
Earth Surf. Dynam., 5, 21–46, 2017

www.earth-surf-dynam.net/5/21/2017/

doi:10.5194/esurf-5-21-2017

© Author(s) 2017. CC Attribution 3.0 License.

Creative computing with Landlab: an open-source toolkit

for building, coupling, and exploring two-dimensional

numerical models of Earth-surface dynamics

Daniel E. J. Hobley1,2,3, Jordan M. Adams4, Sai Siddhartha Nudurupati5, Eric W. H. Hutton6,

Nicole M. Gasparini4, Erkan Istanbulluoglu5, and Gregory E. Tucker1,2

1Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado, Boulder, USA
2Department of Geological Sciences, University of Colorado, Boulder, USA

3School of Earth and Ocean Sciences, Cardiff University, Cardiff, UK
4Department of Earth and Environmental Sciences, Tulane University, New Orleans, USA

5Department of Civil and Environmental Engineering, University of Washington, Seattle, USA
6Community Surface Dynamics Modeling System (CSDMS), University of Colorado, Boulder, USA

Correspondence to: Daniel E. J. Hobley (hobleyd@cardiff.ac.uk)

Received: 20 August 2016 – Published in Earth Surf. Dynam. Discuss.: 14 September 2016

Revised: 24 November 2016 – Accepted: 14 December 2016 – Published: 16 January 2017

Abstract. The ability to model surface processes and to couple them to both subsurface and atmospheric

regimes has proven invaluable to research in the Earth and planetary sciences. However, creating a new model

typically demands a very large investment of time, and modifying an existing model to address a new prob-

lem typically means the new work is constrained to its detriment by model adaptations for a different problem.

Landlab is an open-source software framework explicitly designed to accelerate the development of new process

models by providing (1) a set of tools and existing grid structures – including both regular and irregular grids –

to make it faster and easier to develop new process components, or numerical implementations of physical pro-

cesses; (2) a suite of stable, modular, and interoperable process components that can be combined to create an

integrated model; and (3) a set of tools for data input, output, manipulation, and visualization. A set of example

models built with these components is also provided. Landlab’s structure makes it ideal not only for fully devel-

oped modelling applications but also for model prototyping and classroom use. Because of its modular nature, it

can also act as a platform for model intercomparison and epistemic uncertainty and sensitivity analyses. Landlab

exposes a standardized model interoperability interface, and is able to couple to third-party models and software.

Landlab also offers tools to allow the creation of cellular automata, and allows native coupling of such models

to more traditional continuous differential equation-based modules. We illustrate the principles of component

coupling in Landlab using a model of landform evolution, a cellular ecohydrologic model, and a flood-wave

routing model.

1 Introduction and motivation

Across a wide array of fields, researchers use numerical mod-

els to study processes that operate on and across the Earth’s

land surface and shallow subsurface. Science and engineer-

ing applications of these models of surface dynamics range

from short-term flood forecasting (e.g. Horritt and Bates,

2002) to simulating the evolution of Earth’s landscape over

geologic epochs (e.g. Tucker and Hancock, 2010). Mod-

els may focus on a theoretical understanding of processes

and their interaction, on management or engineering appli-

cations, or on predicting environmental responses to natural

or human-made perturbations. Although the processes and

temporal and spatial scales vary widely, the software behind

these models is often quite similar. For example, most Earth-

surface dynamics models manage data structures and algo-

Published by Copernicus Publications on behalf of the European Geosciences Union.

22 D. E. J. Hobley et al.: Creative computing with Landlab

Figure 1. Examples of surface-process models. (a) Computed depth-to-groundwater, from the GSEM coupled groundwater–surface water

model (Berger, 2000, image courtesy D. Entekhabi). (b) Computed patterns of soil erosion and sedimentation on agricultural fields, using

the SIMWE soil erosion model (Mitas and Mitasova, 1998). (c) Model of ice-age glacier extent over the Sierra Nevada, USA, using the

GC2D ice-flow model (Kessler et al., 2006). (d) Simulation of canyon erosion and fan-delta progradation in a region of active uplift (top)

and subsidence (bottom), using the CHILD landscape evolution model (Tucker and Hancock, 2010). (e) Model of simultaneous cratering and

fluvial erosion on the ancient Mars surface, with the MARSSIM model (Howard, 2007). (f) Simulation of pyroclastic flows at Tungurahua

volcano, Ecuador, using the VolcFlow model (Kelfoun et al., 2009).

rithms to represent a terrain surface and its connectivity, and

many include solution algorithms to compute flows of mass

(such as ice, liquid water, sediment, or chemical nutrients)

across terrain (Slingerland and Kump, 2011) (Fig. 1).

However, scientists who want to use an Earth-surface

model often build their own unique model from the ground

up, re-coding the basic building blocks of their model rather

than taking advantage of codes that have already been writ-

ten (Adams et al., 2014; Katz et al., 2015; Overeem et al.,

2013). This undoubtedly does produce novel software capa-

ble of fulfilling its designer’s needs, and can have advantages

in helping the programmer to acquire a total understanding

of the code base, but this approach also has many associ-

ated problems: many person hours are lost rewriting exist-

ing code, and the resulting software is often idiosyncratic, ad

hoc, undocumented, and unable to interact with other soft-

ware programs both in the same scientific community and

beyond. In particular, models are often initially written to

solve a very specific problem, rather than to provide a flexible

and reliable platform for solving a general class of problems

(Easterbrook, 2014). It may also become impossible for a

single programmer to maintain their grasp of their code base

once it exceeds a certain size. A result is that software devel-

opment often acts as a bottleneck to progress, with frequent

duplication of effort as research groups struggle to adapt ex-

isting software or develop new code from the ground up as

each new research problem emerges.

The Landlab modelling framework described here seeks to

mitigate these redundancies and lost opportunities and simul-

taneously lower the bar for entry into numerical modelling.

The approach is to create a user- and developer-friendly mod-

elling environment that provides scientists with the funda-

mental building blocks needed for modelling surface dynam-

ics on the Earth, and potentially beyond. The framework

takes advantage of the fact that nearly all surface-dynamics

models share a set of common software elements, despite

the wide range of processes and scales that they encompass

(Peckham et al., 2013; Slingerland and Kump, 2011). Pro-

viding these elements in the context of the popular scientific

programming language Python, and with strong user support

and community engagement, would contribute to accelerat-

ing progress in the diverse sciences of the Earth’s surface.

From the user’s perspective, Landlab enables the follow-

ing:

1. Rapid, easy creation of a number of distinct geomet-

ric grids, with all the connectivity between various el-

ements already defined, and the ability to create two-

dimensional data fields across a given grid.

2. Functions to operate on the values defined on such a

grid, enabling the solution of time-dependent numeri-

cal algorithms across them (e.g. differential equations,

cellular automata).

3. A mechanism for the control of boundary conditions

across a grid;

Earth Surf. Dynam., 5, 21–46, 2017 www.earth-surf-dynam.net/5/21/2017/

D. E. J. Hobley et al.: Creative computing with Landlab 23

4. Encapsulation of conceptual models for individual

Earth-surface processes into reusable components, with

a standard interface that allows operation across Land-

lab grids.

5. The ability to build a multi-process model by combining

together components.

6. The ability to quickly and efficiently build new com-

ponents, and to couple them with those components al-

ready in the library.

7. A straightforward and standardized input and output in-

terface, including the ability to import from and export

to common spatially distributed data formats such as

NetCDF and ESRI ASCII, as well as a plotting mod-

ule. This interface also enables coupling to third-party

models and software.

2 Approach

2.1 Guiding design principles

The design principles for Landlab have been guided both by

our observations of current software design practices in the

surface-system modelling community and by white papers

issued by existing organizations both within this community

(Adams et al., 2014; Overeem et al., 2013; Peckham et al.,

2013) and in the scientific software design community more

widely (Becker et al., 2015; Chue Hong, 2014; Katz et al.,

2015; NSF, 2012). Our key observations are as follows:

1. Many models exist that simulate Earth-surface pro-

cesses, and many of these share a very similar under-

pinning in terms of the basics of grid construction and

the suite of simulated processes. This set of models rep-

resents significant past duplicative effort in the surface

process modelling community. Although the reasons for

duplication are likely multiple and vary from group to

group, we note that we are unaware of previous ef-

forts to advertise a flexible, open-source programming

framework.

2. Orphaned or unmaintained codes are common in the re-

search community, having been built for a single pur-

pose and then set aside.

3. Although standardized frameworks for model interop-

erability are now in place (such as the framework de-

signed and maintained by the Community Surface Dy-

namics Modelling System, CSDMS, group; Hutton et

al., 2014; Overeem et al., 2013; Peckham et al., 2013),

many models are not compatible with these standards.

We hypothesize this is largely due to the effort required

by the original programmer to modify legacy code –

which in many cases was written before the standards

were established – to meet these new interoperability

criteria.

4. Existing model software tends to have a high bar to en-

try. Many models are written in compiled languages,

such as Fortran, C, and C++ (examples from the ge-

omorphology and sedimentary stratigraphy communi-

ties include CHILD: Tucker et al., 2001b; Sedflux: Hut-

ton and Syvitski, 2008; MARSSIM: Howard, 2007;

Fastscape: Braun and Willett, 2013; DAC: Goren et al.,

2014; SIBERIA: Willgoose et al., 1991a, b). This re-

quires the prospective user be fluent in these languages

before the code can be modified or, in many cases, even

used efficiently. Because many legacy codes were not

designed to be shared amongst the community, docu-

mentation, both in-line and external, tends to be idiosyn-

cratic at best and missing at worst.

5. In several instances, scientific software with a broad

user base exists but remains closed source. This includes

both tools for data analysis (e.g. ArcMap, Matlab) and

in some cases the modelling software itself (e.g. FLAC;

Itasca, 2000; Dionisos, Granjeon and Joseph, 1999).

Where software has to be purchased, this presents ob-

vious barriers to wide uptake of modelling approaches

using these tools in terms of financial cost for the

user. More importantly, all closed-source software also

presents significant barriers to code assessment in peer

review and to reproducibility of the work (Crick et al.,

2014; Katz et al., 2015).

These observations lead us to a set of key design principles

that have governed our development of Landlab:

a. Landlab should be a community resource, and thus fully

open source.

b. Landlab should provide a development environment

that is flexible, extensible, and highly reusable.

c. Landlab should be written in a language that allows

rapid development of new code.

d. Landlab should be fully compliant with the CSDMS

model interoperability standards (Peckham et al., 2013)

from the ground up, and this compliance should be built

into the low-level development framework itself. Thus,

for example, components written in Landlab will be au-

tomatically compliant with these standards.

e. Landlab should have a low bar to entry and be thor-

oughly documented. Tutorials should be present. It

should be possible for a beginner to use Landlab with-

out a full grasp of the underlying model architecture, in

a “plug and play” fashion.

f. Landlab’s code needs to be sustainable, as detailed be-

low.

www.earth-surf-dynam.net/5/21/2017/ Earth Surf. Dynam., 5, 21–46, 2017

24 D. E. J. Hobley et al.: Creative computing with Landlab

2.2 Low-level design choices

In turn, these guiding design principles directed early deci-

sions in terms of Landlab’s coding language, architecture,

and distribution.

2.2.1 Open-source availability

Landlab is licensed under the MIT free software license, an

approved license of the Open Source Initiative. This license

allows a user to deal in the software without restriction, in-

cluding without limitation the rights to use, copy, modify,

merge, publish, distribute, sublicense, and/or sell copies of

the software. The source code and associated files are main-

tained in a Git version-control repository, for which the mas-

ter repository is presently hosted on the GitHub website,

https://github.com/landlab/landlab. Release versions are also

freely available through the pip and conda Python package

managers. The model repository maintained by CSDMS of-

fers links to Landlab documentation and to the GitHub repos-

itory, increasing Landlab’s visibility to the surface process

modelling community in particular. Web-based documenta-

tion is hosted at http://landlab.github.io. This includes both

developer-written summary documents and tutorials, as well

as reference-level documentation that is automatically gener-

ated from inline comments and examples in the code itself.

2.2.2 Programming language

Landlab is written in Python and exploits and includes as de-

pendencies a number of widely used scientific Python pack-

ages: numpy, scipy, matplotlib, nose, netCDF4, numpydoc,

cython, six, pyyaml, setuptools, and libgcc. The decision to

write in Python was explicitly made to lower the bar for entry

to Landlab, to increase the flexibility and reusability of the

code base, and to increase development speed both for the

core development team and for future users. Informal can-

vassing amongst the surface process community, especially

amongst graduate students and other early-career scientists

less likely to already be strongly wedded to a certain de-

velopment environment, revealed a marked preference for

– and greater familiarity with – Python over C + + (other

open-source languages were rarely mentioned). This chang-

ing preference for Python has also been noted for PhD stu-

dents in general, beyond just the field of surface process mod-

elling (Chue Hong, 2014). The choice of Python also means

that developers using Landlab can take advantage of that lan-

guage’s affinity for rapid development (Prechelt, 2000). In

particular, Python’s dynamic typing and interpreted rather

than compiled implementation remove the developer’s need

to deal explicitly with memory management (van Rossum

and Drake, 2001). Other advantages of this choice include

high portability between platforms, open-source language,

numerous existing scientific libraries, and support for selec-

tive optimization of time-critical parts of the code base us-

ing Cython and/or compiled-language extensions. Cython is

a compiled language that is a super-set of Python, and Cython

extension modules interact seamlessly with pure Python.

However, program modules written in Cython allow more

granular control of memory management than is the case in

pure Python, which can result in significant acceleration of

code. Cython is already in use within Landlab for sections of

the code that require long out-of-sequence iterations through

arrays, and other sections where pure Python would tend to

have poor performance. For example, Cython is used in the

construction of some of the grid element connectivity arrays,

in the FlowRouter and FastscapeEroder components, and in

the CellLab extension to Landlab (Tucker et al., 2016).

2.2.3 Code sustainability

A key objective for Landlab from inception has been that the

code base be sustainable (Adams et al., 2014; Becker et al.,

2015; Katz et al., 2015; Stewart et al., 2010). Following other

authors, we view sustainable software as that which is able to

continue effectively, sustaining or improving its functionality

through time while at the same time adding new users. Stew-

art et al. (2010) drew attention to a number of key features of

sustainable software, which we have sought to implement:

– Strong, consistent leadership. The authors of this paper

represent the core development team of Landlab.

