threshold-based algorithms is costly 

and time consuming, and requires substantial amounts of clinical expertise. To address these 

problems, we applied a machine learning (ML) approach for creating a robust PVA detection 

model. PVA detection based on ML however, comes attendant with multiple challenges that can 

be broadly generalizable to the application of ML to waveform analytics in healthcare . 

One of the important processes in ML is feature selection, or the selection of the most 

relevant variables to represent the data.[29,30] For machine learning practitioners in healthcare, 

finding predictive variables in existing high-dimensional data can be challenging.[9] In this 

study, we transformed high dimensional raw ventilator waveform data (VWD) into 16 pieces of 

metadata, or variables that are descriptive of the overall breath waveform, and used this feature 

set as the basis to explore several different methods to better illustrate the process of feature 

selection within healthcare: using computational feature selection, selection of features via expert 

knowledge, and a combination of both approaches, and then evaluated which performed best. 

PVA, like many adverse clinical events, tends to be episodic and is thus a relatively rare 

event.[22,24,31] As a result, many clinical data derived from high sampling rate devices such as 

mechanical ventilators are subject to a class imbalance, a problem, common to many ML 

classification challenges.[8,32-35] In the case of MV, patients typically take between 20,000-

40,000 breaths per day, which means that the number of observations representing normal 

breathing is substantially higher than the number of PVA observations. This class imbalance may 

decrease ML model performance for PVA detection due to training the model on a limited 

number of observations, resulting in misclassification when the model is applied to a novel test 

data set.[34,36]  



Another common problem in classification is intra-class variation. In healthcare, the 

characteristics of a given event type may be influenced by inter-patient variability in age, sex, the 

presence or absence of comorbid diseases (e.g. – smoking, heart disease, obesity), medication 

use, and provider- or health system-specific differences in medical management. Especially in 

the setting of acute illness, intra-class variation may also result from intra-patient variation, 

where changes in event features over hours to days may occur as severity of illness and 

treatments change.  As a result, applying a learning algorithm that works across all patients, and 

provides strong predictive value for new subjects is a challenge, especially when training and test 

sample sizes are limited.[37]  

To address these challenges, we created an ensemble ML classifier algorithm that was 

able to detect two common forms of patient-ventilator asynchrony with high sensitivity and 

specificity, without the need to develop additional algorithmic functionality to deal with signal 

noise, clinical artifacts, or exception handling. In this study, we examine the methods we used to 

create our PVA classifier, including the dataset composition, features used, and the types of ML 

algorithms evaluated. We discuss our process of evaluating the role of expert knowledge and 

computational methods in feature selection, and how class imbalance affected the performance 

of our classifier. We conclude by discussing the creation of an ensemble classifier that allows for 

increased sensitivity and specificity for the detection of PVA in a data set from 35 ICU patients. 

Methods 

Dataset Description and Feature Extraction 
This study was approved by the University of California Davis IRB, protocol number 

647002, and all subjects or their surrogates provided informed consent per the requirement of the 

study protocol. In our study, we used a dataset of VWD from 35 distinctive patients composed of 



a total of 9719 breaths.[38] VWD was captured from the ventilator using a Raspberry PiTM-based 

data collection system. VWD files were manually analyzed to identify 300-350 breath regions of 

interest (ROI) where PVA was highly prevalent, and each breath in the ROI was manually 

annotated to determine the breath type (Table 2). Note, that these target ROIs are important to 

ensure that the training set includes high-quality PVA data. However, it remains a challenging 

task to identify these ROIs across all patients’ VWD files given that PVA is a relatively rare 

event. Each ROI represents an average of 12 minutes in length, for a total of 7.63 hours of 

annotated data over all patients.  Raw VWD from each breath was then analyzed to derive 

clinically-relevant metadata as seen in Table 1 (for full list see online supplement Table S1), 

which could then be defined as features for use in the ML process.[28,39]  

Table 1: Partial list of the 16 metadata variables used along with a description. The above 7 variables were the most 
commonly used variables in all models evaluated during this study. BS, time that the breath started. BE, time that 
the breath ended. x0, point where flow crosses 0, is generally the start of exhalation. 
Variable Name Units Description 

TVi Milliliters/second 

inspiratory tidal volume, defined as the integral 
of the flow-time curve values from breath start 
(BS) to point where flow crosses 0 (x0). 

