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Abstract

We present the Creative Flow+ Dataset, the first di-

verse multi-style artistic video dataset richly labeled with

per-pixel optical flow, occlusions, correspondences, seg-

mentation labels, normals, and depth. Our dataset in-

cludes 3000 animated sequences rendered using styles ran-

domly selected from 40 textured line styles and 38 shad-

ing styles, spanning the range between flat cartoon fill and

wildly sketchy shading. Our dataset includes 124K+ train

set frames and 10K test set frames rendered at 1500x1500

resolution, far surpassing the largest available optical flow

datasets in size. While modern techniques for tasks such as

optical flow estimation achieve impressive performance on

realistic images and video, today there is no way to gauge

their performance on non-photorealistic images. Creative

Flow+ poses a new challenge to generalize real-world

Computer Vision to messy stylized content. We show that

learning-based optical flow methods fail to generalize to

this data and struggle to compete with classical approaches,

and invite new research in this area. Our dataset and a

new optical flow benchmark will be publicly available at:

www.cs.toronto.edu/creativeflow/. We fur-

ther release the complete dataset creation pipeline, allow-

ing the community to generate and stylize their own data on

demand.

1. Introduction

For millenia, humans have used drawings, paintings,

sketches and diagrams to demonstrate their ideas, plan en-

gineering designs and tell stories. Human vision is impres-

sively robust to abstraction and lack of detail. Without any

prior training, a person can easily recognize an object in a

Figure 1: Creative Flow+ Dataset contains extensive per-pixel

ground truth data for frames rendered in 24 shading styles and 40

line styles and sourced from a variety of 3D animated sequences.1
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Figure 2: Beyond Photorealism: While humans find it easy to vi-

sualize 3D shape in sketches (A), find correspondences between

different styles/views (B), follow stylized informational videos

(C), enjoy hand-drawn cartoons with no temporal coherence (D),

such tasks remain challenging for Computer Vision.2

rough sketch, visualize its approximate 3D shape, find cor-

respondences between drawings in vastly different styles

and views and enjoy motion in hand-drawn cartoons with

no temporal coherence (Fig.2). Today’s Computer Vision

algorithms cannot rival human vision in analysis and under-

standing of stylized, abstracted content. Yet, their ability to

do so could transform the digital creative tools for all do-

mains of design and communication, including education,

industrial design, film industry and architecture. For exam-

ple, correspondences can be used in the animation work-

flow to autocomplete [47] or interpolate frames [41, 44, 3].

In addition, progress on analysis of stylized content would

open up new domains to automatic information retrieval and

summarization. The goal of our dataset and benchmark is

to enable more research in this area.

In particular, our goal is to enable research on Com-

puter Vision tasks related to motion, correspondences and

3D shape estimation. In the domain of natural photos and

video, Computer Vision techniques have made impressive

strides in optical flow estimation, segmentation, tracking,

correspondence finding and shape estimation from a sin-

gle image, in part due to availability of large representative

benchmarks such as KITTI [22], MPI Sintel [11] and a var-

ious RGB-D datasets [17]. However, robustness of these

methods to general stylized content is unknown, as none

of the existing non-photorealistic datasets include ground

truth optical flow or cover a comprehensive set of styles.

Likewise, the few correspondence and tracking algorithms

specifically tailored to cartoon content [44, 47, 50] have not

been evaluated on a breadth of styles and typically make

strong assumptions about the input, which makes them brit-

tle in practice. We build a large, diverse dataset to enable

research on robust tracking of stylized images.

In this paper we introduce Creative Flow+ Dataset, the

largest (124K frames) high-resolution (1500×1500) syn-

thetic optical flow dataset to date, featuring challenging mo-

tions, extensive per-pixel ground truth annotations and a di-

verse set of artistic styles (Fig.1). We use a held out 10K

frame test set to show that existing optical flow methods

1Image credit: row 5 background is a cropped image by karen sanchez

alvarado, sourced from BAM! [45] and licensed under cc by-nc.
2Image credits: A,C by Freepik.com, B by Rawpixel.com at

Freepik.com, D - frame from ”Wings, legs and tails” by Studio Ekran.

do not generalize well to this challenging content, and will

publish a public benchmark posing this new challenge. We

give an overview of the data in §3, and detail styles in §4.

Comparison with other datasets is provided in §5, followed

by optical flow method evaluation in §6.

