
Creative Performance in Play: A Synthesis of Audio,
Visual and Narrative for Maximising Expressive

Potentials in Gameplay

Alexander James Thumm
B.Mus Sonic Arts (Hons) University of Adelaide, 2013

Submitted in fulfilment of the requirement for the degree of

Doctor of Philosophy

Elder Conservatorium of Music: Sonic Arts
Faculty of Arts

The University of Adelaide

April 2017

Part 1
Exegesis

Part 2
Appendices

Table of Contents
Abstract

i
List of Tables

ii
Declaration

iii
Acknowledgements

iv

Part 1: Exegesis

1. Introduction
1

2. Towards Maximising Expressive Gameplay Potentials for Players and
Designers

2.1. Creating a Definition of Expressive Potentials in Gameplay
10

2.2. Branching and Nesting to Enable Greater Expression While Minimising
Complexity

23
2.3. Branching and Nesting as a Philosophical Foundation

24

3. Branching and Nesting Structures in the Game World

3.1. Real-time Creation, Destruction and Communication Between
Performance Objects

28
3.2. Gameplay Crossing the Boundaries of Instrument, Performance and

Composition
35

3.3. Flowing Data: Navigating the Shared and Translatable
39

3.4. In-Game Interfaces in Narrative Play
49

4. Branching and Nesting Structures in the Real World

4.1. Co-Creation of Place, Generative Structures and the Artist-Artwork
Feedback Loop

53
4.2. Local and Non-Local Multiplayer Affordances

56
4.3. Hardware/Software Interfaces and Real-time Mapping Strategies

58

5. Performative Narrative, Puzzles and Game Objectives

5.1. Performative Developer-Authoring of Narrative and Puzzles
62

5.2. Performative Gameplay of Narrative and Puzzles
63

6. Conclusion: Expressive Dynamic Relationships for Player and Developer
66

Bibliography

Books

 69

Articles, Journal Articles and Research Papers

 70

Games, Instruments and Interactive Media

 73

Game Development Software and Systems

 76

Lectures and Documentaries

 76

Music Software

 80

Unity Code Libraries

 80

Web Pages and Articles

 81

Part 2: Appendices
Most Appendices include a digital component. See attached USB 85

A: Diagrams of Game Object Functionality

B: Performance Manual

C: Description of External Code Libraries Used in Unity

D: Gameplay Videos

E: Pallas of Vines: playable game for Mac OS X

F: Performances, Conferences and Academic Involvement

G: Design Process Screenshot Archive

Abstract

This thesis explores expressive audio-visual performance in video games. It has
been developed via the author’s creative and technical background in the field
of electronic music. Primary aims of this research are:
• Introduce key electronic music concepts into the field of video games in order

to make gameplay as expressive as electronic music performance, by
offering greater potential for original creativity in gameplay, and a more co-
creative experience

• Compare expressive attributes inherent in electronic music, to audio, visual
and narrative elements of gameplay. Thus find analogs in those areas where
similar levels of expressiveness can be developed and integrated as co-
creative gameplay

• Generate a conceptual framework, technical realization, and creative
realization (playable game providing narrative framing for performative
interactions) to contribute to the field of expressive and co-creative
performance in games

This research is primarily intended as a contribution to the field of video games.
By beginning with a small scale-focus on moment to moment gameplay this
conceptual framework engages with expressive potentials already existent in
the field of electronic music. By mapping dynamic gameplay parameters (e.g.
avatar movement, proximities, cursor interactions) to musical parameters (e.g.
DSP effects settings), a gameplay prototype was developed, rehearsed and
iterated upon. This allowed for the development of performance objects (e.g.
synthesizers, camera filters, etc), iterative refinement of any given object
towards more expressive gameplay, and development of inter-object-
relationships.

The combination of a large diversity of objects, and a small set of data-flow
languages facilitates a large array of interdependent routings between audio,
visual and narrative functions. Expressive potentials of audio-visual gameplay
combine with narrative context to enable a co-creative experience for the player
where they can situate themselves as an interdependent unit in the shifting
contexts of performative play. 

�i

List of Tables

Table 1: Basic Axis of Expressive Potentials in Gameplay

 16

Table 2: Advanced Axis of Expressive Potentials in Gameplay

 17

Table 3: Categories of Data Flow

 32

�ii

Declaration

I certify that this work contains no material which has been accepted for the

award of any other degree or diploma in my name, in any university or other

tertiary institution and, to the best of my knowledge and belief, contains no

material previously published or written by another person, except where due

reference has been made in the text. In addition, I certify that no part of this

work will, in the future, be used in a submission in my name, for any other

degree or diploma in any university or other tertiary institution without the prior

approval of the University of Adelaide and where applicable, any partner

institution responsible for the joint-award of this degree.

I give consent to this copy of my thesis, when deposited in the University

Library, being made available for loan and photocopying, subject to the

provisions of the Copyright Act 1968.