TVe Milliliters/second 

expiratory tidal volume, defined as the integral 
of the flow-time curve values from x0 to breath 
end (BE) 

TVe/TVi Unitless 
the ratio of expiratory tidal volume to 
inspiratory tidal volume 

I-time Seconds the time from BS to x0. 
E-time Seconds the time from x0 to BE 
I:E ratio Unitless the ratio of the I-time to the E-time 

RR Unitless 
instantaneous respiratory rate, defined as 
60/breath time 

Using all available metadata in modeling may result in lower performance, or longer 

computation time, so we applied feature selection methods[40] to reduce the dimensionality of 

our dataset, speed model training time, and improve model performance.[29,30] In general, 

feature selection can be performed through expert knowledge, or using computational methods. 

ML practitioners generally first seek expert opinion on a problem to perform feature 



selection,[30,41,42] and many medically useful algorithms are informed by the inclusion of 

features defined by expert clinicians.[12,43,44] In contrast, computational feature selection 

methods may be more reproducible, and do not require repeated consultations with clinicians. 

We thus compared expert knowledge to a feature selection driven by computational methods. 

Our experts (JYA and BTK) performed manual feature selection from the list of total features 

(see online supplement Table S1). Computational feature selection was conducted using multiple 

methods including the Chi-square test,[45] L1-regularization with a Support Vector 

Machine,[46] Recursive Feature Elimination,[47] Principal Component Analysis,[48] Linear 

Discriminant Analysis,[49] and Independent Component Analysis.[50] We present results of the 

Chi-square test, in conjunction with successive sensitivity analyses, due to its superior 

performance compared to the other methods when applied to our use case. Finally, we examined 

model performance using a combination of features selected using both statistical methods and 

expert knowledge. 

Classification Methodology 
To detect PVA events, we developed a supervised ML model. For training and validating 

the model, two ICU physicians manually annotated each breath, via a combination of heuristic 

rules and visual inspection, as one of 5 categories: normal, cough, suction, double trigger 

asynchrony, or breath stacking asynchrony (BSA). Disagreements in classification were 

adjudicated by a discussion between the clinicians before reaching a consensus. For a 

comprehensive statistical overview on the types and numbers of breaths annotated, see Table 2. 

Table 2: Event types and rates in the combined training and test datasets. Note the relatively low frequency of PVA  
and clinical artifacts in our dataset even when selecting from ROI’s of enriched PVA frequency. In total, PVA 
comprised only 27.57% of all breaths, and cough and suction represented slightly over 5%. PVA, patient ventilator 
asynchrony; ROI, region of interest 

Event Type Number Percentage 

Normal 6548 67.37 



Cough 123 1.27 

Suction 368 3.79 

Non-PVA (normal + suction + cough) 7039 72.45 

Double trigger (DTA) 752 7.74 

Breath stacking (BSA) 1928 19.83 

 

When constructing our classifier, we chose to categorize normal and clinical artifact 

breaths (cough and suction) as non-PVA. Normal breaths (Figure 1), were defined as breaths not 

classified as PVA or clinical artifact. Clinical artifacts like suction and cough were explicitly 

identified and included in the training and validation data sets because they share morphological 

characteristics with common forms of PVA that can result in false-positive PVA 

classification.[28] We thus considered it essential to include artifacts in model development to 

decrease the false positive detection rate.  