2. Related Work

2.1. Existing Motion and Shape Datasets

The core tasks of tracking, optical flow and shape es-

timation have many established datasets and benchmarks

[17, 11, 26]. Optical flow has smaller real world bench-

marks such as Middlebury [4] and KITTI [22], as well as

larger synthetic datasets that can be used for training, in-

cluding MPI Sintel [11] and much larger Flying Chairs [15]

and Flying Things 3D [31] datasets. The use of synthetic

datasets to train Deep Learning (DL) models for perfor-

mance on the real world has been studied in some detail

[30]. However, the question of how well modern Com-

puter Vision methods generalize to understanding of styl-

ized, non-photorealistic content remains unanswered. The

human visual system has no trouble adapting from the real

world to abstract renditions such as cartoons, but an in-

depth investigation of this topic for automatic algorithms

has been impossible due to lack of data. Much like existing

large optical flow datasets, our dataset is constructed syn-

thetically, but with the opposite goal in mind. Rather than

striving for data that leads to better performance on the real

world, our new optical flow benchmark is designed to sys-

tematically test algorithms on stylized, unrealistic content.

Further, our train and test sets make it possible to develop

approaches that generalize across visual styles.

2.2. Stylized Datasets

Although non-photorealistic content is prevalent in the

wild, annotated datasets are limited. The BAM dataset in-

cludes 2.5 million images in diverse artistic styles [45], but

contains only limited image-level annotations. Photo-Art-

50 contains manual labels for 50 classes for a much smaller

collection of art and photography [46]. Other datasets, es-

pecially those with labels that are richer than image-level

categories, are typically confined to a specific drawing style

or content domain. For example, several datasets of por-

trait drawings have been collected [43, 29], some including

various levels of abstraction [6], modeling artist’s memory

of the person [34] or providing multiple caricatures of the

same public figure [33]. There are a number of labeled free-

hand sketch datasets, including TU-Berlin 20,000 [16], the

Sketch Database [36] with photo-sketch pairs, and the fine-

grained sketch-based image retrieval dataset of shoes and

chairs [49]. Sketches in each of these datasets have a single

specific stroke style, limiting their applicability to general

sketch understanding in the wild.
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The fragility of Deep Neural Networks trained on a spe-

cific domain is well known, for example Simo-Sierra et al.

observe it for the task of sketch simplification, and instead

propose an unsupervised approach [37]. However, unsu-

pervised methods may not be well suited to all tasks. An

alternative direction is supervised or unsupervised domain

adaptation. Li et al. combine existing stylized datasets into

PACS, a domain adaptation benchmark containing 7 cate-

gories and 4 domains [28]. Similar datasets with more fine-

grained annotations, such as cross-style correspondence

pairs or motion information, do not exist.

2.2.1 Synthetic Stylization

Obtaining ground truth annotations can be difficult, and

many supervised approaches rely on synthetic data instead.

For example, synthetic line drawings have been used to train

networks for sketch-based modeling of 3D objects [14, 27]

and faces [23]. This approach works well if at test time the

trained model responds to sketches drawn in a particular

user interface using the same medium, but breaks down if

input sketches come from an unconstrained outside domain.

Like most other datasets containing optical flow ground

truth, our dataset is created synthetically by rendering 3D

scenes. Unlike existing corpora containing both drawings

and photos or 3D information [36, 49, 14, 27], we make a

specific effort to diversify our dataset across many drawing

styles. There are many techniques for non-photorealistic

rendering of 3D models, and we refer to Bénard and Hertz-

mann [5] and related work in [18] for a survey of line

drawing, stylization and style transfer techniques. We use

Freestyle engine [9] integrated into Blender for outlines,

and rely on both Blender and Stylit illumination-guided

style transfer by Fišer et al. for artistic shading [18].

3. Creative Flow+ Dataset Overview

To our knowledge, we present the first richly annotated

multi-style non-photorealistic video dataset, which includes

ground truth optical flow and spatial correspondences. In

addition, our dataset is the only multi-style artistic image

dataset that contains per-pixel ground truth labels for nor-

mals, depth and object segmentation.

In order to obtain per-pixel ground truth labels (§3.2),

we construct our dataset synthetically (§3.4) by configur-

ing animated 3D scenes (§3.1) with a number of stylized

rendering styles (§3.3). Our dataset is split into a train and

test set, with ground truth from the test set held private for

benchmarking (§3.5). Separate sections detail our choice of

styles (§4) and dataset statistics (§5).