I also give permission for the digital version of my thesis to be made available

on the web, via the University’s digital research repository, the Library Search

and also through web search engines, unless permission has been granted by

the University to restrict access for a period of time.

I acknowledge the support I have received for my research through the

provision of an Australian Government Research Training Program Scholarship.

Alexander Thumm

Signed:______________________ 

�iii

Acknowledgements

Thanks to the University of Adelaide, the Elder Conservatorium of Music and

the Sonic Arts department for supporting this research. Special thanks to my

supervisor Stephen Whittington for guidance and insights throughout, and to

Kimi Coaldrake for all manner of support and encouragement. Thanks to Tracy

Fullerton and Chanel Summers at the University of Southern California’s Game

Innovation Lab for supporting my stay as a Visiting Scholar.

Technical and Creative Acknowledgements

Development Software

• Unity: Game development environment
• External code libraries used in Unity (see Appendix C for details)

Creative Contributors

• Angus Barnacle: Pre-composed background music and sound effects in
Story Mode (Wwise technical implementation done by the author)

• Alvaro Rodriguez: Character concept art
• Dana Chayes: Character models and character animations
• Ben Roach: 3D modelling of architecture assets
• Nathan Grove: 3D modelling of architecture assets

Aside from the above exceptions all concept design, coding, artwork, narrative-
authoring, puzzle design, and in-game implementation of music/art assets was
done by the author. 

�iv

Part 1
Exegesis 

1. Introduction

It is highly recommended that before proceeding with this exegesis, the reader
should watch Appendix D: Video 1 to get an overview of the gameplay
dynamics of the framework.

This thesis is a detailed creative and technical realization of a system for
expressive performance in video games. This exegesis discusses a three-year
development process which involved the creation of a modular framework for
performance, and a specific implementation of that framework in the game
Pallas of Vines which constitutes the core work of the thesis.

This system allows players to create original and expressive audio-visual
performances entirely within a 3D game world through controlling the motion
and dynamic properties of avatars and performance objects that can be made
to interact with each other to execute a diverse array of audio, visual, and
narrative functionalities. These performance objects each have visually and
behaviourally distinct manifestations in the game world, and can be freely
instantiated and moved around a virtual 3D space where both avatar-to-object
interactions and object-to-object interactions can have dynamic interdependent
relationships that are mapped to the generation or alteration audio/visual/
narrative materials in real-time performance.

Hamilton has undertaken similar foundational work exploring mappings of
gameplay dynamics:

By creating music and sound in virtual environments procedurally, that is by
creating and controlling sounds through the mapping of parameters of
motion, action or state to sound producing systems, the sonic experience
presented to users can be tightly integrated with the visual and narrative
experiences on which successful cognitive immersion in game environments
is based. The same user control systems that control motion or action in
space can control sound and music. By coupling user action in direct as well
as abstracted fashion, rich artistic environments can be created. In this way,

�1

the virtual environment itself can become both an active and reactive
participant in the sonic experience. (Hamilton, 2014)

Pallas’ gameplay system does not in any way rely on the player emulating real
world musical interactions, nor emulating/recreating prescribed pieces of music,
nor does it have any measure of what constitutes a successful performance.
Instead it focuses on providing avenues for creative personal expression to the
player, where they are invited to master a flowing dialectic of interdependent
relationships between game elements in which they, as player/avatar, are an
equal interdependent element.

At a certain point in the research the system divided into the two distinct
streams of Performance Mode and Story Mode, each with different gameplay
affordances. While Story Mode, in order to facilitate game objectives and
narrative progression, does have certain measures for the player’s successful
execution of performative units in the form of puzzles (usually musical in
nature), in these cases the system ensures that players still have a great deal
expressive freedom in how to performatively execute any given puzzle solution.
In both Story and Performance Modes, establishing a co-creative context for the
player is essential to this research. Although this co-creative aspect is explored
in various later parts of the exegesis, it is important that the reader understand it
as a foundational principle that supports the work. A simple definition of the term
is provided here in order to frame this understanding. Throughout this research
the term “co-creative” is used to mean play/performance contexts (both virtual
and real-world) that the player has abundant means to engage with, interpret
and, if desired, recontextualize via their own creative input. A simple example is
the player seeing and exploring the game-world in Performance Mode, and then
creating music in response to their perception of it. As is discussed later in the
exegesis, this becomes even more significant in Story Mode which has a
greater reliance on pre-authored content (audio, visual and narrative). Thus in
order to retain a high degree of expressiveness for the player, multiple in-roads
to this pre-authored content must be implemented, and this is where the
principle of co-creative design becomes most significant. Beyond this, there is
also the abundance of options for routing and hardware mapping (e.g. MIDI
controllers), ensuring that players have an equal part in designing a

�2

performance style that works best for them, within the constraints of the game.
While this last aspect is common to the field of electronic music software, it is
no less important to recognise its co-creative value, and see how and where
this can be applied to other areas of performance in gameplay. To be clear, the
idea of co-creation as it has long existed in both music performance and
traditional gameplay is a guiding light for this work, and the research makes no
claim to originating the notions of co-creative performance or play.