– Rapid prototyping and evolutionary design. Landlab

was initially developed to fill the immediate research

needs of the core development team, giving it a strong

and well-defined initial direction. In this initial develop-

ment phase, we have emphasized long-term mountain

belt evolution modelling; steady- and nonsteady-flow

routing; eco-, surface, and shallow subsurface hydrol-

ogy; hillslope dynamics; cellular automaton modelling;

vegetation dynamics; and ecosystem dynamics. How-

ever, the explicitly modular nature of Landlab means

that it can readily adapt to new scientific objectives and

expand to meet new and as yet unforeseen demands in

the future.

– Modern and effective software engineering practices.

Landlab takes advantage of a number of best practice

processes, including extensive and automated unit test-

ing of key code functionality, a formal bug- and issue-

tracking record implemented through GitHub, cross-

team review of code changes before they are merged

into the master branch, and thorough code documen-

tation. A significant portion of our online documen-

tation is created semi-automatically from inline code

comments. This reduces duplication of information and

aids maintenance and updating of the documentation

as the code changes. Individual functions and classes

are documented automatically using Python’s docstring

functionality. General descriptive documentation and

Earth Surf. Dynam., 5, 21–46, 2017 www.earth-surf-dynam.net/5/21/2017/

https://github.com/landlab/landlab
http://landlab.github.io

D. E. J. Hobley et al.: Creative computing with Landlab 25

tutorials are created and maintained manually. Auto-

generated documentation is updated and posted to the

project website automatically as new code changes are

committed to the GitHub repository using “webhook”

functionality provided through the http://readthedocs.

org website.

– Sustained compatibility with underlying libraries, pro-

tocols ,and operating systems. Landlab is compatible

both with Python 2 and 3. The code base is tested au-

tomatically using Travis (Mac, Unix) and Appveyor

(PC) continuous integration platforms, across Python

versions 2.7, 3.4, and 3.5 (see also Sect. 4).

– Dissemination and community understanding. We have

sought to publicize Landlab widely at a number of

international conferences and workshops, classes, and

through collaborative networks. We estimate that, as of

mid-2016, approximately 330 potential users have now

seen or participated in Landlab-based presentations or

classes.

– Encouraging collaborative software development.

Landlab enables users to tailor its functionality to their

specific needs, through its modular design and flexible

grid and grid functions. We are already aware of a num-

ber of groups outside the core Landlab development

team working with Landlab for their own research

purposes.

A secondary aspect to sustainability is the ability to have

the software continue to be useable after the active devel-

opment cycle has ceased (Stewart et al., 2010). We antici-

pate that the choice of Python, minimal system and extension

package requirements, open-source availability of our code

base, and thorough documentation will sustain our code for

the foreseeable future.

3 Model architecture

Landlab has an essentially tripartite structure – a core grid

module, a library of process components, and a set of sup-

porting utilities (Fig. 2). The various subdivisions of the code

behave as Python modules and can be imported and used

within a Python environment independently.

3.1 Landlab’s gridding engine

Landlab provides the ability to create a two-dimensional sim-

ulation grid of a user-specified size and shape, with a sin-

gle line of code. Grids are represented as Python objects; a

grid object includes data describing its geometry and topol-

ogy, as well as a variety of methods and functions to manage

data and perform common numerical operations. (In object-

oriented programming parlance, a method is a procedure as-

sociated with an object; in this case, “method” means a func-

Grid

RasterModelGrid

VoronoiDelaunayGrid

HexModelGrid

RadialModelGrid

Data fields

interface

Supporting

functions

Components

Component

standard

interface

True process

simulation

components

Service components

(analyses & time series)

Surface analysis (e.g. SteepnessFinder)

Processes that are not spatially

resolved (e.g. PrecipitationDistribution)

ModelGrid base class

Utilities
Plotting

& visualization
Input/output

Esri ascii NetCDF VTK

CellLab-

CTS 2015

An interface

for cellular

automaton

modelling

General utilities for coding in Landlab

Decorators Misc. helper functions

The LANDLAB modelling framework

Figure 2. Schematic illustration of the structure of Landlab 1.0.

The three main divisions of the code are the grid, the components,

and supporting utilities. Structure within these three main divisions

is discussed in the main text.

tion that is defined within the grid class, and that can be ac-

cessed with the “grid.method()” syntax typical of other class

properties.)

Although Landlab grids are inherently two-dimensional,

in many cases it is nonetheless possible to create an effec-

tively one-dimensional simulation by creating a 3-by-N regu-

lar grid and closing the nodes along the top and bottom edges

(see Sect. 3.1.4). Three-dimensional grids are not possible in

Landlab at this time, though they may be supported in a fu-

ture release.

3.1.1 Grid types and elements

A Landlab grid is defined by a set of grid primitive elements:

nodes, links, cells, corners, faces, and patches (Fig. 3). In

terms of graph theory, these can be thought of as two inter-

locking and offset sets of points (nodes vs. corners), edges

(links vs. faces), and areas (patches vs. cells). The entire grid

can be generated from a description of the geometry of only

one of these element types – typically, a user might spec-

ify the locations of the nodes, and the grid object’s remain-

ing elements are automatically placed according to this node

framework.

Each element type shares unique one-to-one or one-to-

many geometric mappings with the other elements. Were the

grids to be infinite, these mappings would be perfectly re-

ciprocal – the topology and connectivity of each element

with respect to every other element would be identical ev-

erywhere it occurs. However, because these grids are finite,

we must arbitrarily decide whether the bounding elements

are the set of nodes, links, and patches or the set of corners,

faces, and cells. We have chosen the former (see Figs. 4, 5),

which means that for example, while all cells have nodes, not

all nodes have cells – as the nodes at the grid perimeter can-

not have cells defined around them. Table 1a lists the unique

www.earth-surf-dynam.net/5/21/2017/ Earth Surf. Dynam., 5, 21–46, 2017

http://readthedocs.org
http://readthedocs.org

26 D. E. J. Hobley et al.: Creative computing with Landlab

(a) Raster grid (b) Voronoi cells with

Delaunay triangulated nodes

Cell

Patch

Node

Corner

Face

Link

(c) Hexagonal grid

Figure 3. Geometry and topology of grid elements on various Landlab grids. Only one patch and its bounding links are shown for each

example to prevent the diagram from becoming cluttered. Links always point into the upper right semicircle, as described in the text.

Table 1. (a) One-to-one mappings of Landlab grid elements. (b) Primary one-to-many mappings of Landlab grid elements.

(a) Element 1 Element 2 Behaviour at grid perimeter

Node Cell Perimeter nodes lack cells

Link Face Perimeter links lack faces

Patch Corner Neither element defines the perimeter

(b) Element Connected Number of each connected element

elements by grid type:

Raster Voronoi–Delaunay Hexagonal

Node Link, patch 1 : 4 Variable 1 : 6

Link Node, patch 1 : 2 1 : 2 1 : 2

Patch Node, link 1 : 4 1 : 3 1 : 3

Cell Face, corner 1 : 4 Variable 1 : 6

Face Cell, corner 1 : 2 1 : 2 1 : 2

Corner Face, cell 1 : 4 1 : 3 1 : 3

one-to-one mappings of features, and emphasizes which el-

ement defines the grid edge in each case. Table 1b lists the

primary one-to-many relationships defined for each element

type, and lists the standard number of mapped elements (if

well defined) for each of the primary grid classes. Note that

this table only lists the most useful identities within the three-

element groupings node-link-patch and cell-face-corner. The

other identities also exist and can be reconstructed from the

one-to-one identities in Table 1a.

Data can be assigned to any element of the grid (see

Sect. 3.2, below). The grid classes also provide prop-

erties that define and describe the geometric interrela-

tionships amongst these grid elements (see, e.g., Fig. 4).

These mappings allow common geometric operations (such

as calculation of gradients across the grid, finding max-

imum/minimum/mean values of neighbours, upwinding

schemes, and flux divergences) to be achieved in typically

one or two lines of code.

Landlab provides native support for both regular and irreg-

ular grids (Figs. 3, 4). Treating both grid types natively within

Landlab allows the grid to be tailored to specific applications.

For example, raster grids provide compatibility with digital

elevation model data, and can in some cases allow better op-

timized process algorithms. Trigonal grids with hexagonal

cells provide an additional axis of symmetry, and obviate the

need for handling diagonal connections in certain types of

numerical algorithm (such as flow routing; e.g. Jenson and

Domingue, 1988). Irregular grids avoid some of the cardi-

nal direction artifacts than can form on regular grids, such as

linear networks and linear drainage divides, as well as conse-

quent biases in measured channel metrics like drainage den-

sity, river length, and channel slope (Braun and Sambridge,

1997).

Regular grids with quadrilateral cells are implemented as

rasters, and irregular grids and all other regular configura-

tions (e.g. hexagons) are implemented as Voronoi–Delaunay

interlocked meshes, as also used in the landscape evolu-

tion models CASCADE (Braun and Sambridge, 1997) and

CHILD (Tucker et al., 2001b). Grid subtypes are defined

within these broad families (Table 2). Landlab also imple-

ments a base grid class (“ModelGrid”) from which both the

raster and Voronoi–Delaunay grids are derived. This class de-

scribes the elements of the grid and allows their geometries

and topologies to be set but defines no rules for how to do

this. This base grid class is primarily intended as a frame-

Earth Surf. Dynam., 5, 21–46, 2017 www.earth-surf-dynam.net/5/21/2017/

D. E. J. Hobley et al.: Creative computing with Landlab 27

(a) Raster grid

0
1

2

3

4 5

6
7

8

9

00

12

3 45

8

6

7

16

9 10

1312

14

11

15
17

18

19

20

0

1

3

2

5

4

6
7 8

9
10

11

positive

link orientation

0 1 2 3

4 5 6 7

8 9 10 11

0 1 2

3 4 5

0 1 2

3 4 5 6

7 8 9

10 11 12 13

14 15 16 raster.links_at_node[[6, 7]]

 = [[9, 12, 8, 5],

 [-1, 13, 9, 6]]

raster.links_at_patch[0]

 = [4, 7, 3, 0]

voronoi.neighbors_at_node[3:6] = [[5, 6, 9, 8, 4, 2, 0],

 [8, 1, 2, 3, -1, -1, -1],

 [7, 6, 3, 0, -1, -1, -1]]

voronoi.angle_of_link[[0, 1, 2]] = [6.0974, 5.2275, 1.3141]

Landlab rotational

ordering

0 1 2

3 4 5

0 1

0 1

2 3 4

5 6 raster.faces_at_cell

 = [[3, 5, 2, 0],

 [4, 6, 3, 1]]

(i) nodes, links, and patches

(ii) corners, faces, and cells

(b) Voronoi grid

(i) nodes and links
(ii) link directions

 and patches

(c) Grid ordering and

 directional conventions

Elements

ordered by

y, then x

Figure 4. Standard ordering schemes and conventions in Landlab. Examples are shown for both a small RasterModelGrid (a) and a small

VoronoiDelaunayGrid (b). Point elements (nodes, corners) are numbered in black plain text, areas (patches, cells) in black italics, and linear

elements (links, faces) in grey italics. Symbols are as in Fig. 3. In all grid types, elements are ordered by y then x according to their geometric

centres. Directional elements (links, faces) always point towards the top right quadrant. Rotational ordering is always anticlockwise from the

positive x axis (right/east). This includes angle measurements. Examples of calls to grid properties are shown alongside each grid type to

illustrate the expression of these ordering rules in practice. Note that corners, faces, and cells are not shown in panel (b) for clarity.

work from which to derive new grid architectures, rather than

as a usable grid type in isolation.

Although the grid primitive element set is shared between

the various grid types, the implementation of the geometries

is slightly different. For example, core nodes in a raster grid

will always have exactly four links, whereas they may have

any number of links in a Voronoi-centred irregular grid (Ta-

ble 1b, Fig. 3). Similarly, methods defined for the grid may

be polymorphic or overloaded to optimize functionality for

each grid type.

3.1.2 Grid standardization and conventions

All Landlab grids share an identical scheme for the number-

ing of their elements. All elements are numbered from the

bottom left of the grid, starting with an ID of 0. All features

are ordered first by y coordinate, then by x, taking the mid-

point (for linear features such as faces or links) or geometric

centre (for areas such as cells or patches) for non-point ele-

ments as necessary (Fig. 4).

For rotational ordering, Landlab adopts the mathemati-

cal standard convention of anticlockwise from the positive

x axis (i.e. the right-hand rule). This applies not only to al-

most all measured angles (unless otherwise explicitly noted)

www.earth-surf-dynam.net/5/21/2017/ Earth Surf. Dynam., 5, 21–46, 2017

28 D. E. J. Hobley et al.: Creative computing with Landlab

Table 2. Currently implemented grid types in Landlab.

Grid type Grid parent Notes

Base None The base class; a grid defining the elements but without any

internal geometry or topologic connectivity imposed.

Raster Base Regular grid with identical, square or rectangular cells.

Rectilinear Raster Regular grid with quasi-rectangular cells whose size can vary

across the grid.

D8 raster Raster As for raster, but with diagonal connections between nodes.

D8 rectilinear Rectilinear As for rectilinear, but with diagonal connections between nodes.

Voronoi–Delaunay Base Irregular grid with polygonal cells and triangular patches. Each

node has n ≥ 3 links.

Radial Voronoi–Delaunay Irregular grid where nodes form concentric, evenly spaced rings

around a central node.

Hex Voronoi–Delaunay Regular grid with identical, regular hexagonal cells and equilat-

eral triangle patches. Each core node has exactly six links.

Cell

Node (core) FaceActive Link

Inactive LinkNode (open boundary)

Node (closed boundary)

Figure 5. Interplay of node and link boundary conditions on a

Landlab example grid. Because nodes rather than corners define

the outer margin of the grid structure, the perimeter nodes lack

cells, and the perimeter links lack faces (see main text). These

aberrant nodes and links are automatically set as boundary ele-

ments. Landlab defaults to setting the condition of any such node to

FIXED_VALUE_BOUNDARY and any such link to INACTIVE.

but also to the ordering of elements around other elements

(such as links around a node), and to the ordering of grid

edges where needed (i.e. the standard order is right, top, left,

bottom edges). Simple ordering examples are illustrated in

Fig. 4.

We extend this same rotational convention to define the di-

rectionality of all linear elements (such as links and, where

necessary, faces), when such directionality is required. The

positive direction is associated with the top-right (first) quad-

rant; in other words, the positive direction is the one that

points more right than down or more up than left. This is

shown in more detail in Fig. 4b. This kind of directionality is

important for example in the definition of fluxes along links

into and out of nodes. In the case of link directions, Landlab

provides masking arrays that can describe the local orienta-

tion of each link with respect to another feature; for instance,

link_dirs_at_node describes whether a link points into

(+1) or out of (−1) any given node. The use and utility of

such data structures is illustrated in Sect. 5.