3.1. Animation Sources

Scenes in open source movies, such as Sintel [8], con-

tain complex custom rendering effects, which require man-

ual handling to ensure proper rendering of ground truth, as

detailed by Butler et al. [11], who manually curated the 35

animated scenes in the MPI Sintel dataset. The need to au-

tomatically stylize content further complicates the process.

Instead, we largely automatically process a much greater

number of 2,968 simpler animated sequences:

• 51 animations from [42, 19, 7, 38]

• 1647 character motion sequences, each retargeted to

one of 53 characters from Mixamo [2]

• 1270 sequences of unique ShapeNet [12] objects under

randomized rigid body simulation

Motion retargeting of Mixamo scenes, ShapeNet rigid body

simulation set up and camera set up for both was done

automatically. For ShapeNet sequences, a unique object

was launched from a random position and hit the randomly

tilted floor at a randomized point with varying physical pa-

rameters. In 50% of sequences, objects were allowed to

break, resulting in complex motion of multiple parts. 50%

of ShapeNet sequences include camera tracking and 20%

of Mixamo sequences include camera motion. We made

a significant effort to ensure that the ground truth render-

ing is correct for a range of input blends, and the final se-

quences in our dataset have been filtered to contain reason-

able ranges of motion. See §5 for details.

3.2. Ground Truth Information

Each consecutive frame pair (f0, f1) in each animated

sequence is labeled with the following pixel-level informa-

tion at a 1500 x 1500 resolution (Fig. 1, ground truth):

• forward and back optical flow

• occlusion map

• object ids

• surface normals

• alpha mask

• depth

• correspondences

Optical flow fields contain per-pixel (u, v) speed vectors of

pixels in f0, and the occlusion map includes pixels in f0 that

are occluded in f1. Surface normals are rendered as RGB

channels relative to the camera, with G corresponding to up

in the image plane, R to the right, and B toward the camera;

a value of 0.5 corresponds to a zero normal for that compo-

nent. Object ids are rendered as unique RGB colors with

antialiasing turned off, with each color assigned to a unique

3D object in the input animation. In the case of animated

characters (§3.1), object ids can also correspond to unique

vertex groups, such as shoes or hands. We provide no for-

mal categorization of these object ids, but do include dictio-

nary files with color to object/vertex group mappings. Fi-

nally, each object or vertex group is embedded into a bound-

ing box, assigning a unique RGB color to each position on

the object using its XY Z position within the bounding box.

These colors are rendered into correspondence images. To-
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Figure 3: Styles in the Wild: breakdown of animated film styles in the Animation Show of Shows (ASoS) series[1].

gether with the object id map, these correspondence images

provide a way to find closest corresponding points for any

pair of frames (fi, fi+k) in a sequence. This makes it pos-

sible to create training sets for a sparse correspondence task

spanning many frames and very large motion without track-

ing flows across scenes. In addition, it is possible to find

the closest corresponding point across frames, even in the

presence of occlusions, which would invalidate optical flow

tracking.

Undefined areas: Unlike the real world, where ev-

ery pixel by definition originates from a physical location,

stylized imagery may include areas of undefined informa-

tion. For example, a scene of a character dancing over

a flat background provides no information to determine

the background flow. The objectid masks in our dataset

split objects into three categories: transparent, black for

floor/background objects, and color labels for foreground

objects. Optical flow and other ground truth is only well-

defined for these foreground objects.

3.3. Stylized Frames

Each stylized rendering for a frame fi includes:

• composited frame, some with background and license

• shading image

• shading alpha channel

• outline image

• outline alpha channel

The final composited frame includes shading, outline and

background. In the case of Blender shading styles, where

the background is left transparent, we select random images

from the BAM dataset [45], which have suitable licensing

terms3. All of such images require license information to

be propagated; and we therefore include license files with

all stylized sequences that contain an image background. In

addition to the full composited frame we include separate

images of shading and outlines, and the alpha components

of each. This enables the creation of custom composited

datasets. For example, one could use our dataset to create

a diverse collection of outlines, including different back-

grounds, line colors and textures by using the outline alpha

channel. See §4 for style details.

3Authors of BAM kindly shared licensing information with us.

