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1. In [l] Cleave introduced the notion of a creative sequence of

r.e. (recursively enumerable) sets and proved that all such sequences

are r. (recursively) isomorphic and 1-1 universal for the class of all

r.e. sequences of r.e. sets. In [2] and [3] Lachlan introduced an alter-

nate definition and proved its equivalency with the definition of

Cleave.

A sequence of r.e. sets £0, -Ei, • ■ ■ is called r.e. iff there is an r.

function g such that Ei = w0^i) for every iEN, where

(1.1) x G w,<-> V Ti(i, x, y).

Cleave calls a disjoint r.e. sequence £0, -Ei, • • • of r.e. sets creative

if there is a p. (partial) r. function / such that for every disjoint r.e.

sequence Whu), i = 0, 1, • • • , (with recursive h) satisfying Ei(~\Wh(i)

= 0, for all i, we have, for every xEI(h),

(1.2) f(x)E   U   iwhWVEJ.
^=0

1(h) is the set of indices of h in the standard enumeration

(1.3) d>o, </>i, 4>2, ■ ■ ■ ,

of all r.p. functions, i.e.,

(1.4) 4>i(x) ~ U(pvTi(i, x, y)).

Lachlan, in [2], proceeds as follows. Let first g be recursive and

such that

V T2(i, n, x, y) <-> V Ti(g(i, n), x, y).

Define the double sequence Wt,n of r.e. sets by W,,„ = w0«>n).

After Lachlan, an r.e. sequence E0, Ei, ■ ■ ■ of r.e. sets is creative iff

there is a recursive / such that for all i

(1.5) WijW\JE,w c U  (W^nE,).
M=0
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Both Cleave's and Lachlan's definition seem to demand very much

to be satisfied: (1.1) involves all indices x of h, and (1.5) all indices i

(which are, in essence, indices of all r.e. sequences).

In this paper we propose a very weak definition of a creative

sequence and prove its equivalency with the definition of Cleave (and

so with the definition of Lachlan). Moreover, our definition is a direct

generalization of the corresponding Smullyan's definition of a doubly

weakly creative pair (Smullyan [4, p. 114]).

2. Obviously, a sequence Ao, Ai, ■ ■ ■ of r.e. sets is r.e. iff the predi-

cate xEAy is r.e. Let y be recursive and such that

(2.1) V T2(u, p, x, y) ^> V Ti(y(p, u), x, y).
V V

For every r.e. predicate Q(p, x) there is an eEN such that Q(p, x)

*->Vv T2(e, p, x, y). With Q(p, x)<^>xEAfl we conclude: every r.e.

sequence of r.e. sets can be represented as a sequence wr^,e)

p = 0, 1, • ■ •   for some e.

By the recursion theorem, for every r.e. predicate Q(p, z, x, u) there

is a recursive <p such that for all iEN,

(2.2) Q(p, i, x, <b(i)) ♦-> V T2(d.(i), p, x, y)
V

i.e., by (2.1),

(2.3) Q(p, i, x, <b(i)) *-> V Ti(y(p, <b(i)), x, y).

Lemma 2.1. Let A0, Ax, ■ ■ ■ be an r.e. sequence o/ r.e. sets and let /

be any r. /unction. Then there is an r. /unction d> such that, /or every

iEN,

(2.4) i E A, ->w7(M.*«» = {/(4>(i))};

(2.5) i $ Ap -> w70",*«)) = 0

Proof, ({a} denotes the singleton whose unique element is a;

0 is the empty set.) In (2.3) take

Q(p, z, x, u) <-» z E A„ A x = /(u).

From this lemma we obtain immediately.

Lemma 2.2. Let A0, Ai, ■ ■ ■ be a disjoint r.e. sequence 0/ r.e. sets.

Then there is an r. /unction d> such that, for every iEN,

(2.6) iEA„—>myc„,*(.-)) = \f(<p(i))} and all others w7(»,#(o> are empty

for vt^p, and

(2.7) iEA„—>all w7(„,0(,-)) are empty.
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Definition 2.1. An r.e. sequence A0, Ai, • • • of r.e. sets is meager

iff either all A» are empty or all but one are empty and this one,

which is not empty, is a singleton.

Definition 2.2. A disjoint r.e. sequence ^40, Ai, • ■ ■ of r.e. sets

is weakly creative under an r. function / iff, for all iEN for which the

sequence wT(o,o, w7(i,,-), • • •   is meager,

(a) in case all w7(„,,•) are empty we have

(2.8) f(i) E   U   A,;
M=0

(b) in case wy(nui) is not empty and wy(„t,i)r\Ano = 0, we have

(2.9) /(.*) E «Wo-

3. We prove some theorems from which will follow the equivalency

of the weak creativity and the creativity in the sense of Cleave.

Theorem 3.1. If the sequence E = E0, Ei, ■ ■ • is weakly creative then

every disjoint r.e. sequence A—Ao, Ai, • ■ •  of r.e. sets is reducible to E.

Proof. Let E be creative under / By Lemma 2.2 there is an r.

function </> such that for every sequence fi.^^io^M), wy{i,$t.i», ■ • • ,

we have

(3.1) iEA„-^>Qi is meager and wy(„,«(»))= {/(<£(*))}> and

(3.2) iEAf.—>0,- is meager and all Wy^ro) are empty.

We shall prove that \p=fid>) reduces A to E.