This thesis has evolved out of a long personal history of electronic music in
which I specialised in live performance, improvisation, and software/interface
design. In this field I was creating software in order to achieve specific kinds of
improvised performance practices that were otherwise not possible. These past
works involved modular interface design combined with advanced uses of
gestural (e.g. accelerometer) and camera-tracking (e.g. Kinect) technologies,
and included the development and performative uses of real-time MIDI and
OSC mapping systems. While it is acknowledged that accelerometer and
camera-tracking technologies could be applied to this current research, in those
past musical practices I found them to either be too unstable, too requiring of
constant moment-to-moment adjustment (and therefore too difficult to use
simultaneously with other controls), and too hampered by latency and as such
have been omitted from the scope of this work.

Much of the videogame work of this current thesis has been achieved with great
specificity due to my foundational work in electronic music. My knowledge of
visual-programming/virtual-patching environments such as Max (Cycling ’74,
2016) helped to establish the routing paradigm upon which this current thesis is
based, and performance software that I had created in the past often acted as a
blueprint by which certain musical functionalities could be translated into the
game world. My experience with other routing and modular performance music
software such as AudioMulch (Bencina, 2016) and Reactable (Jorda, 2003,
2009), which have illustrated the potential for real-time capabilities beyond
Max’s real-time routing limitations, has helped to further expand the conceptual
model of this framework.

�3

The field of research for this thesis includes both academic and commercial
innovations in both music and game technologies. Significant academic
precedents to this work include the research of Hamilton (2011, 2014) and
Oliver (1999, 2003, 2009), Furukawa et al (1999), the electronic music research
and commercial realisations of Carlson (2011, 2014), Jorda (2009) and
McCormack (2015). Significant musical precedents in the commercial gaming
world include the work of Iwai (1987, 1996, 2005, 2006), Mizuguchi (2001,
2011), Moriarty (1990), Miyamoto (1998, 2002, 2006), and Flanagan & Boom
(2013, 2014).

It should be noted here that the game research and practical outcomes of
Hamilton, Oliver and Furukawa are considered, in the context of this research,
to be rudimentary works commensurate with the relative newness of this field.
Similarly, the relevant commercial games of Iwai, Mizuguchi, Moriarty, etc. can
be seen as commercial experiments (the referenced works of Miyamoto being
exceptions as large-scale commercial games, but their relevant music aspects
only comprise a small portion of the gameplay for each game). This is all to say
that the field of music performance in games (where there is a significant
narrative or at least avatar-driven component) is still in its infancy. As such, this
research should be understood by the reader to be bringing the strengths of
electronic music interface design, and its related performative affordances, into
the field of gameplay-as-performance (including translating these structures into
aspects of visual and narrative performance in gameplay). As practice-led
research there is only a limited scope to describe here in writing the process by
which my years of electronic music performance and related software design
has translated into gameplay-as-performance interfaces. Beyond this exegesis,
the bibliography should give the reader sufficient perspective as to the breadth
of this process which cannot be neatly summarised as merely interaction
design, game design, theories of gameplay, interactive narrative or games-as-
performance, but should be seen as an aggregate of those things, for which
Bogost’s unit operations (described further on in this section) as well as my own
elucidation of branching and nesting principles, provide unifying structure.

The notion of expressiveness is explored throughout this research from two
distinct points of view, as it is, and has been throughout the work, the primary

�4

criteria for assessing the success, or the need to reiterate and refine, any given
element of the performance system. The first perspective is the technical: for
any given parameter, how much moment to moment control does the player
have, and how much scope do they have to create and alter relationships
between that parameter and any number of others during a performance. The
second perspective is the human: this is the potential for the player to engage in
“personal creative expression” during performance. Clearly this is much more
dependent on the individual and their propensity for engaging in personal
creative expression in life/art in general, so this aspect is discussed in terms of
dialectics: looking at what the elements of any given performance are, what the
dynamics of their interdependent relationships are, and how the player is an
element that is situated both inside and outside of that performance, and thus
their consciousness being that which freely crosses the boundary between
virtual and real world, and the many possible levels of creative synthesis they
can achieve between the elements of performance, while such navigation is
taking place.

Thus, regardless of the player’s personal experience or confidence in being
expressive, this performance system is designed as an environment in which
creative dialogues can be initiated and are provided with the potential to
flourish: an environment where a great diversity of avenues exist (or can be
created by the player) through which performance unfolds as, and through, an
awareness of these charged creative potentials.

To support this second perspective the following research frameworks have
been employed: Bogost’s (2006) concept of “unit operations”, exploring the
dynamic relationships of discrete units in games, Laurel’s “computers as
theatre” (2013) analogy, looking at the implicit narratives in the performance of
interactive systems, and Murray’s elucidation of a procedural narrative via
systems of interrelated entities (1997). These texts will aid in providing a
grounded perspective on performative dialectics while avoiding a drawn-out
philosophical discussion that is beyond the scope of this exegesis.