3.4. Dataset Construction Pipeline

Our dataset construction pipeline is implemented using

Blender 2.79 python API, a variety of command line utili-

ties, and an implementation of Stylit 3D rendering styliza-

tion algorithm [18]. The pipeline automatically processes

animations in the blend file format. In addition to multi-

ple ground truth passes, each blend is automatically pro-

cessed to be rendered in one or several stylizations (§4).

With the exception of the Stylit [18] implementation, which

was kindly provided by the authors, our dataset construc-

tion pipeline will be open-sourced upon publication to en-

able construction of custom datasets.

3.5. Benchmarks

10K frames in our dataset are reserved for testing, with

ground truth withheld. We will release a public optical flow

benchmark on this test set. In the future, we plan to release

other challenges using the sequences in our test set. See §5

for test/train split details.

4. Styles

4.1. Styles in the Wild

Our objective is to make this benchmark applicable to

a wide range of visual domains, but the choice of visual

styles is not an obvious one. To our knowledge, there is no

comprehensive taxonomy of human-generated image styles

used in animated content. As a proxy, we have categorized

162 short animated films in the 54 DVDs published by The

Animation Show of Shows [1] since 1998. We excluded

37 films using standard 3D rendering (already covered in

[11]) and 16 mixed-style films. The remaining 109 films

were categorized along 4 axes: A) primary visual medium

used, B) type of outlines, C) overall color scheme, and D)

frame-to-frame temporal coherence of textures and outlines

(Fig.3). Out of 109 films, 70 corresponded to a unique com-

bination of these 4 characteristics. While there is no reason

to strive for the specific distribution of styles in [1], we aim

to cover a similar diversity.

5387



Figure 4: Stylit Stylization: top row - example 2-color style col-

lected from volunteers, bottom row - randomized versions of the

style applied to a new rendering (inset) using [18].

4.2. Styles in the Creative Flow+ Dataset

At rendering time, we randomly select a shading and a

line style for the composited frame. All styles are split into

test and train sets, summarized in Fig.5.

Shading: We have configured our Blender pipeline to

allow rendering in flat and cartoon (toon) shading, as well

as textured shading which mimics a static paper texture

that remains fixed even as the objects move (an effect ob-

served during our analysis). This covers ”flat fill” and some

(smooth) kinds of ”shaded fill” in Fig.3A, but it is clear

that a benchmark aimed at general animated content must

also cover a range of hand-drawn styles and textures. While

there exist Deep Learning stylization techniques pioneered

by [21], we were concerned that they may introduce a strong

bias into the textures of our stylized data. Instead we opt to

use Stylit [18], a more classical illumination-guided style

transfer technique that borrows textures directly from pro-

vided style example. We have organized a style collection

drive, where 11 volunteers used various physical media to

create 24 style examples. Each example required drawing a

sphere exactly aligned to a 3D rendering (Fig.4, first row),

and each style was drawn in either one or two colors. Fur-

ther, in order to avoid pasting textures from the same image

for every frame, every color of every style was drawn twice.

Given a new rendering, annotated with normals and object

ids, Stylit applies the style exemplar to the new rendering

(Fig.4, second row). Applying Stylit to every frame elim-

inates temporal coherence, much like in real hand-drawn

sequences (Fig.3D). We automatically configure Blender

to render a red material lit exactly as the sphere for every

blend. All styles examples were extensively processed in

Photoshop and tested to minimize rendering artifacts.

Outlines: We manually collected a variety of textures,

such as ink and pencil, and configured line styles using

Blender Freestyle engine [9], covering Fig.3B. While it is

difficult for automatic stylization to emulate a range of ex-

pressive outline styles, such as overdrawing and imprecise

strokes, we made an effort to introduce some line modula-

tion and variety of textures to increase diversity.

Colors: For flat and toon shading, color of objects is

randomized. We found that truly random colors are not rep-

resentative of stylized content and may make tracking easier

by providing more contrast. Therefore, for 20% of the se-

quences colors are randomly picked from 3570 train or 1500

test sets of discrete color themes collected from [13]. To in-

crease diversity of Stylit styles, we modulate hue, value and

saturation of applied styles with a 0.60 probability, and also

use this to increase the number of colors (each style exam-

ple has at most 2 colors). The ranges of allowed modulation

were manually determined for each style (e.g. a faint style

may become white if its value is set too high). The color of

the lines is randomized ensuring that it remains dark with

the probability of 0.8, following an observation that most

lines in the wild are dark and not random-colored.