3.1.3 Mappings and grid characteristics

Landlab uses a standardized grammar to describe the meth-

ods and Python properties in the grid classes that provide in-

formation about the mapping of grid elements onto other el-

ements, and to obtain information about the grid (e.g. areas,

lengths, gradients). The intention of this standardization is to

not only make it easier for users to quickly find the method

they require but also provide information on the computa-

tional efficiency of the operation. Some of this information

is summarized in Table 3.

Grid characteristics

Landlab grids provide Python properties to describe

the geometric characteristics of the elements them-

selves, for instance position and dimension. These prop-

erties are denoted by the preposition “of”, as in, for

example, width_of_face, length_of_link, and

Earth Surf. Dynam., 5, 21–46, 2017 www.earth-surf-dynam.net/5/21/2017/

D. E. J. Hobley et al.: Creative computing with Landlab 29

Table 3. Standard grid method and property naming conventions, listed in approximate order of operation speed.

Name contains Refers to Operation speed

at Connectivity of grid elements Lookup

of Property of grid or grid element Lookup (may require allocation on 1st use)

has, is, are Logical test on grid property Memory allocation

get, create Memory allocation of grid property Memory allocation

set Update boundary conditions Calculation; internal consistency checks

map Map several pieces of data from several elements Several calculations & memory allocations

onto a single element to which they all connect

calc Perform a calculation using data defined on Several calculations & memory allocations

grid elements

area_of_cell. Use of the word of tells the user that an

array of floats (or, more rarely, integers) denoting a grid

characteristic is the expected return. (See for example use

of angle_of_link in Fig. 4b.) Of is also used to access

many counted characteristics of the grid as a whole, such

as number_of_nodes. All these properties return pre-

allocated arrays or single values already stored in memory,

and can be expected to be fast.

Grid element mappings

The grid also provides numerous Python properties that

describe the connectivity and associations of elements with

one another. These are denoted by the preposition at. Ex-

amples include face_at_link, link_at_face,

links_at_node, patches_at_node, and

node_at_cell. Use of at tells the user that an array

of element IDs is the expected return (see Fig. 4 for exam-

ples of usage). The Landlab boundary condition interface

also uses at; for instance, status_at_node returns

an array containing the boundary condition status (as an

integer code) of the grid nodes. All these properties return

pre-allocated arrays, and can be expected to be fast.

“has”, “is”, and “are” methods

Use of has, is, or are in a method name indicates that the

method in question applies a logical test to grid properties.

These are not simple lookups, as in the case of at and of prop-

erties, but can still be expected to be fairly fast. The returned

object will either be a Boolean or an array of Booleans.

Examples include is_boundary, are_all_core, and

has_field.

“get” and “create” methods

Landlab’s design philosophy seeks a balance between speed

of access of information about the grid, and memory usage.

To this end, only the most commonly used arrays of grid

characteristics accessed by at and of properties are created

at grid instantiation. In other cases, these arrays are allocated

in memory at the first time of usage in code, then referenced

from that point on at subsequent calls of the property. Meth-

ods in the grid that begin with get or create are called by

these properties the first time they themselves are used, and

construct the necessary arrays in memory. These methods

are typically intended for call only by a well-defined sub-

set of other methods internal to grid, and not directly by the

user; i.e. in programmer’s parlance they are “private”. We

use the standard Python practice of beginning such methods

with a leading underscore in the name, which tells the vari-

ous Python user interfaces not to report them in standard lists

of grid methods.

Computational methods

Landlab provides a large number of grid methods to allow

easy completion of common and frequently repeated analy-

ses of the values on the grid. These are denoted by names that

begin with calc, to denote methods that calculate a new value

from provided data, or map, which apply some standard rule

to map multiple values for connected elements to a single

value on the shared element to which they connect. For in-

stance, calc methods might allow calculation of gradients at

links from data defined at nodes (calc_grad_at_link),

or flux balances at a node from fluxes defined at incom-

ing and outgoing links (calc_flux_div_at_node).

Map methods might return means of values at links

around nodes (map_mean_of_links_to_node),

or minima of node values attached to each link

(map_min_of_link_nodes_to_link), or

the maximum slope of links leaving each node

(map_downwind_node_link_max_to_node).

More complex mapping schemes are also available, to

allow for instance the mapping of data from topographically

upwind or downwind elements only (for example, map_

value_ at_ upwind_ node_ link_ max_ to_

node). All these methods require active calculation and

memory allocation of new values.

www.earth-surf-dynam.net/5/21/2017/ Earth Surf. Dynam., 5, 21–46, 2017

30 D. E. J. Hobley et al.: Creative computing with Landlab

Boundary condition control

Grid methods that allow user control of boundary conditions

use the word “set”. Boundary condition handling is described

further in Sect. 3.1.4, below.

General rules

Words are separated by single underscores. Nouns are typ-

ically singular, both describing the element and its char-

acteristic, e.g. area_of_cell, not areas_of_cells.

The exceptions are cases in which more than one thing is

associated with each element, such as links_at_node,

faces_at_cell. Any grid property can be expected to be

a fast lookup operation if called repeatedly; methods may re-

quire additional memory allocation.

3.1.4 Grid boundary condition handling

Also provided are methods to facilitate boundary condition

handling (Fig. 5). Nodes can have one of four boundary

condition types: fixed value (Dirichlet), fixed gradient (Neu-

mann), looped, or closed. A node that is not defined as a

boundary is known as a core node. The boundary condi-

tions defined on the nodes determine whether each connect-

ing link is active (allows flux along it), fixed (allows flux,

but flux value is fixed) or inactive (flux is forbidden), as

shown in Table 4a. Each of these boundary conditions is

associated with an integer value, which can be seen in the

boundary condition arrays grid.status_at_node and

grid.status_at_link (Table 4b).

We should emphasize that this framework is provided for

user’s convenience; it can be easily ignored if a user wishes

to implement a different scheme for boundary condition han-

dling. Further, the appropriate boundary conditions depend

on the physical scenario that the user is modelling.

The edges of a Landlab grid are always defined by bound-

ary nodes. Because perimeter nodes lack cells (Sect. 3.1.1),

this means not every boundary node necessarily has a cell,

and may also not have the standard number of links, patches,

etc. (Table 1b). Conversely, any core node can always be ex-

pected to have a cell and a standard connectivity as described

in that table. Likewise, inactive links at the grid perime-

ter lack faces, but each active link always intersects, and is

uniquely associated with, a single face (Fig. 5). Thus, cells

share the boundary conditions of nodes (core vs. boundary)

and faces share the boundary conditions of links (active vs.

inactive). Note also that nodes that are in the interior of a

grid (i.e. not perimeter nodes) can also be assigned as bound-

ary nodes, and that whether or not this occurs depends on

the shape of the area that the user is modelling. For exam-

ple, a user may wish use a grid that represents a drainage

basin, with the basin’s interior consisting of core nodes, a

single node representing the outlet (flagged as a fixed-value

or fixed-gradient boundary), and the remainder of the nodes

flagged as closed boundaries.

Table 4. (a) Link boundary condition status as dictated by node

boundary condition status. (b) Integer values associated with each

boundary condition status.

(a) Nodes at link ends Link status Carries flux?

Core – core Active Yes

Core – fixed value Active Yes

Core – fixed gradient Fixed Yes

Core – looped Active Yes

Core – closed Inactive No

Boundary – boundary Inactive No

(b) Element type Status Integer value

Node Core 0

Node Fixed value 1

Node Fixed gradient 2

Node Looped 3

Node Closed 4

Link Active 0

Link Fixed 2

Link Inactive 4

The grid itself is responsible for keeping track of and

ensuring internal consistency between boundary condition

properties. The standard numpy setters and getters are over-

ridden for the boundary condition data structures to ensure

this internal consistency without the user’s involvement. For

example, if a user changes a node’s status from core to fixed-

value boundary, the gridding engine will automatically up-

date the status of the relevant links.

3.2 Spatially distributed data and data fields

A key element of any model of surface processes is a de-

scription of how the state variables and surface character-

istics vary across the domain. Such data can include both

scalar measurements at a point or over an area (such as to-

pographic elevation, water depth, sediment cover fraction,

vegetation type) and directional vector data, for instance, de-

scribing fluxes across the surface or gradients in scalar val-

ues. Landlab uses data constructs called data fields within the

grid to store and handle this information.

A prominent advantage of the field system is that data

may be associated with any of the grid elements: node, cell,

link, face, patch, or corner. Data fields are one-dimensional

numpy arrays whose length matches the number of elements

in question. By indexing these arrays with the IDs of ele-

ment subsets, the values at specific locations and on each

element type can be recovered. This scheme readily allows

the storage of both scalar and vector data by exploiting the

geometric relationships between the node–link–patch (and

cell–face–corner, if desired) groupings, as in a traditional

staggered-grid scheme (Harlow and Welch, 1965; Slinger-

land et al., 1994). Scalar data can be stored at nodes. Because

Earth Surf. Dynam., 5, 21–46, 2017 www.earth-surf-dynam.net/5/21/2017/

D. E. J. Hobley et al.: Creative computing with Landlab 31

links describe the connectivity between nodes, vector infor-

mation describing fluxes or gradients between nodes is read-

ily stored on links; the link’s orientation provides an implied

unit vector, while the associated value represents the vector’s

magnitude. There are also a number of use cases in which

values can usefully be stored on patches, for instance, in rep-

resenting resolved means of vector values at the bounding

links. This data structure also lends itself to the implementa-

tion of some cellular automata. For instance, pairwise transi-

tion automata (Narteau et al., 2001, 2009) represent the states

of cells on a grid as paired “doublets”, with rules prescribed

to govern the rates of transition between each doublet type.

These are readily implemented in Landlab by mapping the

pair states onto the links of a Landlab grid, and representing

the corresponding automaton cell states at grid nodes (Tucker

et al., 2016).

In terms of implementation in the code, Landlab fields are

represented as a dictionary of Python dictionaries within the

grid object. The keys to the first dictionary are strings of the

names of the grid elements (viz., “node”, “link”, “patch”,

“cell”, “face”, “corner”); the keys to the dictionaries that

these return are Landlab field names. Users are free to cre-

ate field names as they wish. However, Landlab maintains a

standard format and name list which is widely used by the

Landlab component library (Table S1 in the Supplement),

and users are strongly encouraged to adopt this scheme to

enhance standardization and interoperability throughout the

software. Our standard naming scheme echoes that of the

community standards adopted by the Community Surface

Dynamics Modeling System (CSDMS). Our rationale fol-

lows theirs, aiming to remove ambiguity in the identifica-

tion of different types of numerical information (Peckham,

2014; Peckham et al., 2013). However, given the potential

for high frequency of name usage in Landlab code, and our

ability to easily assess potential ambiguities between differ-

ent components, we place more value on name brevity at

the expense of total unambiguity as compared with the for-

mal CSDMS Standard Names (https://csdms.colorado.edu/

wiki/CSN_Searchable_List). Nonetheless, we maintain one-

to-one mappings with the CSDMS Standard Names to en-

able automated implementation of the CSDMS Basic Model

Interface (BMI; see Sect. 3.4.1).

The general format for Landlab names is

“thing_described__quantity_described”. This approach

is more generally known as the object–attribute–value

paradigm: the first word or phrase describes the object,

the second word or phrase describes the attribute, and

the variable’s content is its value. A double underscore

separates the object from the attribute. An example might

be “surface_water__discharge”. A full list of names used in

Landlab components as of version 1.0 can be found in the

Supplement as Table S1. A version of this list up to date

with the current release version can be found on the Landlab

website.

Units can be attached to grid fields. They are recorded in

a further dictionary-like structure, which is a property of the

element container. This means they can be accessed with syn-

tax like grid['node'].units['field__name'].

Landlab offers some degree of “syntactic sugar” for its

field name interface – i.e. the field interface is made more

user-friendly by the addition of more readable grid prop-

erties to query the fields at each element type, rather than

requiring the user to access the both dictionaries directly.

For instance, grid.at_node['my_field_name']is

equivalent to grid['node']['my_field_name'].

In addition, Landlab also provides convenient short-

cuts to create new fields of ones (grid.add_ones),

zeros (grid.add_zeros), and from existing data

(grid.add_field).

3.3 Components

Components are Python objects that simulate processes

within Landlab. A typical Landlab component provides a nu-

merical representation of a single process. For instance, a

component might compute the flow of water across a terrain

surface using a particular flow law and numerical solution

method. Components also exist in Landlab that produce only

spatially invariant time series, or that produce time-invariant

steady-state solutions across a surface. A prominent example

would be the FlowRouter component, which calculates the

steady-state accumulation of water discharge and upstream

total drainage area through a drainage basin. The latter cate-

gory also includes a number of analytical tools that produce

spatial statistics for a surface; for example, components to

calculate the steepness (Wobus et al., 2006) or chi index (Per-

ron and Royden, 2012) for a channel network.

Multiple components can be used together, allowing the

simulation of multiple processes acting on a single grid. For

example, components simulating hillslope processes and flu-

vial geomorphic processes can be easily implemented to-

gether to create a “custom” landscape evolution model. In

some cases, the output from one component may form the

input to another, as for example when combining flow rout-

ing and sediment transport components, or soil moisture and

vegetation growth components. The design of each compo-

nent is intended to work in a “plug-and-play” fashion, where

each component couples simply and quickly to others. This

is permitted by a standardized interface for each component,

as described in Sect. 3.3.1. Examples of coupled component

systems can be seen in Sect. 5.

Landlab provides a suite of existing components that can

be deployed by users. Future versions of Landlab will add

further components designed by the core development team.

However, we anticipate that users of Landlab will also de-

vise new components of their own, allowing the exploration

of new processes within Landlab. In keeping with the open-

source ethos of the project, we would encourage such users

to in turn commit their work back to the master fork of Land-

www.earth-surf-dynam.net/5/21/2017/ Earth Surf. Dynam., 5, 21–46, 2017

https://csdms.colorado.edu/wiki/CSN_Searchable_List
https://csdms.colorado.edu/wiki/CSN_Searchable_List

32 D. E. J. Hobley et al.: Creative computing with Landlab

lab, for the use of others. Documentation and advice for this

process can be found on the Landlab website.