We specifically target DTA and BSA because they are prevalent forms of PVA and are 

thought to result in ventilator induced lung injury.[19,22,23] Definitions of BSA and DTA vary 

across studies,[22,28,31,51] but DTA and BSA are both characterized by incomplete exhalation 

of inspired gas in between breaths due to inadequate time for exhalation, a phenomenon referred 

to as dynamic hyperinflation, that is thought to injure the lung due to excessive distention of lung 

tissue. While these forms of PVA exist on a morphologic continuum, they differ mechanistically 

with DTA characterized by ongoing patient inspiratory effort at the end of a breath, resulting in 

an immediate triggering of a second breath (Figure 2). BSA results from inadequate expiratory 

time in between breaths, often in the setting of a rapid respiratory rate, expiratory airflow 

obstruction, or both (Figure 3).[19,52]  

Because it is difficult to rely solely on visual inspection to classify PVA,[20] we utilized 

additional heuristics to perform DTA and BSA classification, and created a gold standard set of 



classified PVA observations for our supervised learning algorithm. Our clinicians used a 

heuristic algorithm that utilizes both visual inspection and clinical metadata for DTA 

classification, in order to better incorporate the types of DTA seen clinically.[31,53,54] We 

defined DTA as any non-artifact sequence of two breaths in rapid succession where the first 

breath is defined by 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ≤ 0.3 and 𝑒𝑒𝑇𝑇𝑒𝑒/𝑒𝑒𝑇𝑇𝑒𝑒 ≤ 0.25, or when the first breath has 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ≤

0.3, 𝑒𝑒𝑇𝑇𝑒𝑒/𝑒𝑒𝑇𝑇𝑒𝑒 ≤ 0.5, and 𝑒𝑒𝑇𝑇𝑒𝑒 ≤ 100 𝑒𝑒𝑚𝑚. These heuristic rules were used as a first filter to 

determine if a breath was PVA. The second filter was based on clinician visual inspection. If a 

breath matched the heuristic for a PVA, but was visually recognized as cough or suction then the 

breath would be marked as artifact instead. The goal of our ML classifier is to achieve similar 

classification performance as the combination of the first and second filters described above, to 

identify PVA, while discarding artifact without requiring the labor-intensive visual inspection 

phase performed by experts. 

 Existing definitions of BSA in the literature are inclusive of DTA, but may fail to identify 

less extreme events leading to dynamic hyperinflation, and do not necessarily distinguish 

between events resulting from ongoing inspiratory effort versus those associated with inadequate 

expiratory time.[22,23,31] In order to include a broader range of breath stacking events than 

existing definitions and distinguish them from DTA, we defined BSA as any non-artifact breath 

where 𝑒𝑒𝑇𝑇𝑒𝑒/𝑒𝑒𝑇𝑇𝑒𝑒 < 0.9 and 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 > 0.3 (Figure 3). Where the 𝑒𝑒𝑇𝑇𝑒𝑒/𝑒𝑒𝑇𝑇𝑒𝑒 threshold of < 0.9 was 

used to account for the inherent inaccuracy of the ventilator’s flow sensor, which results in a 

margin of error of +/- 10% in tidal volume estimation.[55]  

Despite enrichment for PVA and artifacts in our training and validation data sets, the 

relatively low proportion of abnormal breath types resulted in a class imbalance problem.[32,33] 

Imbalanced training sets can often be an obstacle to training accurate classifiers when learning 



methods assume a balanced distribution of classes.[35] To address this problem, we attempted 

use of both the random under-sampling technique (RUS),[56] and “synthetic minority over-

sampling technique” (SMOTE),[57] but settled on use of SMOTE after we observed use of 

SMOTE led to fewer false positives in comparison to RUS (see online supplement Table S2). 

SMOTE mitigates the class imbalance problem by creating synthetic samples of minority class 

observations using the K-Nearest Neighbor algorithm to estimate where to construct new 

samples. For initial experiments, we used SMOTE with an 1:1 ratio for minority class to 

majority class observations, thereby creating the same number of DTA and BSA observations 

while keeping non-PVA observations static. In construction of our final model, we performed a 

sensitivity analysis to determine which ratio of observations would perform best. 