Before entering into specifics about the performance system, an overview of its
functionality is necessary. The system is large and detailed and as such it is not

�5

possible to describe every individual functionality in this exegesis, however all
this information is available in the diagrams of Appendix A, the Performance
Manual of Appendix B, and gameplay videos of Appendix D. It is recommended
that the reader, at minimum, explore Appendix A: Diagrams 1, 2, 5, 15 and
watch Appendix D: Gameplay Videos 1, 2, 3, 7, 8, 9 before proceeding with this
exegesis. Alternatively, for the most in-depth understanding of all aspects of the
framework, it is recommended the reader cross-reference all Diagrams in
Appendix A with the Performance Manual in Appendix B, all videos in Appendix
D, and play the game itself (Appendix E).

As mentioned this system is divided into Performance and Story modes which
each represent very different forms of gameplay. Except where otherwise
stated, discussions in this exegesis will focus on Performance Mode, as the
majority of Story Mode features have filtered down from Performance Mode.

Performance mode takes place in a freely navigable 3D environment in which
players can create and destroy avatars and many different kinds of performance
objects, such as audio sources, audio effects, lighting objects, camera filters
and so on (see Appendix A, Diagram 2 for a full list). Most objects have
parameters attached to them (either faders, dials, buttons or a combination of
these things), which are visible and tangible in the 3D world, and by which the
player can manipulate the internal data of those objects (for example a Pulse
object has just one fader which allows the player to adjust the tempo of the
pulse). Players can also route objects together where a pre-defined
compatibility between object-types exists; for example a Pitch object can be
routed into a Sample Player and used to change the pitch of that sound, but a
Pitch object cannot be routed into a Pulse object as they have no conceivable
relationship. Routing will be discussed in detail, but on the surface just consists
of players using the cursor to draw a line from one game object to another (see
Appendix D: Video 1).

A player can also instantiate new avatars and choose which one to control at
any given moment. Avatars are needed to listen to sound sources (i.e. to render
them audible in the real world via their proximity), to pick up and move objects,
and to engage in proximity relationships with many other object types.

�6

Proximity between objects is a key element in this system and it is used to
communicate between many different object-types. Proximity-dependent
objects are surrounded by transparent fields that show the radius of their
proximity responsiveness (see Appendix D: Video 1). Since many objects can
be moving in the game world at once, proximity becomes a powerful way of
creating a very active musical “ecosystem” over which the player can engage in
a combination of:

1) Exercising a fine grain of control over the moment to moment dynamics,
or

2) Setting things in motion and observing what unfolds

Thus a combination of both “direct drive” performance (where the player has
precise control of individual parameters), and generative music making is
possible (see Appendix D: Videos 12.1 and 12.2).

From the start of this research Pallas was designed so that every part of a
performance would exist inside the game world. This means that all elements of
the performance interface inhabit the 3D space, no part of the graphical user
interface (such as a head up display) is overlaid on top of the 3D world, and the
player always has the option to perform with no explanatory text or numbers nor
anything else that would interfere with the fiction of the game world.

Regarding multiplayer, while it is possible in Performance Mode to have multiple
human players controlling multiple avatars simultaneously, there are several
different contexts with various contingencies for doing so (as discussed in
Section 4.1). Except where stated otherwise, this exegesis discusses examples
in the context of single player, as all single player capabilities are also present
and functionally identical in multiplayer. While online multiplayer is compatible
with this framework it was beyond the scope of this research to technically
implement. Appendix A: Diagrams 4 and 5 detail the relevant conceptual details
of such an implementation.

�7

The core practices employed in the realization of the practical component of this
thesis – that is, in creating the framework and the game Pallas of Vines –
involved and combination of interface design, coding, rehearsal (practice
performances with the game itself), and subsequent improvements,
augmentations and refinements to the system. The work was created within the
Unity (2016) game development environment and coded in the C#
programming language. However it should be noted that the focus of the
research is the design and gameplay implementations of the various
components of the framework, and not the code itself which I consider to be just
one out of many possible ways of expressing these concepts. The ergonomic
design of the performance objects was created and iterated upon inside the
Unity editor using its in-built 3D primitives, and where needed other 3D meshes
were later imported to make each object-type visually distinct. Several
additional code-libraries and middleware (see Appendix C) were used to
augment Unity’s default functionalities, but only in cases where programming
them from scratch would have been an immense undertaking and/or a
reinventing of the wheel, and not relevant to this research.

Pallas of Vines has been presented at performances, and as a playable work at
several international conferences and was enhanced by expert guidance during
a 6 month period of Visiting Scholar research at the University of Southern
California’s Game Innovation Lab (see Appendix F).