3.3.1 Component standard interface

Landlab components have standardized interfaces, which are

designed to enhance interoperability both internally to Land-

lab (between components, or between components and Land-

lab utilities) and between Landlab and external interfaces like

the CSDMS Basic Model Interface (Peckham et al., 2013)

(see also Sect. 3.4.1). The Landlab standardized component

interface consists of the following:

– An initialization method, with the standard argument

signature __init__(self, grid, x=a, y=b,

z=c, ..., ∗∗kwds), where grid is a Landlab grid

object; x, y, and z are component-specific keyword ar-

guments with default values a, b, and c; and ∗∗kwds

is an optional keyword argument dictionary. The grid

object passed during instantiation is accessed during

the running of the component, and its data fields are

updated automatically. A component may have any

number of component-specific keyword arguments. The

variable names of these arguments are not standard-

ized but rather generally unique to each component. The

component-specific arguments are, however, required to

have default values. The names of the keyword argu-

ments make explicit the data requirements of the com-

ponent in order to run. However, the ∗∗kwds argument

alternatively allows these parameters to be set from a

dictionary of model parameters. In other words, this

component could be initialized in two equivalent ways:

>>> ld = LinearDiffuser(grid,

linear_diffusivity=1.0,

method='simple')

or

>>> paramdict = {

'linear_diffusivity': 1.0, 'method':

'simple'}

>>> ld = LinearDiffusivity(grid,

**paramdict)

– A run method, with the standard argument signature

run_one_step(dt, ∗args, ∗∗kwds), where dt

is an interval of time over which to execute the compo-

nent before returning a result, and ∗args and ∗∗kwds are

an argument list and dictionary respectively, specific to

each component. These latter items allow any additional

arguments necessary for the model to run to be passed

in. If dt is not required for a component to run, it may

be omitted.

– A standard set of properties for the component:

name, input_var_names, output_var_names, var_units,

var_mapping, and var_definition. These properties de-

scribe the fields that the component interacts with, the

units of each, which element each field is defined on,

and a brief summary of what each field represents.

All components inherit from the base class Component.

This base class enables and regulates the standardized prop-

erties and interface that are available for every Landlab com-

ponent. It also provides methods designed to streamline the

creation of the output data fields when a component is instan-

tiated.

Landlab version 1.0 provides a standard component library

as part of its installation. A full list of components available

in version 1.0 can be found in Table 5. Although these ex-

isting components are largely Earth-surface focused, we em-

phasize that Landlab permits modelling of the evolution of

almost any two-dimensional system that lends itself to de-

scription by discretized systems of differential equations or

cellular automaton rules.

3.3.2 Timestepping and interaction of components

For most existing Landlab components, the component is re-

sponsible for controlling its own internal numerical stabil-

ity. A timestep parameter dt is passed to each component

that operates in a time-dependent fashion; this timestep can

be thought of as the “coupling timescale”, and it represents

the frequency of interaction between components if more

than one is coupled (Fig. 6). However, it is not necessarily

the stable timescale, which will vary between components.

Each component is responsible for calculating its own stable

timestep under the model run conditions, and internally sub-

dividing the imposed dt in order to ensure the model run does

not become unstable. The user is responsible for selecting an

appropriate coupling timescale – too short, and a model run

will take more steps than necessary for each component to be

stable; too large, and information transfer between the com-

ponents will be limited, possibly introducing an additional

source of numerical error.

Note also that where components employ implicit solu-

tions, there may be no internal limit to the timestep at all

(e.g. the Fastscape algorithms of Braun and Willett, 2013, for

stream power). In such cases, Landlab will make no check on

the imposed timestep, and the user must ensure that the im-

posed dt is appropriate under the boundary and initial condi-

tions that they are running. For instance, the Braun–Willett

algorithm ceases to behave in a truly timestep-independent

fashion under transient conditions, but in a way that still

permits timesteps larger than would be imposed under an

explicit Courant condition (for more details see their Ap-

pendix B). However, those authors did not propose an alter-

native scheme to limit the timestep in such cases, and con-

sequently Landlab also does not. A user of this component

Earth Surf. Dynam., 5, 21–46, 2017 www.earth-surf-dynam.net/5/21/2017/

D. E. J. Hobley et al.: Creative computing with Landlab 33

Table 5. Components available in Landlab v.1.0.

Component name Process simulated/analysis performed Key reference

LinearDiffuser Linear diffusion of topography Culling (1963)

PerronNLDiffuse Nonlinear hillslope diffusion Perron (2011)

Flexure Simple lithospheric flexure under loading Lambeck (1988), Hutton and

Syvitski (2008)

gFlex A more complex flexure model, utilizing gFlex Wickert (2016)

FlowRouter A convergent flow router, following the Fastscape

algorithms

Braun and Willett (2013)

DepressionFinderAndRouter A lake filler that can route flow across depressions Tucker et al. (2001a)

SinkFiller An algorithm to fill depressions in a surface Tucker et al. (2001b)

OverlandFlow A shallow overland flow approximation de Almeida et al. (2012),

Adams et al. (2016)

KinematicWaveRengers A solution to the depth varying Manning equation for

surface flow

Julien et al. (1995), Rengers et

al. (2016)

SoilInfiltrationGreenAmpt Infiltrate surface water into a soil following the Green–

Ampt method

Julien et al. (1995), Rengers et

al. (2016)

SoilMoisture Compute local inter-storm water balance and root-zone soil

moisture saturation fraction

Laio et al. (2001)

PotentialEvapotranspiration Calculate potential evapotranspiration across a surface ASCE-EWRI (2005), Zhou et

al. (2013)

Radiation Calculate total incident shortwave solar radiation Bras (1990)

Vegetation Calculate above-ground live and dead biomass, and leaf

area index

Istanbulluoglu et al. (2012),

Zhou et al. (2013)

VegCA Cellular automata algorithm to simulate spatial

organization of PFTs

Zhou et al. (2013)

PrecipitationDistribution Generate a storm sequence of intervals and intensities Eagleson (1978)

FireGenerator Produces intervals between fire events, following a Weibull

distribution

Polakow and Dunne (1999)

StreamPowerEroder Implements fluvial erosion according to stream power,

using the Fastscape algorithms

Braun and Willett (2013)

FastscapeEroder An alternative implementation of the Fastscape stream

power algorithms

Braun and Willett (2013)

DetachmentLtdErosion An implementation of stream power erosion not based on

Fastscape

Howard (1994)

SedDepEroder Sediment-flux-dependent shear stress based fluvial incision Hobley et al. (2011)

SteepnessFinder Calculates steepness indices for a channel network Wobus et al. (2006)

ChiFinder Calculates the chi index along a channel network Perron and Royden (2012)

is assumed to have read the component documentation and

taken on board that this is potentially an issue, as well as

taken steps to check that their output is behaving sensibly and

is not highly sensitive to changes in the supplied timestep.

We reiterate that it is ultimately the user’s responsibility to

check that the provided dt is appropriate to the modelling

scenario at hand.

3.3.3 Parallelization

Together, the componentized nature of Landlab and the level

of flexibility afforded to the user conspire to rule out the idea

of Landlab as a whole being highly optimized through paral-

lelization. However, there is great potential for parallelization

of Landlab at the component level, since the run methods of

each component are entirely self-contained. As proof of con-

cept, the Flexure component has already been parallelized

(see online code and documentation). Although in Landlab

version 1.0 we have not had a compelling enough use case to

invest significant time in such work, many of the components

already in the library would be amenable to parallelization in

this style, and this could be done in future releases.

3.4 Utilities and interfaces

In addition to the grid, which governs the topology and con-

nectivity of spatial data, and the components, which describe

how spatial data change with time, Landlab also offers tools

that control input and output, including data input and ex-

port, translation between widely used data formats, plotting,

and the BMI external model interface. Landlab can read and

write data files in NetCDF4, VTK, and ESRI ASCII data for-

www.earth-surf-dynam.net/5/21/2017/ Earth Surf. Dynam., 5, 21–46, 2017

34 D. E. J. Hobley et al.: Creative computing with Landlab

Driver imposed

timestep, dt

Component 1,

stable timestep dt1

Component 2,

stable timestep dt2 = dt1

Component 3,

stable timestep dt3 > dt

Component 4,

 unconditionally stable

dt

dt1

dt2

dt3

In
fo

rm
at

io
n

ex
ch

an
ge

In
fo

rm
at

io
n

ex
ch

an
ge

In
fo

rm
at

io
n

ex
ch

an
ge

Time passing

Figure 6. Interaction of timescales between a Landlab driver and a

set of components. In this example, a driver that implements com-

ponents 1–4 has a time loop of length dt, and dt is the timescale that

is passed to the components. Components 1 and 2 implement nu-

merical schemes that have maximum stable timesteps shorter than

dt. In these cases, the imposed dt interval is internally subdivided to

ensure the model remains stable. Here, we see two possible ways a

component might do this, either always taking the largest timestep

possible then a short timestep to finish (component 1) or by divid-

ing the imposed timestep into the minimum number of equal length

internal steps, dtint, where dtint < dtstable (component 2). Even if a

component could run for a timestep longer than dt (e.g. compo-

nents 3 and 4), under an explicit-time Landlab driver script like this,

its steps will be truncated at dt. Once all the components have run

for dt, they sequentially update their output fields in the grid with

their changes. This is the only time that information can be passed

actively between each component (and the driving script, if it also

makes changes to the grid fields within the loop); each component

cannot “feel” changes being made by any other until dt has elapsed.

Hence dt is best thought of as the “coupling timescale”.

mats. These options are intended to allow interoperability

with third-party software, especially geographical informa-

tion systems, and also to allow Landlab data to be manipu-

lated in and displayed with specialized visualization software

(such as ParaView).

Landlab’s standard interfaces also allow it to interact more

easily with software frameworks developed by the geo-

science and hydroscience communities. For instance, Land-

lab is already embedded within the Hydroshare collabo-

ration environment, http://www.hydroshare.org. This means

that Landlab models can be created and run within the Hy-

droshare data and modelling environment and can take ad-

vantage of that environment’s shared data platform and meta-

data systems.

3.4.1 Dynamic model interaction and the Basic Model

Interface

As noted in previous sections, Landlab has been designed

from conception to be fully compliant with the Community

Surface Dynamics Modelling System’s Basic Model Inter-

face (BMI) (Peckham et al., 2013). The BMI concept al-

lows any two models describing the changes caused by sur-

face processes to be coupled together, regardless of the va-

garies of model gridding schemes, programming languages,

or other low-level design choices. It does this by means

of a standard interface (the Basic Model Interface, sensu

stricto), which is callable for any BMI compliant model

or component and includes generically applicable functions

such as initialize, update (i.e. run one timestep),

and get_current_time. The interface allows informa-

tion about the current state of a simulation to be passed back

and forth between running models in a manner that is agnos-

tic in terms of implementation details.

The Landlab framework is designed such that the Land-

lab standard component interface can also expose a full BMI

interface; in other words, all Landlab components are also

BMI-compliant components. This means that by choosing

Landlab as their model development environment, users also

gain the ability to couple their models immediately with any

other model in the CSDMS repository of BMI-compliant

codes. This choice will also enhance the utility of Landlab to

users who wish to implement component functionality along-

side some other model using the CSDMS BMI or Web Mod-

eling Tool (WMT) (Piper et al., 2015).

4 Validation, testing, and documentation

Landlab makes extensive use of Python’s native documenta-

tion and code testing systems in order to test and validate

the code base and to keep our documentation up to date.

The development team exploits a combination of this Python

“doctesting” and unit testing techniques to simultaneously

test and document the code base. Doctests are code exam-

ples that can be included in the docstring that describes each

Python method, and they list the expected output from each

line of code as part of the documentation. Crucially, this code

is then actually run whenever testing of the code base is trig-

gered (for instance, by calling landlab.test()), and any

doctests for which the output does not match the expected

solution are recorded as either an error (tested function does

not run cleanly) or a fail (output does not match). Because

doctests are part of each function’s docstring, they are also

then automatically scraped from the code and included in the

online documentation as examples for the user. In this way

doctests allow us to help ensure Landlab functionality does

not break as the code base evolves, while at the same time

documenting for the user the way in which a given method,

function, property, or component can be used.

Earth Surf. Dynam., 5, 21–46, 2017 www.earth-surf-dynam.net/5/21/2017/

http://www.hydroshare.org

D. E. J. Hobley et al.: Creative computing with Landlab 35

Landlab also includes suites of unit tests. These are test

scripts written specifically to exercise particular aspects of

the code, and to check the output of that test against known

correct solutions. Examples of when this is useful can occur

in longer or more involved code, especially in components,

where various different configurations of grid types and ini-

tial and boundary conditions need to be tested to ensure the

component is robust under various different conditions. Unit

tests differ from doctests in that they are not intended to be

user-facing, although they are run alongside them when test-

ing of the code base is triggered.

Almost all core Landlab functionality of both grid meth-

ods and components is now tested in this way. As of this

version, around 1400 separate tests are run on the code each

time testing is triggered, and the tests cover 80 % of the code

base. Most of the remaining uncovered code is either chal-

lenging to adequately test (for example, plotting functions),

not part of the core Landlab functionality (such as helper

scripts involved in building releases), or deprecated. Tests

are triggered automatically and remotely through the web-

based applications Travis (Mac/Linux) and Appveyor (PC)

whenever a new commit is made to either a branch or the

master version of the code repository on GitHub, or when a

new release of the code is built. These tests are performed

on a range of supported Python versions, including both ver-

sions 2 and 3. Tests can also be triggered manually on a local

machine by running a testing script included with Landlab, or

by calling landlab.test() from an interactive Python

environment.

5 Creating models with Landlab

We here illustrate some of the key functionality of Landlab

by example, demonstrating its applicability across a variety

of types of problem. We hope to emphasize here that Land-

lab is not a landscape evolution model (although it can be

used to create them) – rather, it presents a framework under

which a wide variety of different models can be implemented

using its tools, including hydrologic, ecologic, and sedimen-

tological models, as well as landscape evolution models. This

section illustrates four possible contrasting model designs

that can be implemented within the Landlab framework: a

very simple “toy” geomorphic diffusion code that demon-

strates the core functionality of the grid; a coupled stream

power–hillslope diffusion model driven with a stochastic se-

quence of storms, illustrating some of Landlab’s compo-

nents; a cellular automaton, demonstrating a fundamentally

different style of model implementation that is also enabled

by Landlab’s design; and a flood wave routing model, run

on real topographic data ingested by Landlab. We hope that

these examples will also serve as an illustration of the po-

tential power of the Landlab framework to enable novel or

under-explored process interaction studies (e.g. of vegetation

on landscape evolution; of surface hydrology on stochastic

surface processes).