Model Evaluation 
To perform supervised ML, we define the classifier function f as follows:[58] 

𝑦𝑦 = 𝑓𝑓(𝑋𝑋) 

Where X represents the input observations for each breath and y indicates the classification 

result. We defined X to be a matrix such that 𝑋𝑋 = {𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛} where each 𝑥𝑥𝑖𝑖 ∈ 𝑋𝑋 corresponds 

with a single breath. Each 𝑥𝑥𝑖𝑖 takes form 𝑥𝑥𝑖𝑖 = {𝑏𝑏𝑖𝑖1, 𝑏𝑏𝑖𝑖2, … , 𝑏𝑏𝑖𝑖𝑖𝑖} where 𝑏𝑏𝑖𝑖𝑖𝑖 can be defined as the 

observed value of a feature for a specific breath. We define y as a 1-dimensional vector where 

𝑦𝑦 = {𝑦𝑦1,𝑦𝑦2, … ,𝑦𝑦𝑛𝑛}. When performing binary classification 𝑦𝑦𝑖𝑖 ∈ {0,1}, while for multi-class 

classification 𝑦𝑦𝑖𝑖 ∈ {0,1, … ,𝑘𝑘}, for 𝑘𝑘 + 1 different classification states in our problem.  

To learn and evaluate our proposed model, we split our database into two parts; a training 

and a testing set.[29,58,59] The training set was used to develop a model while the testing set 

was used to evaluate each model’s performance in a unique data set. Training each model 



involves a process of taking repeated calculations of expectation of a loss function 

𝐿𝐿�𝑦𝑦,𝑓𝑓(𝑋𝑋)� that updates the function 𝑓𝑓 to 𝑓𝑓∗.[60]  

𝑓𝑓∗ = arg  𝑒𝑒𝑒𝑒𝑛𝑛𝑓𝑓 𝐸𝐸𝑦𝑦,𝑋𝑋 𝐿𝐿(𝑦𝑦,𝑓𝑓(𝑋𝑋)) 

Here 𝐸𝐸𝑦𝑦,𝑋𝑋 is the expectation function and through repeated minimizations of this, we eventually 

arrive at an optimal 𝑓𝑓∗ to use for testing. 

In our study, we utilized four well-known classifiers implemented within Scikit-

learn[61]: (i) Random Forest (RF), (ii) Multilayer Perceptron (MLP),  (iii) Extremely 

Randomized Trees classifier (ERTC), and (iv) Gradient Boosted classifier (GBC). The RF 

classifier uses the classification and regression tree (CART) algorithm[62] to perform tree 

splitting and the cross-entropy criteria to minimize the impurity function[63]. The MLP uses 

backpropagation[64] with the tanh activation function and the cross-entropy loss function.[65] 

To improve model variance, tree splits in ERTC are performed randomly[66] and the gini 

criteria[62] defines which splits are best. Finally, we implemented the GBC to use deviance for 

its loss function.[60]  

For model training and testing, we used cross patient learning to segregate specific 

patients into a training cohort, and others into a testing cohort. We performed this type of 

evaluation as compared to using the holdout method because, using holdout, a single patient’s 

observations may become mixed into the training and testing sets, which may introduce bias and 

not generalize well to subsequent patients.[44,58,67] This bias can be caused by intra-patient 

waveform similarities resulting from static ventilation settings and other patient-specific 

physiologic factors. The training cohort was then used to parameterize our model, and the 

resulting model was validated using data from the withheld testing cohort. Classification metrics 

were evaluated in a leave-one-subject-out cross validation. Most helpfully, leave-one-subject-out 



cross validation ensures that we mitigate overfitting our model by ensuring a single patient’s data 

cannot be in both training and testing sets.[68,69] This approach yielded a total of 35 k-folds for 

use, in correspondence to the number of patients in our dataset. In each k-fold, the true positive, 

true negative, false positive, and false negative counts were saved and then analyzed later to give 

a final gauge of model performance across patients. 