In order to orient the reader, a brief structure of the remainder of this exegesis
follows. Firstly “expressive potentials in gameplay” as it relates to this research
will be defined. This definition will apply throughout the rest of the exegesis as
the measure by which the framework has been developed and iterated upon.
Branching and nesting will then be defined as both technical and abstract
structures that contribute to and expand this definition of “expressive potentials
in gameplay”.

Branching and nesting will then be used as a lens through which to explore
inter-object interactions within the game world, and then how those can relate to
the real world, such as in hardware controls, control mapping, multiplayer and
facilitating the player’s fluid navigation between real and virtual world.

�8

Next all these expressive affordances will be discussed in terms of their
integration into narrative and game-objectives. This area of the discussion
encompasses affordances for both players and developers, where developers
can leverage their own process of performative gameplay rehearsal to design
objectives that can be similarly performative for the player.

The discussion concludes with an exploration of the interrelation between
players and developers as a co-creative community, and this is the culminating
framing of the expressive interdependent interaction between real-world and
virtual-world.

The original contributions of this research will be summarised here within the
field of videogame research only. Although some specifics of these contributions
cross-over and feedback into the field of electronic music, most notably around
dynamic interfaces and virtual-physics-based continuous control, it is beyond
the scope of this exegesis to detail their validity in that field, as it would
necessitate abstracting these elements from this work's fictional context – a
lengthy process creating unnecessary complexity in the face of otherwise
discussing game performance as a holistic audio-visual-narrative experience.
Thus beyond the aims state above, the contributions of this work to the field of
videogame research are as follows:

• a definition of expressiveness in gameplay as it relates to the realisation of
player intention, and a subsequent measure against which expressiveness in
gameplay can be planned for (before the fact) or analysed (after the fact)

• a practice-led approach involving the design, testing and refinement of a
game encompassing an expressive, co-creative performance framework (a
collection of interdependent game objects and behaviours), unifying audio and
visual performance with gameplay dynamics and narrative context

• a further breakdown of the above into Story and Performance modes,
illustrating key contingencies needed to allow each to remain expressive and
narratively contextualized. These modes serve as two extremes of a spectrum

�9

(player-creativity/prescribed objectives) on which this research can be
practically applied to future works

• a practical application of Bogost’s “unit operations” and Murray’s “virtual world
full of interrelated entities” demonstrating the value of those theories as
design principles that can enhance the expressiveness of moment to moment
gameplay when both game designers and players create, observe and
participate in, dynamic dialectic gameplay systems

2. Towards Maximising Expressive Gameplay Potentials for Players and
Designers

2.1. Creating a Definition of Expressive Potentials in Gameplay

Throughout this research, in order to continually reflect and reiterate upon the
objective of achieving maximum expressive potentials for players and
designers, it was first necessary to define what constitutes “expressive” in the
context of this research. Clearly “expressive” is a highly subjective term,
particularly when it comes to improvisation which was the most common means
of rehearsing with and refining this work.

While this section unpacks the way in which expressiveness has been applied,
an even simpler definition will first be provided in order to frame that application.
A common definition of expressiveness is “effectively conveying thought or
feeling” (Oxford Press, 2018), and in this research the word “expressiveness”
can indeed be used interchangeably with the phrase “to accurately realise (i.e.
manifest) intention” and I will add to this an essential emphasis on dynamics,
i.e. accurately realising intention from moment-to-moment. The research lays no
claim to gauging a player’s ability to be creative, rather its only concern is to
offer them the means to accurately realise (i.e. give audio-visual-narrative form
to) their intentions in the context of moment-to-moment performance. A further
delineation is necessary where the reader might mistakenly infer that this work
is seeking to inspire “expressiveness of thought or feeling” in the player. While
“expressiveness of thought or feeling” is a valuable creative principle and a

�10

worthy goal, it is too broad a philosophical discussion, and too intangible to
succinctly quantify, to encompass in this research. It is only discussed to the
extent that the game’s fictional context is intended to inform the player’s co-
creative feedback loop during play (see Section 4.1), and, as previously
mentioned in this section, where a dialectic interplay of elements can serve to
further support the player to situate themselves as an interdependent element
within the combined real-world and fictional performance contexts, particularly
in the game's Performance Mode.

Where Bogost (2006) discusses play in terms of authorial intent (of the game
designer) and interpretive freedom (of the player), the added factor of
expressiveness, in terms of explicitly designing gameplay to enable the player’s
original creativity, thus blends these notions of authorial intent and interpretive
freedom for the player. Thus in this research the player becomes co-author of
their own performance, as well as both interpreting the game context (as
created by the game designer), and their own dynamically unfolding
performance context. This is the framing of “expressiveness” throughout this
work for which Bogost's unit operations provides the theoretical underpinning:
intention being realised, in both the tangible and the abstract, across
dynamically shifting contexts of moment to moment gameplay in both the real
and virtual worlds and their dynamic interplays. This is explored in greater depth
in Section 2.2.