5.1 A simple diffusion model

Although Landlab provides “off the shelf” process simula-

tion code in the form of the components, Landlab also facil-

itates the design of models without using the components.

The Landlab grids provide mapping, gradient, and diver-

gence functions to make implementation of, for instance,

finite-difference or finite-volume methods both concise and

straightforward.

Here we illustrate this functionality using a simple finite-

volume diffusion scheme, which here is representing the

downslope flow of soil on hillslopes (Culling, 1963). We

wish to represent the evolving form of a diffusional hillslope

that is undergoing a constant uplift (1 mm yr−1) with refer-

ence to a relative base level. In this case, the grid is radial

and so roughly circular in plan view. Use of this particular

configuration is intended in part to demonstrate the flexibil-

ity of Landlab’s design, although this radial grid arrangement

could perhaps be thought of in terms of response to a rising

volcanic mound or salt diapir or another similar scenario with

a radially symmetric uplift field.

The governing equations for this example are

∂η

∂t
= U − ∇qs, (1)

qs = −D∇η, (2)

where η is land-surface elevation, t is time, U is the rate of

vertical motion (“uplift”) of rock relative to base level, qs is

volumetric sediment flux per unit slope width, and D is a

transport coefficient with dimensions of length squared per

time.

For our example model, Eq. (2) will be discretized and

solved using a finite-volume solution scheme. Consider a cell

of surface area a that is surrounded by N neighbouring cells

(Fig. 7). We can integrate Eq. (1) over the surface area of the

cell:

∫

a

∂η

∂t
da =

∫

a

Uda −

∫

a

∇qsda. (3)

Applying the divergence theorem to the last term on the right,

and evaluating the other two integrals,

a
∂η

∂t
= Ua −

∮

p

qs(p)ndp, (4)

where η is the average elevation within the cell, p represents

position along the perimeter of the cell, and n is a unit vector

normal to the perimeter and pointing outward. The last term

is a line integral that represents adding up all the inflows and

outflows of mass along the cell’s perimeter. If the cell is a

www.earth-surf-dynam.net/5/21/2017/ Earth Surf. Dynam., 5, 21–46, 2017

36 D. E. J. Hobley et al.: Creative computing with Landlab

1211

17

 7

1319

15

20

24

52

50 4851

47

SOIL

SOIL SOIL

SOIL

SO
IL

SO
IL

SO
IL

SO
IL

Calculating gradients at links:
>>> grad = grid.calc_grad_at_link(elev)

>>> grid.links_at_node[12]

array([20, 24, 19, 15])

>>> grad[grid.links_at_node[12]]

array([-0.2, 0.2, -0.1, 0.3])

Calculating fluxes from gradients:
>>> q = -0.01 * grad

>>> q[20]

0.002

>>> q[15]

-0.003

Calculating flux divergence:
>>> divq = grid.calc_flux_div_at_node(q)

>>> divq[12]

0.0002

Node spacing = 10 m

Figure 7. Schematic illustration showing how Landlab’s grid ge-

ometry may be used to construct a finite-volume numerical scheme.

White squares represent nodes, with example node IDs given for

a 5 × 5 raster grid. Grey ovals show the centre points of the links,

with the link IDs given. In this example, we assume that we have a

node field called “elev” whose values represent the altitude of the

land surface at various node locations (example values shown in

italics next to each node). Black arrows indicate direction of soil

flow (in the downhill direction). A finite-volume solution for a dif-

fusion model can be implemented by (1) calculating the gradient

at each pair of adjacent nodes and assigning it to the correspond-

ing link (lines 1–3 in the code snippet below); (2) multiplying by

a transport-rate coefficient (and −1) to obtain unit flux (lines 4–6);

and (3) multiplying the unit flux at each cell face by the width of

that face, adding up the inflows and outflows, and dividing by cell

area to obtain flux divergence (lines 7 and 8).

polygon with N faces, this last term can be replaced by a

summation:

∂η

∂t
= U −

1

a

N
∑

k=1

qskwk (5)

where qsk is the unit flux at face k, positive outward, and wk

is the width of face k.

We will implement this solution in Landlab by assigning

to each node i the value of the average elevation within its

cell, ηi (for notational convenience, we will drop the use of

the overbar below). To calculate the flux at each face, we first

need to calculate the topographic gradient at each face. We

will do this by taking the elevation difference between each

neighbouring pair of nodes, dividing by the length of the link

that connects them, and then assigning the resulting gradient

value to the relevant link. The gradient at link j is therefore

calculated as

Gj =
ηHj

− ηTj

Lj

, (6)

where ηHj
and ηTj

are the elevation values at link j ’s head

and tail nodes, respectively, and Lj is the length of link j .

In Landlab’s gridding engine, the calculation of link-based

gradients in a node-based scalar quantity like η is handled

by the grid method calc_grad_at_link, which takes a

node array or field name as an argument and returns a link ar-

ray. Figure 7 illustrates how values of η defined at nodes can

be used to calculate gradients at links, and then the gradients

can be used to calculate the net flux into and out of a cell.

In our diffusion example, the summation of fluxes along

the cell faces is calculated as follows:

N
∑

k=1

qskwk =
D

ai

N
∑

k=1

δikGkwk, (7)

where δik indicates the direction of link k relative to the cell

i: if δik = −1, the link points outward from the cell; if δik =

+1, the link points inward.

To calculate flux divergence using this finite-volume

approach, Landlab provides the general grid method

calc_flux_div_at_node, which takes a link-based ar-

ray of unit fluxes as an input and returns a node array that

contains the sum of in/out fluxes (divided by cell area) at

each node (Fig. 7). Values at perimeter nodes, which lack

cells, are ignored. In keeping with the standard definition of

the divergence operation, the function returns positive values

where the net flux is outward and negative values where it is

inward.

In the diffusion example shown in Fig. 8, the time deriva-

tive is discretized using a simple forward-Euler explicit

method, such that the values of elevation at the new timestep

t + 1 are calculated from values at the old timestep:

ηt+1
i = ηt

i + 1t

[

U +
D

ai

N
∑

k=1

δikGkwk

]

, (8)

where the superscript indicates timestep, and the

quantity in brackets is evaluated at timestep t . The

code to implement the model is shown in Fig. 8.

Note the use of the calc_grad_at_link and

calc_flux_div_at_node methods (and note also

that U = 0 in this example).

Earth Surf. Dynam., 5, 21–46, 2017 www.earth-surf-dynam.net/5/21/2017/

D. E. J. Hobley et al.: Creative computing with Landlab 37

1. >>> from landlab import RadialModelGrid, imshow_grid

2. >>> from matplotlib.pyplot import show

3. >>> mg = RadialModelGrid(num_shells=10, dr=10.)

4. >>> z = mg.zeros('node')

5. >>> qs = mg.zeros('link')

6. >>> diffusivity = 1.e-2

7. >>> dt = 0.2 * mg.length_of_link.min() ** 2. / diffusivity

8. >>> for i in range(500):

9. ... z[mg.core_nodes] += 0.001*dt

10. ... g = mg.calc_grad_at_link(z)

11. ... qs[mg.active_links] = -diffusivity * g[mg.active_links]

12. ... dqsdx = mg.calc_flux_div_at_node(qs)

13. ... dzdt = -dqsdx

14. ... z[mg.core_nodes] += dzdt[mg.core_nodes] * dt

15. >>> imshow_grid(mg, z, grid_units=('m', 'm'), var_name='Elevation (m)')

16. >>> show()

100 50 0 50 100
X (m)

100

50

0

50

100

Y
(m

)

0

25

50

75

100

125

150

175

200

225

El
ev

at
io

n
(m

)

Code to implement a simple diffusion model on a radial Landlab grid:

Figure 8. A simple finite-volume hillslope diffusion model imple-

mented in Landlab. Values adopted here are within typical terres-

trial ranges for hillslope length (∼ 100 m, controlled from line 3),

hillslope diffusivity (0.01 m2 yr−1, line 6) (Fernandes and Diet-

rich, 1997), total time of run (around a million years, since dt

is ∼ 1833 years, lines 7–8), and uplift rate relative to base level

(0.001 m yr−1, line 9).

An advantage of the finite-volume approach is that it can

be applied to cells of any shape. For instance, it can be used

with hexagonal cells, or with Voronoi polygons as in the ex-

ample in Fig. 8.

This model can be implemented in Landlab and plotted

in as few as 16 lines of code (Fig. 8). Here, line 1 imports

the Landlab classes and functions we will use, and line 2

imports the show() function from matplotlib that will let us

display the plot. Line 3 instantiates the Landlab grid object.

This example uses a RadialModelGrid, but the same code

would work with any grid type. Lines 4–6 initialize data for

the model run. z will be the land surface elevation at each

node; qs will be the volumetric sediment flux per unit width

along each link. Note that this implementation is consciously

not using data stored as Landlab fields in order to illustrate

that this is not a requirement; however, it would be trivial

to modify lines 4 and 5 to create the data as fields on the

grid, and the remainder of this script would be unchanged.

Line 7 is the first line that actually begins the calculations

that perform the diffusion. This line calculates a Courant–

Friedrichs–Lewy (CFL) stability condition (Slingerland and

Kump, 2011) for the maximum stable timestep for the finite-

volume scheme we are about to implement.

1. >>> from landlab import RadialModelGrid, imshow_grid

2. >>> from landlab.components import LinearDiffuser

3. >>> from matplotlib.pyplot import show

4. >>> mg = RadialModelGrid(num_shells=10, dr=10.)

5. >>> z = mg.add_zeros('node', 'topographic__elevation')

6. >>> dt = 2000. # no longer the stable timestep

7. >>> ld = LinearDiffuser(mg, linear_diffusivity=1.e-2)

8. >>> for i in range(500):

9. ... z[mg.core_nodes] += 0.001*dt

10. ... ld.run_one_step(dt)

11. >>> imshow_grid(mg, z, grid_units=('m', 'm'), var_name='Elevation (m)')

12. >>> show()

Code to implement a simple diffusion model on a radial Landlab grid, using
Landlab components:

Figure 9. Hillslope diffusion implemented in Landlab using a com-

ponent. Compare to Fig. 8. Note that this version is more concise,

and that timestep stability is now handled internally within the com-

ponent.

Lines 8–14 implement a time loop, within which the dif-

fusion occurs. The core (i.e. interior) nodes of the grid are

uplifted at a rate of 0.001 length units per time unit relative

to base level. Lines 10–14 implement the meat of the differ-

encing scheme, where we use a staggered grid to solve the

discretized diffusion equation (Eq. 8). The depth-integrated

fluxes on the links are calculated as the product of the diffu-

sivity parameter D and the topographic gradient at the links

(lines 10, 11), taking care to calculate the flux only on ac-

tive links. The flux divergence is then calculated at each

node based on the fluxes on the links to which is it adjoined

(line 12). Note that Landlab enables each of these operations

to be performed with a single grid method. The final lines of

the code invoke the standard Landlab plotter, then display the

output. Although we have not specified any particular units

in our calculation, in line 15 we assert that the length unit is

metres and the time unit is years.

Note that this same result could have been achieved even

more concisely using Landlab’s in-built LinearDiffuser com-

ponent. The equivalent code is shown in Fig. 9. Not only

are the implementation details of the scheme now handled

entirely within the component, but so also is internal sub-

division of the provided timestep to meet the necessary sta-

bility conditions for the simulation. Additionally, the eleva-

tion data are now passed into the component as the field

“topographic__elevation” – which is attached to the grid –

rather than as a separate variable (lines 5, 7), as discussed in

Sect. 3.2.

5.2 Coupling diffusion to stream power with a storm

sequence

The next example illustrates a simple model for the evolution

of an eroding and uplifting landscape, explicitly representing

channel incision and hillslope processes. In this model, we

also explicitly represent time variability of water input to the

system (i.e. storms). In technical terms, the example is de-

signed to show in more detail the use and coupling of sev-

eral Landlab components: the FlowRouter, the StreamPow-

erEroder, the DepressionFinderAndRouter, the LinearDif-

www.earth-surf-dynam.net/5/21/2017/ Earth Surf. Dynam., 5, 21–46, 2017

38 D. E. J. Hobley et al.: Creative computing with Landlab

fuser, and the PrecipitationDistribution classes. The aim here

is to demonstrate how Landlab couples components and to

illustrate several different component styles.

Here, channel incision processes are represented by the

stream power law (Howard, 1994; Lague, 2014; Whipple and

Tucker, 1999), which says that incision rate, E, of a stream

is proportional to a product of powers of channel discharge,

Q, and local channel bed slope, S. In this version, we also

include an incision threshold, C, below which incision is for-

bidden:

E = KQmSn − C if C < KQmSn

E = 0 if C ≥ KQmSn.
(9)

In this case m = 0.5, K = 1×10−5 m−0.5 yr−0.5, C = 1×

10−5 m yr−1, which are fairly typical and widely adopted

values for a generic erosional upland landscape (Harel et

al., 2016; Tucker and Whipple, 2002). Here we also adopt

n = 1. This is primarily to maintain dimensionally sensible

units for K while still honouring the widely observed ratio

of m/n ∼ 0.5, interpreted from channel concavities of natu-

ral rivers at apparent topographic steady state. Nonetheless,

we note n > 1 in some global data compilations for stream

power where C = 0, and suggest our incorporation of an ex-

plicit erosion threshold makes our choice of n = 1 reason-

able (Harel et al., 2016). We shall see that this set of values

together produces a plausible total landscape relief of order

1 km for catchments of maximum length ∼ 5 km, which is

within the range expected for real catchments of this scale

in tectonically active regions. Other forms of stream-power-

based incision rules are also possible using this component,

but these are not illustrated here.

The Landlab StreamPowerEroder and FlowRouter compo-

nents deployed here use the “Fastscape” algorithms of Braun

and Willett (2013). This solution scheme is implicit and order

n, and permits arbitrarily long, numerically stable timesteps

to be taken. The Fastscape algorithm requires out-of-order

(i.e. upstream order) iteration through the nodes, but pure

Python code has relatively poor speed performance when ex-

ecuting explicit loops or iterations through arrays. For this

reason, both the stream power and flow routing components

also use compiled Cython (see Sect. 2.2) to accelerate these

speed bottlenecks in the code. (The release version of Land-

lab distributes this code in pre-compiled form to users.) The

run method of the component performs as order n, and as

expected is unaffected by grid type (in this demonstration,

raster vs. hex grids). The initialization of the grid and compo-

nents adds a very small overhead which also increases close

to linearly with grid size (Fig. 10; code in the Supplement as

Script S2). This overhead reflects the calculations necessary

to build the data structures describing the grid’s connectiv-

ity, and is significantly greater for Voronoi grids compared to

rasters, due to the iterative calculations required to assemble

Voronoi grid-connectivity arrays.