For evaluating the efficacy of our model, we used sensitivity and specificity as our 

primary metrics. Sensitivity and specificity are two traditional methods for validating alerts in 

medicine[1-4] and are calculated as follows: 

𝑠𝑠𝑒𝑒𝑛𝑛𝑠𝑠𝑒𝑒𝑠𝑠𝑒𝑒𝑠𝑠𝑒𝑒𝑠𝑠𝑦𝑦 =  
𝑒𝑒𝑇𝑇𝑇𝑇𝑒𝑒 𝑝𝑝𝑝𝑝𝑠𝑠𝑒𝑒𝑠𝑠𝑒𝑒𝑠𝑠𝑒𝑒𝑠𝑠

𝑒𝑒𝑇𝑇𝑇𝑇𝑒𝑒 𝑝𝑝𝑝𝑝𝑠𝑠𝑒𝑒𝑠𝑠𝑒𝑒𝑠𝑠𝑒𝑒𝑠𝑠 + 𝐹𝐹𝐹𝐹𝑚𝑚𝑠𝑠𝑒𝑒 𝑛𝑛𝑒𝑒𝑛𝑛𝐹𝐹𝑠𝑠𝑒𝑒𝑠𝑠𝑒𝑒𝑠𝑠
 

𝑠𝑠𝑝𝑝𝑒𝑒𝑠𝑠𝑒𝑒𝑓𝑓𝑒𝑒𝑠𝑠𝑒𝑒𝑠𝑠𝑦𝑦 =  
𝑒𝑒𝑇𝑇𝑇𝑇𝑒𝑒 𝑛𝑛𝑒𝑒𝑛𝑛𝐹𝐹𝑠𝑠𝑒𝑒𝑠𝑠𝑒𝑒𝑠𝑠

𝑒𝑒𝑇𝑇𝑇𝑇𝑒𝑒 𝑛𝑛𝑒𝑒𝑛𝑛𝐹𝐹𝑠𝑠𝑒𝑒𝑠𝑠𝑒𝑒𝑠𝑠 + 𝐹𝐹𝐹𝐹𝑚𝑚𝑠𝑠𝑒𝑒 𝑝𝑝𝑝𝑝𝑠𝑠𝑒𝑒𝑠𝑠𝑒𝑒𝑠𝑠𝑒𝑒𝑠𝑠
 

Sensitivity, also known as or recall, describes how effectively a model classified PVA when it was 

present, and is important for maximizing true-positive event detection.[70] Specificity was used 

to describe how well a model performed when classifying non-PVA breaths and is important for 

minimizing false-positive event detection, and maximizing true negatives. In order to both detect 

physiologically harmful events, and to avoid potential alert fatigue from frequent false positive 

alarms, we focused on optimizing both a model’s sensitivity and specificity so we could allow 

these, or similar models to be translated to eventual clinical practice.  

Positive and negative predictive values were not used here since application of these 

metrics would require unbiased sampling to estimate the true rates of PVA and non-PVA in the 

general population of ventilated patients. Our use of manual ROI selection to enrich for 

representative samples of PVA, and artifacts was deemed necessary after initial efforts at random 

sampling resulted in gross under-representation of non-normal breath classes. This is because non-



normal events tend to be interspersed amongst large regions of normal breaths in typical patient 

data.  



Results 

Classifying PVA versus Non-PVA: A Binary Classification 
Computationally Finding the Optimal Feature Set 

We first attempted to classify a given breath as PVA or non-PVA, and created a model to 

classify either BSA or DTA, but not both, and non-PVA breaths. It is known that reductions in 

feature space can minimize the problem complexity caused by the “curse of dimensionality” 

while potentially improving performance of the model.[30] We thus performed this reduction on 

our list of total features. We also developed models using a set of expert-selected features for 

DTA and BSA detection. For DTA, our expert features were the I:E ratio, E-time, TVe, and 

TVe/TVi. For BSA, our expert features were the E-time and TVe/TVi. Note that we did not 

reduce the set of expert-derived features, since those features were known to be effective from 

previous study.[28] In the absence of expert input, we applied cross patient learning with the 

Chi-square test combined with successive sensitivity analyses to inform our feature selections. 