Defining what is meant by “performance” in this context is thus also important.
Again the focus here is on the intention of the player/performer. Thus the
research is not concerned with defining a specific or narrow range of
performance contexts – i.e. in this sense recreation or rehearsal is as valid a
performance as playing professionally to a live audience – and again is also not
concerned with gauging the validity of a performance by its creative merit. To
put it another way, “performance” here is framed as “the moment-to-moment
process of the player/performer giving (audio-visual-narrative) form to their
intention”. Thus wherever this exegesis implicitly or explicitly compares
performance in gameplay to musical performance, that framing applies equally
to both cases. Furthermore, wherever this exegesis discusses gameplay in

�11

reference to Pallas of Vines, the word “gameplay” can be considered
synonymous with the word “performance”.

To clearly frame the aspect of this exegesis focused on “maximising expressive
potentials”, the reader may well look at the practical results of the research and
find it wanting in comparison to performance on an acoustic instrument — and
perhaps more pertinently — performances in electronic music software. In this
sense it is essential to keep the following framings in mind:

• This musical aspect of this research and its practical outcomes are
concerned with electronic music, in which my creative and technical
background is deeply rooted. While there are certainly branches of electronic
music that are concerned with emulating acoustic instrument sounds and
techniques, they have no bearing on this research. This work is only
musically concerned what is unique to electronic music – those sounds and
performance styles that are not possible to achieve by acoustic means.
However, the expressiveness by which acoustic instruments can be played –
that is their intimate and immediate moment-to-moment audio-visual-tactile
responsiveness and feedback for the player – is held as the highest measure
of expressiveness that the vast majority of electronic-music instruments/
interfaces have not yet achieved in a unified sense (i.e. in some cases unified
along one or two of the audio-visual-tactile axes, but rarely unified on all three
axes). To put all of this simply, an acoustic instrument can’t make the sounds
that electronic instruments/software can, but generally speaking electronic
instruments/software have not yet achieved the level of unified audio-visual-
tactile responsiveness and immediacy of player-feedback of acoustic
instruments.

• This research and its practical outcomes should be viewed holistically as a
game-as-audio-visual-instrument. Any attempt by the reader to separate the
game’s electronic music potentialities from its visuals and its player-interface
will result in a misunderstanding of its significance and contribution to the
field of gameplay. What is significant about this work is that entire
performances take place within a game world, informed by the visual style
and atmosphere of the game, and its player-controls, responsiveness and

�12

physics. Performance entirely within a game world thus unifies the dual
concept of play in the sense of “playing an instrument” and “playing a game”,
and equally significant is that the visual interface doubles as a visual
performance. It should also be noted that while the game’s Story Mode
makes this holistic performative-play very clear (e.g. music is performed
towards a narrative end of solving puzzles to advance the plot), Performance
Mode hinges on player intention to create this unified audio-visual-narrative-
gameplay performance. Without the holistic intention, the question of “why
not just perform with traditional electronic music software” is valid, but with
this holistic intention, that question becomes irrelevant. However, as with the
point above, the existing expressive potentialities in the field of electronic
music software have been, and continue to be, valuable points of reference in
developing and refining this work.

Thus this research makes no claims nor intentions to being more expressive
than existing forms of acoustic or electronic music performance. Rather it
situates itself as foundational work in unifying audio-visual-narrative
performance with gameplay, thus contributing to future research that will
undoubtedly reach those benchmarks of expressiveness already set by
acoustic and electronic music performance.

In order to achieve the formulation of a clear, concise framework by which to
achieve expressiveness – and most importantly one that would support the
reflective reiteration necessary to refine the performative affordances of this
game – an axis of expressive potential in gameplay was devised. While this was
essentially just the very obvious and simple way in which I had, for many years
prior, been refining my development of expressive musical technologies, it
became clear to me that like many very simple internalised personal aesthetics,
it takes some explaining to convey its simplicity. Note that for the sake of brevity
the following examples are musical, but the reader should keep in mind that the
axis of expressiveness being formulated here encompasses audio, visual and
narrative gameplay as a unified whole.

At its most basic, I define the axis of least to most expressive with the following
analogy:

�13

• A sound plays in a continuous loop, the performer can only switch it on or off
and has no other form of control. This is minimally expressive. No matter
how practiced a performer or how elaborate their gestural input, they do not
have expressive control of the resulting output.

• A volume slider is infinitely more expressive (assuming it is analog,
otherwise if digital, it is more expressive to the degree of its data resolution).
Now the performer has precise and fine-grain moment-to-moment
(continuous) control. The performer now has access to expressive
dynamics.

• A hypothetically infinite number of volume controls on an infinite number of
sound sources is infinitely more expressive again. Now the performer has
access to interdependent expressive dynamics, where from moment-to-
moment they can expressively control the relationship between any number
of dynamic parameters.

• However, given that in this example the sound is the same in each instance,
any means to continuously control pitch or timbral characteristics creates
another layer of expressiveness. Thus it is not just the amount of
parameters that will contribute to expressiveness, but the availability of a
diverse array of parameters.