The final topographies from the raster and hexagonal im-

plementations of this pure stream power component are

0 5000 10000 15 000 20 000 25000
Number of nodes

0.0

0.5

1.0

1.5

2.0

Ti
m

e
(s

)

50
100
150
200
250
300
350
400

0

450

Ti
m

e
(s

)

RasterModelGrid, total run time
HexModelGrid, total run time
RasterModelGrid, time spent in loop
HexModelGrid, time spent in loop

RasterModelGrid, initialization time
HexModelGrid, initialization time

(a)

(b)

Figure 10. Performance of a Landlab-built model of landform evo-

lution, using the StreamPowerEroder, FlowRouter, and Precipita-

tionDistribution components on grids of different types and sizes.

Runs were performed on a mid-2014 MacBook Pro, and each data

point represents the mean of five runs. (a) Total time for a simula-

tion of 3 million years, implementing a stochastic storm sequence

of around 3000 distinct stormy intervals. Both the total time to run

and the time spent in the loop in the code that iterates forward in

time are shown, and they are practically indistinguishable in most

cases. The time to run the components is close to linear with number

of nodes, as expected for the Fastscape algorithms (see main text).

(b) The time spent initializing the grids and components in each

case (i.e. the total time less the time spent in loop from panel a).

Setting up a Voronoi-based grid is more computationally expensive

than a raster, but both are quick in absolute terms, and both are close

to linearly scaled with the number of nodes. In both graphs, small

deviations from linear scaling occur, probably related to the interac-

tion of Python’s dynamic memory management with the size of the

random access memory on the individual machine.

shown in Fig. 11. The code can be seen in the Supplement as

Script S3. It conforms to a typical form for a Landlab driver

script:

1. Import necessary Python libraries, including from

Landlab.

2. Instantiate a grid object.

3. Create input fields and set the grid initial and boundary

conditions.

4. Instantiate the components.

5. Perform a loop to run the components.

6. Finalize, plot, save, and/or export.

Earth Surf. Dynam., 5, 21–46, 2017 www.earth-surf-dynam.net/5/21/2017/

D. E. J. Hobley et al.: Creative computing with Landlab 39

Figure 11. Simulated topographies produced from a simple stream

power-based fluvial incision rule, combining the StreamPow-

erEroder, FlowRouter, and PrecipitationDistribution components.

The same model set up is implemented on both a RasterModel-

Grid (a) and a HexModelGrid (b), using the same random seed to

generate the topography. Note the vertical–horizontal asymmetry in

channel network planform visible in panel (b), an expected outcome

of the three axes of mirror symmetry running though a hexagonal

grid. The linearity of these catchment planforms is enhanced by the

presence of an erosion threshold.

In this case, the model is driven by a stochastic storm gen-

erator (the PrecipitationDistribution class), based on that sug-

gested by Eagleson (1978) and similar to the one underly-

ing the CHILD landscape evolution model (Tucker and Bras,

2000; Tucker et al., 2001b). Unlike CHILD, but in keep-

ing with Eagleson’s original derivation, here an explicit in-

verse relationship between storm length and intensity is built

into the distribution, by calculating storm water depth as a

gamma-distributed random variable and then deriving storm

intensity as the quotient of depth and (exponentially dis-

tributed) duration. This approach prevents unrealistic long-

duration, high-intensity events from being sampled (Eagle-

son, 1978). The PrecipitationDistribution class provides a

method that yields tuples of interval durations and rainfall

intensities as a true Python generator – in other words, the

code block below the generator will repeat with fresh val-

ues for each iteration until the total time is elapsed, at which

point the loop will cease (see lines 46–53 in the code). This

makes the implementation of the “run” loop both efficient

and concise, as well as being a classically “Pythonic” way to

implement this kind of loop. In this instance, the parameters

for the PrecipitationDistribution have been chosen to repre-

sent a mean annual rainfall rate of around 5 m yr−1, and with

rainfall occurring around 10 % of the time.

The switch between grid types involves changing a single

line of code (see the logical test at lines 15–18). Note that

although the total number of nodes and the number of rows

and columns is identical in both cases, the hexagonal grid is

rectangular rather than square due to the single axis of mirror

symmetry present in a tessellation of regular hexagons. (The

HexModelGrid class provides flags allowing control both of

the orientation of this symmetry axis, and also the shape of

the perimeter of the grid – rectangular or hexagonal.)

The addition of the linear diffusion component, Lin-

earDiffuser, is performed simply by creating an instance of

that class and then incorporating its run method into the

loop (code S4, lines 40 and 49). As in previous examples,

each component is responsible for managing its own inter-

nal numerical stability – in this case, if the LinearDiffuser

run method receives an input dt that exceeds the Courant–

Friedrichs–Lewy stability limit, that timestep will be inter-

nally subdivided as necessary within the component.

In this example, because diffusion can occur indepen-

dently of stream incision, it is possible that diffusion can

sever the flow paths of the FlowRouter and create internal

basins. Because of this possibility, this version of the code

also includes a lake-filling algorithm, implemented as the

component DepressionFinderAndRouter. The lake-filling al-

gorithm identifies closed depressions in the topography then

reroutes flow across them, and is based on the algorithm of

Tucker et al. (2001b). The final topography of the coupled

stream power and linear diffusion model is shown in Fig. 12.

5.3 Landlab as a cellular automaton

Much of this paper focuses on Landlab as a tool for the im-

plementation of numerical solutions to two-dimensional par-

tial differential equations, as many geomorphic process laws

(sensu Dietrich et al., 2003) have been couched in the lan-

guage of differential equations. However, Landlab can also

act as a powerful environment for the implementation of cel-

lular models. Landlab provides a set of tools for the con-

struction of “continuous-time stochastic” (CTS) cellular au-

tomata (CA). This interface within the main body of Landlab

is known as CellLab-CTS (Tucker et al., 2016). It enables

efficient creation of CTS models: a user needs only to spec-

ify the states and transition rules and write a short Python

script to initialize and run a CellLabCTSModel object. Fig-

www.earth-surf-dynam.net/5/21/2017/ Earth Surf. Dynam., 5, 21–46, 2017

40 D. E. J. Hobley et al.: Creative computing with Landlab

Figure 12. Simulated topographies produced from a coupled hill-

slope and channel evolution model, combining the StreamPow-

erEroder, FlowRouter, and LinearDiffuser components. A storm

sequence is provided by the PrecipitationDistribution component,

and discharge is routed across depressions in topography using De-

pressionFinderAndRouter. Stream power parameters are identical

to those in Fig. 11. The same model setup is implemented on both

a RasterModelGrid (a) and a HexModelGrid (b), using the same

random seed to generate the topography. Despite the differences in

grid organization, planform drainage pattern remains fairly similar

between the two cases.

ure 13 shows output from a CellLab-CTS model implement-

ing a lattice-grain algorithm (Tucker et al., 2016).

Landlab can also be used to construct traditional discrete-

timestep cellular automata. An example is provided by devel-

oping an ecohydrology model in Landlab (Fig. 14a, code S5),

which is in part an implementation of the Cellular Automata

Tree-Grass-Shrub Simulator (CATGraSS) (Caracciolo et al.,

2016a, b, 2014; Zhou et al., 2013). CATGraSS couples lo-

cal vegetation dynamics, which simulate biomass production

based on local soil moisture and potential evapotranspiration,

and plant establishment and mortality based on competition

for resources and space at each cell of a gridded model do-

main. Each cell in the domain can be occupied by one plant

functional type (PFT): each cell is flagged as Tree, Shrub,

Grass or Bare (left unoccupied).

CATGraSS is driven by rainfall pulses and solar radiation.

In Landlab, the model is implemented as a set of interact-

ing components, each of which describes a different element

of the coupled system: PrecipitationDistribution, Radiation,

PotentialEvapotranspiration, SoilMoisture, Vegetation, and

VegCA. This means that each process can also operate in iso-

lation, outside the context of this example model. The Precip-

itationDistribution component simulates the random arrival

of storm pulses. Precipitation characteristics are based on

the seasonal rainfall statistics of a region and characterized

by exponential distributions of storm and inter-storm dura-

tion, and a gamma distribution of water depth as a function

of storm duration. Storm pulses recharge the soil moisture

storage, represented as a single bucket (Laio et al., 2001).

The Radiation component calculates daily average extra-

terrestrial and clear-sky shortwave radiation incident on a flat

surface, based on latitude and day of the year (ASCE-EWRI,

2005). This component also calculates daily radiation ratio,

defined as the ratio of cosine of solar angle of incidence for

the true sloped surface to that for a flat surface (Bras, 1990).

The Radiation component does not explicitly calculate dif-

fused and reflected radiation. The PotentialEvapotranspira-

tion component uses the radiation ratio to calculate spatial

net radiation using daily maximum and minimum tempera-

ture, and potential evapotranspiration (ASCE-EWRI, 2005;

Zhou et al., 2013). The SoilMoisture component models lo-

cal root-zone soil moisture dynamics depending on the PFT

that occupies the corresponding cell at a given time (Laio

et al., 2001). The Vegetation component simulates temporal

dynamics of above-ground live and dead biomass, as well

as leaf area index (LAI). It does this by computing net pri-

mary productivity (NPP) based on the concept of water-use

efficiency (WUE) that relates NPP to actual evapotranspira-

tion (ET) and vegetation foliage loss due to water stress and

senescence (Istanbulluoglu et al., 2012; Zhou et al., 2013).

The VegCA component handles the spatial organization of

PFTs, through plant establishment, competition, and mortal-

ity, by combining deterministic and probabilistic rules. Plant

establishment is driven by seed dispersal and water stress,

while mortality is related to water stress, plant age, and dis-

turbances (Zhou et al., 2013).

This example ecohydrology model and its constituent

components can work both on grids imported from a digi-

tal elevation model (DEM) using the read_esri_ascii

utility (see also Sect. 5.4) and on synthetic grids created us-

ing the RasterModelGrid library. In the example illustrated

in Fig. 14b and c, we use the example ecohydrology model

(code S5) to simulate plant competition in a semi-arid basin

in Sevilleta, New Mexico, USA, modelling the plant species

found in this area (Zhou et al., 2013). Because of the stochas-

tic nature of the simulations in this example, potential evap-

otranspiration is represented by a sinusoidal function of day

of the year (Zhou et al., 2013). The domain is initialized with

Earth Surf. Dynam., 5, 21–46, 2017 www.earth-surf-dynam.net/5/21/2017/

D. E. J. Hobley et al.: Creative computing with Landlab 41

Time = 40 Time = 500 Time = 1000

Figure 13. Example of a CellLab-CTS model. Here the CellLab-CTS framework has been used to implement a model of granular mechanics.

The model has eight node states, representing air (white), a resting grain (light grey), and a grain moving in each of the six lattice directions

(all coded as dark grey). Grid edges and immobile walls are treated as CLOSED_BOUNDARY Landlab boundary conditions (black).

Transition rules are used to model grain motion, grain collision, and gravity (from Tucker et al., 2016).

Figure 14. Implementation of an ecohydrology model in Landlab. (a) Schematic illustration of coupling among different Landlab compo-

nents for the CaTGraSS application. (b) Demonstration of the model on a flat surface with semi-arid climate similar to that of Sevilleta, New

Mexico, USA (Zhou et al., 2013). This figure plots percentage of space occupied by each PFT with time. (c) Spatial organization of PFTs

at different times during the model run. These plots illustrate competition between different PFTs for space and resources. Trees die early

within the first 300 years due to unfavourable climatic conditions and competition from shrubs and grass. The ecosystem swings between

shrub-dominant and grass-dominant states for the next 1600 years.

randomly assigned PFTs with random spatial distribution of

ages (Fig. 14ci). All PFTs initially have an identical cover

fraction in the domain. Local vegetation dynamics are simu-

lated at inter-storm timesteps, and plant competition is mod-

elled at annual timesteps. In the simulations, trees are out-

competed by drought-tolerant shrubs and grasses in the first

few hundred years, consistent with regional observations in

central New Mexico (Zhou et al., 2013). Shrubs and grasses

coexist in the modelled domain with alternating periods of

shrub and grass dominance. Note that shrubs cluster as they

propagate in space due to seed dispersal from mature shrub

plants.

www.earth-surf-dynam.net/5/21/2017/ Earth Surf. Dynam., 5, 21–46, 2017

42 D. E. J. Hobley et al.: Creative computing with Landlab

5.4 Landlab as a hydrological modelling environment

Landlab also contains several surface water flow generators,

including an explicit two-dimensional solution for the shal-

low water equations. The OverlandFlow component has been

adapted from the flood inundation model described by de

Almeida et al. (2012). Their algorithm was derived for use on

structured grids, and the Landlab implementation only works

with the RasterModelGrid library. Water discharge is calcu-

lated on each active link within the model domain, simulating

a hydrograph at each link location.

In many flood-wave routing models, a small timestep must

be used to prevent instabilities, which often manifest as

“checkerboard” patterns of water depth, from emerging. To

maximize computational performance of the OverlandFlow

component, an adaptive timestep is used to find the largest

timestep that adheres to the CFL stability condition (Hunter

et al., 2005). To further enhance the stability, the Overland-

Flow component also contains stability criteria so that the

component can operate not only on low-slope, urban areas

but also on steeper terrain, such as mountainous watersheds

(Adams et al., 2016). The OverlandFlow component was de-

signed for structured grids, and it assumes water can only

move in the four cardinal directions. This is easily accom-

modated within Landlab, and several other components (e.g.

the FlowRouter and others in the example presented below)

can also be optionally instructed using keywords to only use

node neighbours in these cardinal directions.

An example script running the OverlandFlow component

can be seen in the Supplement as Script S6. It follows a sim-

ilar pattern to scripts outlined in earlier parts of this sec-

tion, with import of the Landlab and other Python classes

and functions needed, followed by grid creation, compo-

nent instantiation, component execution in a loop, and then

finalization and plotting. Notably, this script uses an im-

ported digital elevation model (DEM) of a real landscape

over which to route flow, which is ingested into Landlab us-

ing the read_esri_ascii function contained in Land-

lab’s input and output utilities. Use is made of Landlab’s na-

tive boundary handling system to designate nodes of the grid

outside of the irregularly shaped catchment as closed, exclud-

ing them from the calculations.