For speed purposes, we use an RF with 10 estimator trees. In this evaluation, we did not use 

SMOTE initially so that we could evaluate model performance without synthetic dataset 

additions. In the absence of SMOTE, our sensitivity analyses showed that sensitivity, and 

specificity for the detection of BSA, (Figure 4) and DTA (Figure 5) were improved with use of 

all available metadata features in the model. While sensitivity and specificity generally remained 

stable, or improved with increasing feature number across both models, sensitivity for DTA 

classification remained poor in all tested conditions, and specificity remained just over 90% 

(Figure 5).   

Binary Classification Model Results 

Given the overall poor DTA classification performance of our RF, (Figure 4) and other 

machine learning models (see online supplement Figures S1 and S2) without SMOTE, we next 



compared the performance of four different machine learning classifiers with the addition of 

SMOTE, to determine if model performance would improve after addressing class imbalance. 

Despite substantial improvement in model performance with the addition of SMOTE, (Figure 6; 

see online supplement Figures S1 and S2 for additional models without SMOTE) DTA 

performance was disappointing when using statistically-derived metadata features, and the best 

performing classifier only achieved 70% sensitivity and 91% specificity (Figure 6A). Expert-

derived features improved DTA detection performance, but still left much room for improvement 

(Figure 6B). 

BSA detection on the other hand, was excellent and performed comparably using either 

all metadata, or all expert features, with greater than 95% sensitivity and specificity in all but one 

of the four classifiers (Figure 7). 

 
Use of Time Varying Features 

As shown in previous sections, DTA classification models performed sub-optimally 

using either all available metadata features or expert-derived features. Because the clinical 

recognition of DTA and suction artifacts requires evaluation of data spanning multiple breaths, 

(Figures 1B and 2) we reasoned our initial modeling did not perform as well because it did not 

incorporate features that were present in previous breaths. To take multi-breath event sequences 

into account, we added retrospective features to our model, or features that look backwards at 

the metadata for a previous breath. This added an additional 16 features to any possible model. A 

Chi-square sensitivity analysis showed that 21 features out of 32 metadata and retrospective 

features were most effective to identify DTA (see online supplement Figure S5).  

We next examined how inclusion of expert-derived retrospective features would compare 

to our mathematically-derived metadata feature set, and manually created a new set of expert-



derived features from the set of retrospective features, naming this set the “retrospective expert 

features.” This set was comprised of TVe/TVi, the previous breath’s TVe/TVi (TVe/TVi-

previous), and the previous breath’s E-time (E-time previous). These features were directly 

derived from the heuristic algorithm our clinicians used to identify DTA in our previous 

work.[28] In Figure 8, we show the results of the retrospective chi-squared model versus the 

retrospective expert model. We see here that addition of the time varying features dramatically 

improve our DTA detection models. Experiments with retrospective features in BSA models saw 

no improvement over using single breath features (see online supplement Figure S7). 

Classifying Multiple PVA Types: A Multiclass Classification 

In the experiments described in Figure 8, it was apparent that neither use of statistically-

derived nor expert-derived features were able to optimize both sensitivity and specificity in any 

one model, even with the inclusion of retrospective features. Building on previous experiments, 

combining both expert knowledge and statistical methods of feature selection, we aimed to 

develop a final model with both high sensitivity and specificity for DTA and BSA detection. We 

started using the three retrospective expert features (Figure 8B), and added 4 additional features, 

which were guided both by expert knowledge and by Chi-square sensitivity analyses: TVe-

previous, respiratory rate (RR), RR-previous, and RR-twice-previous. The RR-twice-previous 

feature is the RR of two breaths before the current breath. Thus, the final features used in the 

multi-class classification model were: TVe:TVi, TVe:TVi-previous, E-time-previous, TVe-