• Then with such a diverse array, any given performance would require a
means of balancing that diversity: at least one aesthetic feedback loop. This
means interdependence between those diverse elements. This could be as
simple as the performer continually monitoring and altering parameters to
maintain the balance, or it could include one or more automated means of
reflective signal processing, whereby the digital system can assess and
adjust its own output (a simple example is an audio compressor).

The minimal end of our spectrum is easy to understand, however the maximal
end is only hypothetical and illustrates another clear consideration necessary to
include in this measure of expressiveness: physical and cognitive constraints.
Simply put, with our hands, or potentially hands and feet (head, eyes, and so
on), we can only control so many parameters at once, and our conscious
awareness, in the dynamic moment to moment demands of performance, can
only focus on so many at once.

�14

Clearly, this does not mean that we can’t control 20 different parameters over
the course of a performance for example, it simply means that they must be
spread out over a reasonable amount of time so that we are not tasked with
manipulating all 20 parameters within the span of say 2 seconds. Thus
manipulating a very large amount of different parameters is also possible, given
a significant time-span over which to do it.

At this point it is important to note that in-depth discussions of the fields of
performative embodiment and human-computer interaction are beyond the
scope of this exegesis. The practical results of this research include in-depth
player-controlled routing and hardware/software mapping systems designed to
enable the player to co-author their own ideal performance interfaces to support
their own physical and cognitive needs for any given performance. This co-
authoring takes place both inside the game world (the dynamic creation,
placement and routing of game objects) and between the real world and game
world (e.g. mapping MIDI hardware to in-game performance parameters). So
while factors such as dynamic/continuous controls, gestural controls, and tactile
responsiveness/feedback are valuable (often essential) components of
expressive performance in electronic music, the reader should keep in mind that
this research does not involve the creation of hardware interfaces, nor does it
prescribe the way hardware interfaces should be used in performance (beyond
a necessary default QWERTY and mouse mapping of the game controls) and
thus it limits its design considerations to the dynamic availability of routing (see
Section 3.1) and mapping options, and continuous audio-visual feedback for
mapped parameters (see Section 4.3). Effective applications of embodiment
and human-computer interaction principles are thus framed here as the
responsibility of the player, and can be seen as additional “units” (to use
Bogost’s term) in the interdependent framework, which the player can choose to
dynamically navigate and incorporate into performances as needed.

Including physical and cognitive constraints, my axis of expressive potentials in
gameplay would then look like this:

�15

Table 1: Basic Axis of Expressive Potentials in Gameplay

However, “limited to as many as physically possible to control” would be clear if
talking about a physical space – for example the controls would ideally need to
be within arm’s reach – but it brings up another question when considering the
virtual performance space, where controls can be distributed around a
potentially infinitely-sized virtual 3D environment. In this case, neither space nor
amount of parameters is necessarily a problem, as long as we have a suitable
means of quickly navigating to the controls we need at any given moment. This
“navigation” includes not just moving through the 3D space to find what we
need, but also hiding and revealing visual information in a given area, as
necessary for minimising visual clutter and other cognitive “noise”.

Minimal Expressiveness —> Maximal Expressiveness

A single Boolean switch (on
or off)

Any number of continuous control parameters

• with a diversity of parameter types

• with a means of interdependent communication
between diverse parameter types

• limited to what is possible to physically and
cognitively maintain control and awareness of in
a given time-span

�16

So including these constraints, my axis of expressive potentials in gameplay is
found in Table 2:

Table 2: Advanced Axis of Expressive Potentials in Gameplay

The above now defines maximum expressiveness of dynamic parameters in a
performance space. However, it does not yet define the relationships between
those parameters. In order to achieve this, two principles were applied:
branching and nesting.

The concept of branching was applied to simply explore which objects and
parameters could be connected to which (by players in real-time), and if a given
object could output its data to multiple other objects at once. Throughout this
research, any time a new game object was developed within the framework all
of its relationship potentials with other objects were maximised by applying this
principle.

The concept of nesting was applied in two ways. Firstly as a means of situating
one game object inside of another, allowing for a multiple different object types
to be grouped together and moved via a single parent-object, thus maintaining
their positions and rotations relative to others in that nested group (and thus any
proximity relationships they may be currently engaged in). This kind of nesting
also allows the player to dynamically hide/reveal performance parameters if and
when needed in order to reduce visual/cognitive clutter. For example, a Sample

Minimal Expressiveness —> Maximal Expressiveness

A single Boolean switch (on
or off)

Any number of continuous control parameters

• with a diversity of parameter types

• with a means of interdependent communication
between diverse parameter types

• limited to what is possible to physically and
cognitively maintain control and awareness of in
a given time-span

• with the means at any given moment to hide,
reveal, and navigate-to performative parameters

�17

Player object has a built in amplitude envelope, however if the sample is playing
in at its full length the envelope is not needed, so the player can toggle the
visibility of the envelope’s parameters at any time. Thus the envelope acts as a
sub-object nested within the Sample Player. See Appendix D: Video 2, at 2:42
the player toggles the envelope on, thus revealing the relevant nested
parameters.