This example combines the OverlandFlow component

with the SinkFiller. The SinkFiller is run on the initial to-

pography prior to the simulated storm, and fills any local de-

pressions present in the surface. This has been done to enable

full drainage of all the water from the network, and to permit

evaluation of the full water budget at the outlet. However,

in general the OverlandFlow component will happily run on

landscapes that do contain pits. In this example, a rainfall rate

of 25 mm h−1 was run over the watershed DEM for 1 h. The

resulting hydrograph (water discharge over time) is plotted

at the outlet. Water depth across the domain is also plotted to

show the wave front propagating downstream (Fig. 15). As

expected, the total hydrograph duration is several times the

length of the storm, and the peak in the hydrograph lags be-

hind the storm itself significantly, in this case by more than

an hour.

6 Conclusions

Landlab is an open-source, Python-based software toolkit de-

signed to accelerate the development of new process models.

It consists of a gridding engine, a set of components describ-

ing individual surface processes, and a set of utilities for data

input, output, and visualization. Landlab not only permits the

creation of models by combination of existing components

but is also optimized to aid in the design of new process com-

ponents. The code base is thoroughly documented both on-

line and within the code itself, and each release undergoes an

automated testing procedure to ensure its robustness. A set

of tutorials and examples to help learn about Landlab is also

provided.

Landlab is explicitly designed to interface with other soft-

ware, and in particular, with other models of surface pro-

cesses. It exposes a CSDMS Basic Model Interface. It can

serve as a platform to develop both continuum-based and

cellular-automaton-style models, and potentially to have the

two model styles interact on the same grid. We illustrate

some of the functionality of Landlab and its existing compo-

nents with a suite of examples drawn from geomorphology,

ecology, and hydrology. The examples provided in this paper

illustrate the wide diversity of scientific questions that can be

addressed using Landlab-built models.

7 Code availability

This text describes Landlab version 1.0.2 (“Rapunzel”),

which was released in November 2016. The source code

for this version is maintained in a Git repository hosted

on GitHub at https://github.com/landlab/landlab/releases/

tag/v1.0.2 (the latest development version of Landlab is al-

ways available at http://github.com/landlab/landlab). Land-

lab can also be installed as a release version, including pre-

compiled binary files containing Cython extensions, through

the conda and pip Python package management systems, as

described in the online documentation. Documentation and

installation instructions for the most current release version

of Landlab are provided at http://landlab.github.io. Software

dependencies are listed at https://landlab.github.io under “In-

stall”. To the best of our knowledge, Landlab will operate on

any system that meets these software requirements; as of the

time of writing, Landlab is known to work on, and is tested

for, recent-generation Mac, Linux, and Windows platforms

running Python 2.7, 3.4, and 3.5. Landlab and its components

are distributed under an MIT open-source license.

Earth Surf. Dynam., 5, 21–46, 2017 www.earth-surf-dynam.net/5/21/2017/

https://github.com/landlab/landlab/releases/tag/v1.0.2
https://github.com/landlab/landlab/releases/tag/v1.0.2
http://github.com/landlab/landlab
http://landlab.github.io
https://landlab.github.io

D. E. J. Hobley et al.: Creative computing with Landlab 43

D
is

c
h

a
rg

e
 (

m

s
)

3
-1

Figure 15. Demonstration of OverlandFlow component capabilities. The example shows development of a hydrograph in a catchment

drawn from an airborne lidar-derived DEM of the Spring Creek catchment in central Colorado, USA. The run uses a constant rainfall rate of

25 mm h−1 and a storm duration of 1 h. The hydrograph persists for almost eight model hours, and water depth as plotted at several intervals

after the start of the precipitation event: 1 (the end of the storm), 2, 3, and 8 h.

8 Data availability

Code to reproduce figures as found in this manuscript is

either presented within this main text or can be found in

the Supplement. The Spring Creek DEM data presented

in Fig. 15 are a subset of the lidar dataset for Raleigh

Peak, Colorado: May 2010 (NCALM, 2010). Lidar data ac-

quisition and processing completed by the National Cen-

ter for Airborne Laser Mapping (NCALM – http://www.

ncalm.org). NCALM funding provided by NSF’s Division

of Earth Sciences, Instrumentation and Facilities Program.

EAR-1043051. The lidar data have been cropped to a specific

sub-basin and filled to remove pits, as described in the main

text. The cropped and filled version of the data may be found

as an ASCII-formatted text file in the dataset Adams (2016)

as the file “SpringCreek_DEM.asc”.

The Supplement related to this article is available online

at doi:10.5194/esurf-5-21-2017-supplement.

Acknowledgement. This research was supported by the US

National Science Foundation (ACI-1147454 (GET), ACI-1450409

(GET), ACI-1450338 (NMG), ACI-1147519 (NMG) ACI-1450412

(EI), ACI-1148305 (EI), and EAR-1246761 (through an NCED2

postdoctoral fellowship to DEJH)). We thank B. Campforts,

W. Schwanghart, and A. Wickert for their helpful reviews of an

earlier version of this paper, and S. Mudd for serving as editor on

the manuscript. Landlab could not exist without the wider open-

source software in science movement, and particularly open-source

enthusiasts who are members of the surface process modelling

community. We are particularly indebted to the members of the

CSDMS Integration Facility for the best practices put forward and

advice offered.

Edited by: S. Mudd

Reviewed by: A. Wickert and B. Campforts

References

Adams, J. M.: landlab/pub_adams_etal_gmd v0.2 (Data set), Zen-

odo, doi:10.5281/zenodo.162058, 2016.

Adams, J. M., Nudurupati, S. S., Gasparini, N. M., Hobley, D. E. J.,

Hutton, E., Tucker, G. E., and Istanbulluoglu, E.: Landlab: Sus-

tainable Software Development in Practice, The Second Work-

shop on Sustainable Software for Science: Practice and Experi-

ences (WSSSPE2), New Orleans, LA, USA, 16 November 2014,

doi:10.6084/m9.figshare.1097629.v6, 2014.

www.earth-surf-dynam.net/5/21/2017/ Earth Surf. Dynam., 5, 21–46, 2017

http://www.ncalm.org
http://www.ncalm.org
http://dx.doi.org/10.5194/esurf-5-21-2017-supplement
http://dx.doi.org/10.5281/zenodo.162058
http://dx.doi.org/10.6084/m9.figshare.1097629.v6

44 D. E. J. Hobley et al.: Creative computing with Landlab

Adams, J. M., Gasparini, N. M., Hobley, D. E. J., Tucker, G. E.,

Hutton, E. W. H., Nudurupati, S. S., and Istanbulluoglu, E.: The

Landlab OverlandFlow component: a Python library for comput-

ing shallow-water flow across watersheds, Geosci. Model Dev.

Discuss., doi:10.5194/gmd-2016-277, in review, 2016.

ASCE-EWRI: The ASCE standardized reference evapotranspira-

tion equation, in: Standardization of Reference Evapotranspira-

tion Task Committee Final Report, edited by: Allen, R. G., Wal-

ter, I. A., Elliot, R. L., Howell, T. A., Itenfisu, D., Jensen, M. E.,

and Snyder, R. L., Technical Committee report to the Environ-

mental and Water Resources Institute of the American Society of

Civil Engineers from the Task Committee on Standardization of

Reference Evapotranspiration, Reston, VA, USA, 2005.

Becker, C., Chitchyan, R., Duboc, L., Easterbrook, S., Pen-

zenstadler, B., Seyff, N., and Venters, C. C.: Sustain-

ability design and software: the karlskrona manifesto, in:

IEEE/ACM 37th IEEE International Conference on Soft-

ware Engineering, Florence, Italy, 16–24 May 2015, 467–476,

doi:10.1109/ICSE.2015.179, 2015.

Berger, K. P.: Surface water–groundwater interaction: the spatial or-

ganization of hydrologic processes over complex terrain, PhD

thesis, Massachusetts Institute of Technology, Cambridge, MA,

USA, 242 pp., 2000.

Bras, R. L.: Hydrology: an introduction to hydrologic science,

Addison Wesley Publishing Company, Boston, Mass., USA,

643 pp., 1990.

Braun, J. and Sambridge, M.: Modelling landscape evolution on ge-

ological time scales: a new method based on irregular spatial dis-

cretization, Basin Res., 9, 27–52, 1997.

Braun, J. and Willett, S. D.: A very efficient O(n), implicit and par-

allel method to solve the stream power equation governing flu-

vial incision and landscape evolution, Geomorphology, 180–181,

170–179, doi:10.1016/j.geomorph.2012.10.008, 2013.

Caracciolo, D., Noto, L. V., Istanbulluoglu, E., Fatichi, S.,

and Zhou, X.: Climate change and Ecotone boundaries:

Insights from a cellular automata ecohydrology model in

a Mediterranean catchment with topography controlled

vegetation patterns, Adv. Water Resour., 73, 159–175,

doi:10.1016/j.advwatres.2014.08.001, 2014.

Caracciolo, D., Istanbulluoglu, E., and Noto, L. V.: An Ecohydro-

logical Cellular Automata Model Investigation of Juniper Tree

Encroachment in a Western North American Landscape, Ecosys-

tems, doi:10.1007/s10021-016-0096-6, in press, 2016a.

Caracciolo, D., Istanbulluoglu, E., Noto, L. V., and Collins, S. L.:

Mechanisms of shrub encroachment into Northern Chihuahuan

Desert grasslands and impacts of climate change investigated us-

ing a cellular automata model, Adv. Water Resour., 91, 46–62,

doi:10.1016/j.advwatres.2016.03.002, 2016b.

Chue Hong, N.: We are the 92 %, The Second Workshop on

Sustainable Software for Science: Practice and Experiences

(WSSSPE2), New Orleans, LA, USA, 16 November 2014,

doi:10.6084/m9.figshare.1243288.v1, 2014.

Crick, T., Hall, B. A., and Ishtiaq, S.: “Can I Implement Your Algo-

rithm?”: A Model for Reproducible Research Software, The Sec-

ond Workshop on Sustainable Software for Science: Practice and

Experiences (WSSSPE2), New Orleans, LA, USA, 16 November

2014, arXiv:1407.5981v2 [cs.SE], 2014.

Culling, W.: Soil creep and the development of hillside slopes, J.

Geol., 71, 127–161, 1963.

de Almeida, G. A. M., Bates, P., Freer, J. E., and Souvignet, M.:

Improving the stability of a simple formulation of the shallow

water equations for 2-D flood modeling, Water Resour. Res., 48,

W05528, doi:10.1029/2011WR011570, 2012.

Dietrich, W. E., Bellugi, D. G., Sklar, L. S., Stock, J. D., Heim-

sath, A. M., and Roering, J. J.: Geomorphic Transport Laws for

Predicting Landscape Form and Dynamics, in: Prediction in Ge-

omorphology, Geophysical Monograph-American Geophysical

Union, Washington, DC, USA, 135, 1–30, 2003.

Eagleson, P. S.: Climate, soil, and vegetation: 2. The dis-

tribution of annual precipitation derived from observed

storm sequences, Water Resour. Res., 14, 713–721,

doi:10.1029/WR014i005p00713, 1978.

Easterbrook, S. M.: Open code for open science?, Nat. Geosci., 7,

779–781, doi:10.1038/ngeo2283, 2014.

Fernandes, N. F. and Dietrich, W. E.: Hillslope evolution by diffu-

sive processes: The timescale for equilibrium adjustments, Water

Resour. Res., 33, 1307–1318, doi:10.1029/97WR00534, 1997.

Goren, L., Willett, S. D., Herman, F., and Braun, J.: Coupled

numerical–analytical approach to landscape evolution model-

ing, Earth Surf. Proc. Land., 39, 522–545, doi:10.1002/esp.3514,

2014.

Granjeon, D. and Joseph, P.: Concepts and Applications of a 3-D

Multiple Lithology, Diffusive Model in Stratigraphic Modeling,

in: Numerical Experiments in Stratigraphy Recent Advances in

Stratigraphic and Sedimentologic Computer Simulations, SEPM

Special Publications No. 62, SEPM, Tulsa, OK, USA, 197–210,

1999.

Harel, M. A., Mudd, S. M., and Attal, M.: Global analy-

sis of the stream power law parameters based on world-

wide 10Be denudation rates, Geomorphology, 268, 184–196,

doi:10.1016/j.geomorph.2016.05.035, 2016.

Harlow, F. H. and Welch, J. E.: Numerical Calculation of Time-

Dependent Viscous Incompressible Flow of Fluid with Free Sur-

face, Phys. Fluids, 8, 2182–2189, 1965.

Hobley, D. E. J., Sinclair, H. D., Mudd, S. M., and Cowie, P. A.:

Field calibration of sediment flux dependent river incision, J.

Geophys. Res., 116, F04017, doi:10.1029/2010JF001935, 2011.

Horritt, M. S. and Bates, P. D.: Evaluation of 1D and 2D numerical

models for predicting river flood inundation, J. Hydrol., 268, 87–

99, doi:10.1016/S0022-1694(02)00121-X, 2002.

Howard, A. D.: A detachment-limited model of drainage basin evo-

lution, Water Resour. Res., 30, 2261–2285, 1994.

Howard, A. D.: Simulating the development of Martian highland

landscapes through the interaction of impact cratering, fluvial

erosion, and variable hydrologic forcing, Geomorphology, 91,

332–363, doi:10.1016/j.geomorph.2007.04.017, 2007.

Hunter, N. M., Horritt, M. S., Bates, P. D., Wilson, M. D., and

Werner, M. G. F.: An adaptive time step solution for raster-based

storage cell modelling of floodplain inundation, Adv. Water Re-

sour., 28, 975–991, 2005.

Hutton, E. W. H. and Syvitski, J. P. M.: Sedflux 2.0:

An advanced process-response model that generates three-

dimensional stratigraphy, Comput. Geosci., 34, 1319–1337,

doi:10.1016/j.cageo.2008.02.013, 2008.