Suppose first that iEA„,. Then myc.^co) = {/(</>(*))} and, therefore,

(3.3) /(*(*)) G «Vo».*«»-

If now wy{liMi))r\En = 0 we will have, by (2.9), fi<pii)) $a),(,,«o)

in contradiction to (3.3). Therefore, fi4>(i))EE?.

To prove the opposite inclusion

(3.4) /(*(,•)) 6£,->iGi,

suppose, contrary, that there is a gGA7 such that fi(pii))EEq but

iG^9-

Now, if iGU"„0^4M, 0,- consists of empty sets only, and (2.8) gives

fi<pii)) £EUJLo E„—a contradiction. So, there is an sEN such that

iEA3. By the first part of the proof we obtain f(<p(i))EEs. As E,(~\Eq

= 0 for q^s, it follows 5 = 3.

So we have proved

(3.5) iE A^ i(i) E E,

i.e. that A is r. reducible to E.
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Theorem 3.2. If the creative sequence A =Ao, Ai, ■ ■ ■ , is reducible

to B=Bo, Bi, • • • , then B is a creative sequence.

Proof. Let A be creative under p. Therefore, for every disjoint r.e.

sequence wk^), p = 0, 1, ■ • • , satisfying Alir\wh(.^ — 0 for all p, if

xEIQi) then
00

(3.6) p(x)&   U  (afcooU A,).

If/ reduces A to B then

(3.7) A,=f-KB,),       m = 0, 1, •••.

Denote by \p the r. function such that for all xEN

(3.8) wHx)=f~\wx).

There is a recursive function <p such that if xEI(F) then <b(x)

G7(^(F)) (the operation of composition being effective). We shall

prove that B is creative under x==/(P(4>))-

Let wk(o), wk(i), • • • , be any disjoint r.e. sequence of r.e. sets such

that

(3.9) wk(ll) n B„ = 0       for all p,

and let x be an index of the r. function k. We have to prove

(3.10) x(x)E  U  («;«,, U5,).

By (3.9), using (3.7) and (3.8), we have

(3.11) A„ C\ w^kb)) = 0,       for all p.

As A is creative and as <b(x)EI(4/(k)), we get by (3.6)

00

(3.12) p(<b(x)) e U  (A,yj wHkM)).
M=o

From (3.7), (3.8) and (3.12) follows now (3.10).

Corollary 3.2.1. 1/ a sequence A is weakly creative it is creative.

Proof. Every creative sequence is reducible to A by Theorem 3.1.

By Theorem 3.2, A is creative.

Theorem 3.3. 7/ a weakly creative sequence A=A0, Ai, • • • , is 1-1

reducible to B=Bo, Bi, • • ■ , then B is a weakly creative sequence.

Proof. Let A be weakly creative under <b and let the 1-1 r. function
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/ reduce A to B. There is a recursive \p such that, for all xEN,

W7(C#(x»   = f~~l(™-Y(»,x)), P  =  0,1,   ■   ■   ■  ,

(Take in (2.3) Qip, z, x, u)<r^xEf~liwy^,u))/\z = z.)

Let w7(o,o, wya,i), ■ • ■ , be a meager sequence.  Then w7(o,*(o)>

w7d,#(»))> • • ■ , is meager too.

Suppose first that w7(„o,i)?^0 and that w7(„0,.-)r)5„0 = jZf. Then

a,T(»o.*(«))^-^»o:=i2^ anc^' as / is l-li w7(n0.*(«)) is a singleton. Then

4>W{i)) &Wi<.no,Hi)) and, as

y G w7(n0,*(O) <->/(>") G w7Cbo,,-),

we obtain/(^(^(i)))Gw7<„„,,)•

If all a/7(„,o are empty, from <pty{i)) GU"=0 ^4„ we obtain f(<p(ip(i)))

This proves that 5 is weakly creative under /(</>('/'))•

Corollary 3.3.1. Every creative sequence is weakly creative.

Proof. By part (3) of Corollary 4 of Cleave's paper [l], every

weakly creative sequence is 1-1 r. reducible to every creative se-

quence. By Theorem 3.3 follows the statement.

Corollaries 3.2.1 and 3.3.1 give

Theorem 3.4. A sequence is weakly creative iff it is creative.

We point out that using the Definition 3.4 of the paper [2] of

Lachlan one can give a definition of Af-creativity (akin to Lachlan's

definition of M-coproductivity) which is similar to our definition of

weak creativity, but unnecessarily complicated. Namely, starting

from the sequence A=A0,Ai, ■ ■ ■ , Lachlan constructs the sequence

A*=A*, A*, ■ • • , where

*
A^ = An        if An is a singleton,

= 0        otherwise.

With this definition, A will be called Af-creative under/ iff A is a

r.e. sequence of r.e. sets and iff for all i

to

U   (Wt,n n A^ = 0 -»{/(«) is defined and Wtjm = At = 0}.

(Wij is as in §1.) As ./If-creativity is equivalent with creativity it is

equivalent with weak creativity.

On the ground of the Theorem 3.4 one can propose the following
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definition of creativity, which we shall call ^-creativity:

A disjoint r.e. sequence A—A0, Ai, • • • , of r.e. sets is .S-creative

under a recursive/ iff for every disjoint sequence w7(0,,), w7(i,t), • • • ,

for which At/\u)y^,{> = 0 for all p, we have

/(*)£ u (A.yjw^.i,).
v=o

It is not difficult to prove that a sequence is S-creative iff it is cre-

ative. The implication ".S-creative—^creative" is trivial. The converse

implication is obtained through a theorem, similar to Theorem 3.3.
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