5. Dataset Statistics

Our train set has 2,559 sequences (124,390 frames),

consisting of 1,379 Mixamo sequences (82,913 frames),

1,146 ShapeNet sequences (35,570 frames), and 34 Web se-

quences each at 2 camera angles (5,907 frames). Mixamo

sequences were built by retargeting 1,379 unique motions

to 38 characters, with each character appearing on average

in 36 sequences. ShapeNet sequences were generated from

43 out of 55 ShapeNet classes. Each train sequence is ren-

dered using 2 shading and 2 line styles from train styles in

Fig.5, and composited into 2 stylized animated sequences.

Our test set has 409 sequences (10,031 frames), con-

sisting of 268 Mixamo sequences (6,559 frames), 124

ShapeNet sequences (2,732 frames), and 17 Web sequences

each at 2 camera angles (740 frames). Mixamo sequences

were built by retargeting each of 268 held out motions to

one of 15 held out characters. ShapeNet sequences were

generated using unique objects from 12 held out ShapeNet

classes. Each train sequence is rendered using only one

shading and one line style from test styles in Fig.5, and

composited into a single animated sequence. Backgrounds,

when applied, come from a held out subset of BAM [45].

Comparsions: We compare our our dataset to other

widely used general purpose optical flow datasets in Fig. 6,

omitting datasets tailored to specific real-world scenarios,

like Virtual Kitty [20] for driving and SceneNet RGB-D

[32] for indoor scene navigation. Refer to [30] for a more

inclusive comparison. With the exception of the SceneNet

RGB-D dataset, which provides optical flow for 5 mil-

lion realistic indoor frames at a much lower resolution of

320x240, our dataset far exceeds other existing optical flow

datasets in size. We also provide higher resolution images.

Both MPI Sintel [11] and Monkaa [30] are based on render-

ings of 3D movies, similarly to our synthetically rendered

data, but do not provide diversity of visual styles. MPI Sin-

tel does include images for 3 different rendering passes,

albedo, clean and final, but these cover only a very lim-

ited range of stylized imagery. The flow magnitude distri-

bution in our dataset, computed only over the well-defined

5388



(a) Test and train shading styles using Blender and Stylit rendering.

(b) Test and train outline styles rendered with Blender Freestyle.

Figure 5: Styles in the Creative Flow+ dataset.
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(a) Flow Magnitude Distributions

Dataset Styles Frames Scenes Res.

MPI Sintel [8]
test 3 564 12

1024×436
train 1 1064 23

FlyingChrs.[15] train 1 22,872 22,872 960×540

FlyingThgs.[31]
test 1 4,248

960×540
train 1 21,818 2,247

Monkaa[31] train 1 8,591 8 960×540

Creative Flow+
test 13+ 10,031 409

1500×1500
train 25+ 124,390 2,559

(b) Sizes

Figure 6: Optical Flow Datasets: comparison of large general-

purpose optical flow datasets and Creative Flow+.

foreground areas (See §3.2), is comparable to other datasets

(Fig.6a). In part, the large number of frames in our dataset is

motivated by the requirement to represent each of the many

styles sufficiently to make learning feasible.

Practical matters: Even smaller datasets can present

technical challenge due to data size. For example, it may

take several days to download the 311GB of optical flow

for Flying Things 3D [31]. Because our dataset is even

larger, we employ various compression strategies for dif-

ferent types of data. Most image-based sequences (renders,

normals, etc) are encoded as videos, for which we will pro-

vide decompression utilities. Expensive components will

be split into separate downloads. The optical flow for our

training set has been compressed to 570GB, and will be pro-

vided in split downloads.

6. Evaluation of Flow Methods

We use our 10K test set to gauge the performance of sev-

eral optical flow methods on stylized content. Our analy-

sis includes classical methods of Horn-Schunck [24] imple-

mented in [39], Classic+NLfast method from [39], and Brox

et al. large-displacement optical flow [10]. We also evaluate

Epic Flow which combines classical techniques with deep

matching [35], and several pre-trained Deep Learning net-

works, including DC Flow [48], PWC-Net [39] trained on

FlyingChairs [15] and on MPI Sintel [11], and LiteFlow Net

[25] tuned for Sintel. Refer to Fig.7.