previous, RR, RR-previous, and RR-twice-previous. Using these features, we created an 

ensemble composed of ERTC, GBC, and MLP classifiers to detect both DTA and BSA. We did 

not use the RF in the ensemble because its DTA prediction sensitivity adversely affected the 

model. The ensemble performed its classification by using the prediction of the classifier with 



the highest prediction probability in the ensemble.[61] We initially applied this ensemble 

approach without SMOTE, and although BSA detection performed well, DTA detection once 

again suffered from poor sensitivity performance (see online supplement Figure S8). We next 

conducted the same experiment after applying SMOTE. Table 3 shows how the three individual 

models performed compared to the ensemble model with regard to sensitivity and specificity of 

detecting DTA and BSA.  

Table 3: Descriptive statistics for the all classifiers run on the multiclass classification problem using SMOTE. 
ERTC: Extremely Randomized Trees classifier. GBC: Gradient Boosting classifier. MLP; Multi-layer Perceptron. 
DTA; Double-Trigger Asynchrony. BSA; Breath Stacking Asynchrony. PVA; patient ventilator asynchrony 

Algorithm Class Accuracy Sensitivity Specificity 
Ensemble Non-PVA 0.971 0.9673 0.9806 
 DTA 0.9742 0.9601 0.9754 
 BSA 0.9793 0.9445 0.9879 
ERTC Non-PVA 0.7245 0.6744 0.856 
 DTA 0.8693 0.9934 0.8589 
 BSA 0.7683 0.5835 0.814 
GBC Non-PVA 0.9707 0.9692 0.9746 
 DTA 0.9745 0.9335 0.9779 
 BSA 0.9779 0.9445 0.9861 
MLP Non-PVA 0.954 0.9439 0.9806 
 DTA 0.9576 0.9628 0.9572 
 BSA 0.9678 0.9155 0.9807 

 

 The results in Table 3 were performed using a 1:1:1 ratio of non-PVA, DTA, and BSA 

observations. To assess the effects of varying SMOTE class ratios on model performance, we 

performed sensitivity analyses across a range of majority: minority class ratios. While 

differences in model performance were relatively small, we found that as we increased the ratio 

of DTA observations with respect to non-PVA observations, sensitivity of DTA classification 

would increase, while specificity would decrease (see online supplement Table S3). We found 



the 1:1:1 ratio, seen in Table 3, yielded the most balanced scoring of sensitivity and specificity 

among all SMOTE ratios tested. 

Discussion 
In this study, we created an ensemble machine learning model for classifying two 

common, clinically-relevant PVA subtypes, BSA and DTA, thought to be detrimental to patient 

health.[18,21-23,71] We showed that addressing several issues common to ML model 

development in other fields resulted in excellent sensitivity, and specificity for the classification 

of PVA in mechanically ventilated patients. In addition to mechanical ventilation, these 

challenges are broadly relevant to the creation of ML models in other areas of medicine. First, 

we addressed the class imbalance problem that resulted from PVA breaths being outnumbered by 

non-PVA breaths by using SMOTE to equilibrate the number of DTA, BSA, and non-PVA 

breaths. This class imbalance problem stands to potentially impact model development for use 

cases with similar event prevalence. In this regard, using SMOTE substantially improved our 

DTA detection performance. Second, we demonstrated that the combined use of expert feature 

selection and feature selection using statistical tools resulted in superior model performance 

compared to what either feature selection mechanism could accomplish alone. Finally, we 

demonstrated improved performance of our classifier by creating an ensemble classifier utilizing 

multiple different ML algorithms to generate a model with higher sensitivity and specificity than 

any single algorithm. 