Hutton, E. W. H., Piper, M. D., Peckham, S. D., Overeem, I., Ket-

tner, A. J., and Syvitski, J. P. M.: Building Sustainable Software

– The CSDMS Approach, The Second Workshop on Sustainable

Software for Science: Practice and Experiences (WSSSPE2),

Earth Surf. Dynam., 5, 21–46, 2017 www.earth-surf-dynam.net/5/21/2017/

http://dx.doi.org/10.5194/gmd-2016-277
http://dx.doi.org/10.1109/ICSE.2015.179
http://dx.doi.org/10.1016/j.geomorph.2012.10.008
http://dx.doi.org/10.1016/j.advwatres.2014.08.001
http://dx.doi.org/10.1007/s10021-016-0096-6
http://dx.doi.org/10.1016/j.advwatres.2016.03.002
http://dx.doi.org/10.6084/m9.figshare.1243288.v1
http://dx.doi.org/10.1029/2011WR011570
http://dx.doi.org/10.1029/WR014i005p00713
http://dx.doi.org/10.1038/ngeo2283
http://dx.doi.org/10.1029/97WR00534
http://dx.doi.org/10.1002/esp.3514
http://dx.doi.org/10.1016/j.geomorph.2016.05.035
http://dx.doi.org/10.1029/2010JF001935
http://dx.doi.org/10.1016/S0022-1694(02)00121-X
http://dx.doi.org/10.1016/j.geomorph.2007.04.017
http://dx.doi.org/10.1016/j.cageo.2008.02.013

D. E. J. Hobley et al.: Creative computing with Landlab 45

New Orleans, LA, USA, 16 November 2014, arxiv:1407.4106v2

[cs.SE], 2014.

Istanbulluoglu, E., Wang, T., and Wedin, D. A.: Evaluation of

ecohydrologic model parsimony at local and regional scales

in a semiarid grassland ecosystem, Ecohydrology, 5, 121–142,

doi:10.1002/eco.211, 2012.

Itasca: FLAC: fast Lagrangian analysis of continua, Version 4,

Itasca Consulting Group Inc., Minneapolis, USA, 2000.

Jenson, S. K. and Domingue, J. O.: Extracting Topographic Struc-

ture from Digital Elevation Data for Geographic Information

System Analysis, Photogramm. Eng. Rem. S., 54, 1593–1600,

1988.

Julien, P. Y., Saghafian, B., and Ogden, F. L.: Raster-based

hydrologic modeling of spatially-varied surface runoff, J.

Am. Water Resour. As., 31, 523–536, doi:10.1111/j.1752-

1688.1995.tb04039.x, 1995.

Katz, D. S., Choi, S.-C. T., Wilkins-Diehr, N., Hong, N. C., Ven-

ters, C. C., Howison, J., Seinstra, F., Jones, M., Cranston, K. A.,

Clune, T. L., De Val-Borro, M., and Littauer, R.: Report on the

Second Workshop on Sustainable Software for Science: Practice

and Experiences (WSSSPE2), Journal of Open Research Soft-

ware, 4, e7, doi:10.5334/jors.85, 2015.

Kelfoun, K., Samaniego, P., Palacios, P., and Barba, D.: Test-

ing the suitability of frictional behaviour for pyroclastic flow

simulation by comparison with a well-constrained eruption at

Tungurahua volcano (Ecuador), B. Volcanol., 71, 1057–1075,

doi:10.1007/s00445-009-0286-6, 2009.

Kessler, M. A., Anderson, R. S., and Stock, G. M.: Modeling to-

pographic and climatic control of east-west asymmetry in Sierra

Nevada glacier length during the Last Glacial Maximum, J. Geo-

phys. Res, 111, F02002, doi:10.1029/2005JF000365, 2006.

Lague, D.: The stream power river incision model: evidence,

theory and beyond, Earth Surf. Proc. Land., 39, 38–61,

doi:10.1002/esp.3462, 2014.

Laio, F., Porporato, A., Ridolfi, L., and Rodriguez-Iturbe, I.: Plants

in water-controlled ecosystems: active role in hydrologic pro-

cesses and response to water stress II. Probabilistic soil moisture

dynamics, Adv. Water Resour., 24, 707–723, doi:10.1016/S0309-

1708(01)00005-7, 2001.

Lambeck, K.: Geophysical Geodesy, The Slow Deformations of the

Earth, Clarendon Press, Oxford, UK, 718 pp., 1988.

Mitas, L. and Mitasova, H.: Distributed soil erosion simulation for

effective erosion prevention, Water Resour. Res., 34, 505–516,

doi:10.1029/97WR03347, 1998.

Narteau, C., Le Mouël, J. L., Poirier, J. P., Sepúlveda, E., and Shnir-

man, M.: On a small-scale roughness of the core–mantle bound-

ary, Earth Planet. Sc. Lett., 191, 49–60, doi:10.1016/S0012-

821X(01)00401-0, 2001.

Narteau, C., Zhang, D., Rozier, O., and Claudin, P.: Setting the

length and time scales of a cellular automaton dune model from

the analysis of superimposed bed forms, J. Geophys. Res.-Earth,

114, F03006, doi:10.1029/2008JF001127, 2009.

NCALM: Raleigh Peak, Colorado: May 2010, CO10_Tucker (Data

set), doi:10.5069/G9TM782F, 2010.

NSF: A vision and strategy for software for science engineer-

ing and education, available at: https://www.nsf.gov/pubs/2012/

nsf12113/nsf12113.pdf (last access: 24 November 2016), 2012.

Overeem, I., Berlin, M. M., and Syvitski, J. P. M.: Strategies for

integrated modeling: The community surface dynamics mod-

eling system example, Environ. Modell. Softw., 39, 314–321,

doi:10.1016/j.envsoft.2012.01.012, 2013.

Peckham, S. D.: The CSDMS Standard Names: Cross-Domain

Naming Conventions for Describing Process Models, Data Sets

and Their Associated Variables, in: Proceedings of the 7th In-

ternational Congress on Environmental Modelling and Software,

15–19 June 2014, San Diego, California, USA, edited by: Ames,

D. P., Quinn, N. W. T., Rizzoli, A. E., ISBN: 978-88-9035-744-2,

2014.

Peckham, S. D., Hutton, E. W. H., and Norris, B.: A

component-based approach to integrated modeling in the geo-

sciences: The design of CSDMS, Comput. Geosci., 53, 3–12,

doi:10.1016/j.cageo.2012.04.002, 2013.

Perron, J. T.: Numerical methods for nonlinear hillslope transport

laws, J. Geophys. Res, 116, F02021, doi:10.1029/2010JF001801,

2011.

Perron, J. T. and Royden, L.: An integral approach to bedrock

river profile analysis, Earth Surf. Proc. Land., 38, 570–576,

doi:10.1002/esp.3302, 2012.

Piper, M., Hutton, E. W. H., Overeem, I., and Syvitski, J. P.: WMT:

The CSDMS Web Modelling Tool, 2015 Fall Meeting, AGU,

San Francisco, CA, USA, 14–18 December 2015, IN13B–1841,

2015.

Polakow, D. A. and Dunne, T. T.: Modelling fire-return interval T:

stochasticity and censoring in the two-parameter Weibull model,

Ecol. Model., 121, 79–102, 1999.

Prechelt, L.: An empirical comparison of C, C++, Java, Perl,

Python, Rexx and Tcl for a search/string-processing program,

Technical Report 2000-5, University of Karlsruhe, Karlsruhe,

Germany, 34 pp., 2000.

Rengers, F. K., McGuire, L. A., Kean, J. W., Staley, D. M., and

Hobley, D.: Model simulations of flood and debris flow timing

in steep catchments after wildfire, Water Resour. Res., 52, 6041–

6061, doi:10.1002/2015WR018176, 2016.

Slingerland, R. L. and Kump, L.: Mathematical Modeling of Earth’s

Dynamical Systems, Princeton University Press, Princeton, NJ,

USA, 231 pp., 2011.

Slingerland, R. L., Harbaugh, J. W., and Furlong, K.: Simulating

Clastic Sedimentary Basins: Physical Fundamentals and Com-

puter Programs for Creating Dynamic Systems, Prentice-Hall,

Englewood Cliffs, NJ, USA, 220 pp., 1994.

Stewart, C. A., Almes, G. T., and Wheeler, B. C. (Eds.): Cyber-

infrastructure Software Sustainability and Reusability: Report

from an NSF-funded workshop, Indiana University, Blooming-

ton, IN, USA, available at: http://hdl.handle.net/2022/6701 (last

access: 24 November 2016), 2010.

Tucker, G. E. and Bras, R. L.: A stochastic approach to modeling

the role of rainfall variability in drainage basin evolution, Water

Resour. Res., 36, 1953–1964, 2000.

Tucker, G. E. and Hancock, G. S.: Modelling landscape evolution,

Earth Surf. Proc. Land., 35, 28–50, doi:10.1002/esp.1952, 2010.

Tucker, G. E. and Whipple, K. X.: Topographic outcomes

predicted by stream erosion models: Sensitivity analysis

and intermodel comparison, J. Geophys. Res, 107, 2179,

doi:10.1029/2001JB000162, 2002.

Tucker, G. E., Lancaster, S. T., Gasparini, N. M., Bras, R. L., and

Rybarczyk, S. M.: An object-oriented framework for distributed

hydrologic and geomorphic modeling using triangulated irregu-

lar networks, Comput. Geosci., 27, 959–973, 2001a.

www.earth-surf-dynam.net/5/21/2017/ Earth Surf. Dynam., 5, 21–46, 2017

http://dx.doi.org/10.1002/eco.211
http://dx.doi.org/10.1111/j.1752-1688.1995.tb04039.x
http://dx.doi.org/10.1111/j.1752-1688.1995.tb04039.x
http://dx.doi.org/10.5334/jors.85
http://dx.doi.org/10.1007/s00445-009-0286-6
http://dx.doi.org/10.1029/2005JF000365
http://dx.doi.org/10.1002/esp.3462
http://dx.doi.org/10.1016/S0309-1708(01)00005-7
http://dx.doi.org/10.1016/S0309-1708(01)00005-7
http://dx.doi.org/10.1029/97WR03347
http://dx.doi.org/10.1016/S0012-821X(01)00401-0
http://dx.doi.org/10.1016/S0012-821X(01)00401-0
http://dx.doi.org/10.1029/2008JF001127
http://dx.doi.org/10.5069/G9TM782F
https://www.nsf.gov/pubs/2012/nsf12113/nsf12113.pdf
https://www.nsf.gov/pubs/2012/nsf12113/nsf12113.pdf
http://dx.doi.org/10.1016/j.envsoft.2012.01.012
http://dx.doi.org/10.1016/j.cageo.2012.04.002
http://dx.doi.org/10.1029/2010JF001801
http://dx.doi.org/10.1002/esp.3302
http://dx.doi.org/10.1002/2015WR018176
http://hdl.handle.net/2022/6701
http://dx.doi.org/10.1002/esp.1952
http://dx.doi.org/10.1029/2001JB000162

46 D. E. J. Hobley et al.: Creative computing with Landlab

Tucker, G. E., Lancaster, S. T., Gasparini, N. M., and Bras, R.

L.: The Channel-Hillslope Integrated Landscape Development

Model (CHILD), in: Landscape Erosion and Evolution Model-

ing, Springer US, Boston, MA, USA, 349–388, 2001b.

Tucker, G. E., Hobley, D. E. J., Hutton, E., Gasparini, N.

M., Istanbulluoglu, E., Adams, J. M., and Nudurupati, S. S.:

CellLab-CTS 2015: continuous-time stochastic cellular automa-

ton modeling using Landlab, Geosci. Model Dev., 9, 823–839,

doi:10.5194/gmd-9-823-2016, 2016.

van Rossum, G. and Drake, F. L.: Python reference manual, avail-

able at: http://www.python.org (last access: 24 November 2016),

2001.

Whipple, K. X. and Tucker, G. E.: Dynamics of the stream-power

river incision model: Implications for height limits of moun-

tain ranges, landscape response timescales and research needs,

J. Geophys. Res, 104, 17661–17674, 1999.

Wickert, A. D.: Open-source modular solutions for flexural isostasy:

gFlex v1.0, Geosci. Model Dev., 9, 997–1017, doi:10.5194/gmd-

9-997-2016, 2016.

Willgoose, G., Bras, R. L., and Rodriguez-Iturbe, I.: A

coupled channel network growth and hillslope evolution

model: 1. Theory, Water Resour. Res., 27, 1671–1684,

doi:10.1029/91WR00935, 1991a.

Willgoose, G., Bras, R. L., and Rodriguez-Iturbe, I.: A cou-

pled channel network growth and hillslope evolution model:

2. Nondimensionalization and applications, Water Resour. Res.,

27, 1685–1696, doi:10.1029/91WR00936, 1991b.

Wobus, C. W., Whipple, K. X., Kirby, E., Snyder, N. P., Johnson, J.,

Spyropolou, K., Crosby, B. T., and Sheenan, D.: Tectonics from

topography: Procedures, promise, and pitfalls, in: Tectonics, Cli-

mate, and Landscape Evolution, edited by: Willett, S. D., Hovius,

N., Brandon, M. T., and Fisher, D., Geological Society of Amer-

ica Special Paper 398, Geological Society of America, Boulder,

CO, USA, 55–74, 2006.

Zhou, X., Istanbulluoglu, E., and Vivoni, E. R.: Modeling the ecohy-

drological role of aspect-controlled radiation on tree-grass-shrub

coexistence in a semiarid climate, Water Resour. Res., 49, 2872–

2895, doi:10.1002/wrcr.20259, 2013.

Earth Surf. Dynam., 5, 21–46, 2017 www.earth-surf-dynam.net/5/21/2017/

http://dx.doi.org/10.5194/gmd-9-823-2016
http://www.python.org
http://dx.doi.org/10.5194/gmd-9-997-2016
http://dx.doi.org/10.5194/gmd-9-997-2016
http://dx.doi.org/10.1029/91WR00935
http://dx.doi.org/10.1029/91WR00936
http://dx.doi.org/10.1002/wrcr.20259

	Abstract
	Introduction and motivation
	Approach
	Guiding design principles
	Low-level design choices
	Open-source availability
	Programming language
	Code sustainability

	Model architecture
	Landlab's gridding engine
	Grid types and elements
	Grid standardization and conventions
	Mappings and grid characteristics
	Grid boundary condition handling

	Spatially distributed data and data fields
	Components
	Component standard interface
	Timestepping and interaction of components
	Parallelization

	Utilities and interfaces
	Dynamic model interaction and the Basic Model Interface

	Validation, testing, and documentation
	Creating models with Landlab
	A simple diffusion model
	Coupling diffusion to stream power with a storm sequence
	Landlab as a cellular automaton
	Landlab as a hydrological modelling environment

	Conclusions
	Code availability
	Data availability
	Acknowledgement
	References