Our motivation for evaluating pre-trained networks on

Creative Flow+ is to establish how well these learning meth-

ods generalize to new, unseen styles. We found that while

average end point error of two out of three classical methods

is even lower on our data than on Sintel, all methods that in-

volve a pre-trained network exhibit very high average errors

and moderately high median error rates. As this could be

due to ill-defined optical flow in background regions (See

3.2), we further break down the errors by evaluating only

in the foreground regions (Fig.7a, black regions in the inset

are not included in the FG error computation). While the av-

erage endpoint error for foreground regions is significantly

lower than the overall error rate, it is still far above accept-

able levels for modern optical flow methods (e.g. compare

to performance on Sintel).

To better understand network generalization across

styles, we break down foreground errors by flat, toon,

textured and Stylit styles. Across the board, learning

approaches perform significantly better on toon shading

(Fig.7a, row2), perhaps because it is the closest style to

the MPI Sintel dataset, used in training of many of these

models. As expected, sketchiest and least coherent Stylit

styles (Fig.7a, row1) prove the most difficult. Textured

styles, where static texture may detract from the motion of

the objects, also challenge both classical and learning-based

methods. Apart from general trends, it is apparent that dif-

ferent networks favor different styles even if trained on the

same data. For example, PWC-Net performs very poorly on

flat shading, whether trained on Sintel or Flying Chairs, but

LiteFlowNet, trained on the same data, performs well (See

Fig.7a, row3 for flat shading). Performance of these net-

works on Sintel gives no indication of their generalization

to other styles.

We omit background errors from most of our analysis,

but the inability of existing methods to deal with noisy back-

grounds cannot be ignored. Even examples with relatively

low FG errors (Fig.7a, row3) exhibit wild predictions in the

background, both for classical and learning-based methods.

This would preclude them from being useful in a practice,

when foreground annotations are not available. From visual

analysis of results, PWC-Net appears to produce the wildest

guesses for noisy backgrounds, with the network trained

on Flying Chairs favoring upper right direction (purple),

and the network trained on Sintel favoring lower right (or-

ange). Further, Stylit backgrounds composed from pasted

texture patches can confuse matching algorithms and cause

bad Epic Flow and DCFlow predictions (Fig.7a, row1).

To sum up, robustness of existing optical flow methods

to stylized content is severely lacking, calling for new re-

search. While further investigation is beyond the scope of

our paper, Creative Flow+ dataset opens doors to this re-

search direction.

7. Conclusion

We presented Creative Flow+ dataset, the largest high-

resolution optical flow dataset and the first multi-style non-

photorealistic dataset richly annotated with ground truth op-

tical flow, depth, normals and more. We showed the need

to improve the generalizability of existing optical flow ap-
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(a) Qualitative examples, FG errors included.

Sintel
Creative Flow+

median Styles Speeds

All All FG FG:flat FG:toon FG:tex. FG:stylit FG:1% FG:1-3% FG:3%

Horn-Schunck [24] 9.64 8.09 3.39 11.93 11.78 10.75 13.67 11.86 3.51 17.19 60.07

Classic+NLfast [39] 10.12 13.12 6.74 9.11 9.19 6.84 11.23 9.41 5.58 11.06 29.97

Brox2011 [10] 9.15 8.77 3.03 8.17 7.41 6.13 11.50 8.16 4.03 11.19 30.76

EpicFlow [35] 6.29 63.50 10.00 14.42 9.44 6.66 11.34 22.94 10.82 15.91 36.98

DC Flow [48] 5.12 40.68 3.15 10.93 7.68 9.02 12.42 12.96 3.93 17.78 44.50

PWC(chrs.) [40] - 66.44 40.41 21.98 39.82 10.43 15.74 22.89 22.04 17.74 32.71

PWC(snt.) [40] 4.60 74.20 33.00 17.57 24.08 6.85 17.07 20.86 16.65 15.08 30.90

LiteFlowNet [25] 5.06 35.06 12.69 10.94 6.88 6.27 13.52 14.46 8.15 12.55 27.27

(b) Quantitative results.

Figure 7: Optical Flow Algorithm Performance: Evaluation on our 10K set. All numbers, except column marked median, are average

endpoint errors. Performance on Creative Flow+ broken down into All (full frame) and FG (foreground), as well as by style and speed (1%

- ground truth less then 1% of the frame size or 15 pixels, 1-3% between 15 and 45 pixels, 3% over 45 pixels. Style and speed breakdowns

are computed only for the foreground regions.

proaches to the stylized domain, and hope that our data

will enable much new research in Computer Vision for non-

photorealistic content.
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