Our approach varies from previous methods of detecting PVA by utilizing machine 

learning. Previous studies have relied on expert systems composed of heuristic logic, custom 

designed by clinicians.[21,22,24,28] Importantly for PVA detection, ML may offer greater 

efficiency of model development especially in cases where signal noise, clinical artifacts, 



unknown PVA types, or high levels of intra-class variability may necessitate the creation of 

extensive heuristic logic to optimize performance.[28]  

We elucidated our steps in detail for creating a high-performing ML classifier in order to 

highlight generalizable methodological principles for creating ML classification models for 

streaming waveform data in healthcare. Use of SMOTE and ensemble methods may be 

particularly helpful for clinicians in the future. Our study highlights that mechanical waveform 

data is highly imbalanced, with patients taking in range of 20,000-40,000 breaths over a given 

day, where the vast majority of waveform data is indicative of normal, synchronous breathing. 

When PVA does occur it can be used as the basis for a classification model, but episodes of PVA 

can be brief, and relatively infrequent.[18,22] SMOTE helps to address class imbalance resulting 

from data paucity by creating synthetic samples of a minority class, and while it is not the only 

method to deal with class imbalance, it is well represented in the literature and has proven itself 

valuable in areas that also deal with data imbalances such as security and networking 

research.[72,73] We highlight the 1:1:1 SMOTE ratio seen in Table 3 because it yielded the most 

balanced scoring of sensitivity and specificity. Our results using a range class ratios (see online 

supplement Table S3) suggest, however, that use of lower SMOTE class ratios could be used to 

tune model performance for specific use cases where greater model specificity is desired. 

Ensemble models can be useful as well for data that are noisy,[74] or have highly 

complex decision boundaries,[75] and ensemble-based models have been shown to create more 

accurate classifiers by combining many weaker classifiers.[76] In our use case, our ensemble 

model yields sensitivity and specificity improvements for DTA classification compared to the 

MLP classifier, while maintaining equivalent performance for BSA classification compared to a 

single GBC classifier. We see however, that the GBC classifier has slightly better specificity 



than the ensemble. And while the ensemble offers the most balanced combination of sensitivity 

and specificity, if model designers desired to focus on specificity as their primary metric then 

using a GBC classifier may be preferable. 

 There are several limitations that must be noted with this study. First, this is a single 

center study, and differing types of patient care in other centers may affect how our model 

performs. Next, the development of an optimized model depended on a mix of statistical and 

expert-derived approaches to feature selection that still requires substantial expert knowledge 

and it is possible that inclusion and selection of other clinical metadata in model development 

may have resulted in a final model with different performance characteristics. Similarly, our 

selection of ML algorithms was not exhaustive and use of different algorithms may have 

similarly affected model performance. Furthermore, we must note the performance of BSA 

detection in our multi-class model was lower than performance in the binary BSA detection 

model. This may have been because of the strict classification boundaries that the clinicians used 

to differentiate DTA and BSA were not always learned correctly by our model in each k-fold. 

Due to time constraints imposed by manual waveform annotation, our classifier uses a relatively 

small amount of ventilator data (7.63 hours total) based on highly selective ROIs where PVA is 

far more prevalent than it would be normally.[31] Even though we present promising results, 

further studies will be necessary to claim generalizability of a ML anomaly detection model. 

Future work will need to examine additional methods for improving the accuracy of detection 

around strict classification boundaries, for example where strict cutoffs in a feature value (e.g., 

E-time) are necessary for the correct classification of related classes such as DTA and BSA. 

 In summary, we have created an ensemble machine learning classifier that can detect two 

types of clinically-relevant PVAs, DTA and BSA, with high levels of sensitivity and specificity 



in 35 patients receiving mechanical ventilation in the ICU. In this study, we highlight methods 

for overcoming class imbalance in clinical data by using SMOTE, using a combination of 

statistical tools and expert-based knowledge to improve feature selection, and improving 

classifier performance by using ensemble models. Our classifier’s high sensitivity and specificity 

suggests that ML-based models may translate effectively to future PVA detection algorithms to 

improve the quality of care and clinical experience for patients receiving mechanical ventilation. 

Our model and methodology may serve as a useful framework to guide future researchers in the 

use of ML to automate the classification of clinical events in patient-derived waveform data.  
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