The second application of the nesting principle is as follows: where a given
object A passes a parameter to object B which passes that parameter to object
C and so on. If any change to the parameter is made at any point, this is
applied to all subsequent receivers down the chain. In this way the player can
create nested chains of data transformations.

Such chains could also branch at any point, and those branches could
themselves branch again, and potentially pass along other nested
transformations, and so on. Thus additional expressive potential is given to the
player by enabling them to create such structures.

So we thus have the following measures to assess expressiveness:
• Dynamics of manipulating multiple parameters
• Creation and alteration of branching and nesting relationships

The final measure of expressiveness breaks from the technical and adopts a
philosophical perspective, or rather multiple perspectives: this is the dialectical
nature of expressiveness.

Here the player is another “unit” (to use Bogost’s terminology) in dynamic
relationships with all other units – this includes the performance objects in the
game world, the avatar that the player is controlling, the game itself as a whole,
the current performance/play-session the player is engaged in, the computer
that the game is being played on, the real-world the player inhabits, the
universe the world exists in, and so on.

All of these are examples of radically different points-of-view to which the player
can relate their conscious engagement with the game. Some of these are very

�18

clear and literal, for example a sound source in the game world can only be
heard through the virtual “ears” of an avatar. As the player can have direct
control of an avatar’s movement through the game world, it is easy for them to
hear from the avatar’s point of view. Taken a step further, we can have multiple
avatars in the game world, and we can assign them sounds that only they will
hear. When this is done, the player hears the aggregate of what all the avatars
are hearing at any given moment. The player is thus, in a clear and simple
sense, actively engaged in synthesising multiple points of view.

In this sense it is not just the player’s input that is expressive, but also their
reception, and for the player to understand what they are receiving they must
understand how it relates to their own input. Thus the performative feedback
loop between player-input and game-output is the essence of this synthesis,
and thus moment-to-moment audio and visual responsiveness – both of the
game-to-the-player and the player-to-the-game – is paramount for enabling this
process of synthesis itself to be maximally expressive (Schacher, 2015, Jorda,
2003).

In the above multiple-avatar example the avatars mediate in translating the
output of the sound sources into data streams that are more coherent or
manageable for the player in the physical world. In a similar way, most of the
game objects in this system could be said to perform some sort of translation
process in order to make data streams more easily navigable, or more easily
render them aesthetically pleasing.

However, dialectics comes more significantly into play when a player begins to
master certain aspects of performance. When this happens they are not just
waiting for the real-world output in order to reflect and correct the course of their
performance, they are seeing things from the point of view of many game-
objects at once. They can create a structure of many different game objects in
relation to each other, and know ahead of time the field of possibilities they can
thus navigate, given this collection of objects. To put it another way,
understanding the point of view of those objects, the player can anticipate the
nature of the “conversation” that will take place, without necessarily knowing the
specific course it will take.

�19

The experienced player can thus synthesise these multiple differing points of
view and see the situation from a higher perspective by understanding how
these different points of view will behave in relation to each other. By adding
their own performative input to such a situation, the player can also become
aware of their own interdependent role in this unfolding conversation, thus
functioning as an equal part of this virtual “ecosystem” rather than attempting to
impose top-down dictatorial control.

Achieving dialectic expressiveness depends on the level of conscious
engagement that the player is able to attain; however what is important here is
that this system was designed to both support and nurture this kind of
engagement.

While personal creativity is a factor of expressiveness, when it is viewed
through the lens of such dialectic interdependence the player can view the
dynamics of their relationships to the other elements of a performance system
at any given moment, and assess and respond to the kind of communication
that is taking place: responding to the unfolding demands of the work to
become a work once under way (Peters, 2009) where the artist is a part of that
work. So once again, original creativity comes from the player’s consciousness
of the unfolding interactions of the performance system, including a
consciousness of their own internal aesthetic goals (which is itself a discrete
and dynamic element (a “unit”) in relationship to all other elements in any given
moment of the performance).

As a point of reference I refer to the game Electroplankton (Iwai, 2005). This
game contrasts with the “rhythm game” paradigm (Pichlmair, 2007), which is the
most popular form of commercial music game in which players are tasked with
pressing buttons or singing in time with a backing track, and are then scored on
their accuracy. Rather than this prescriptive model of music-making,
Electroplankton provides a free-form model that favours player-centric creativity
and expressiveness. The player can choose from a series of different game
environments, each with a different mode of interacting with a touchscreen,

�20

which enables them to use gestures in various ways to create music. There are
no explicit objectives, and the game offers no internal measure of success or
failure. Thus the player is encouraged to engage in exploratory play, implicitly
favouring their personal creativity. On the other hand all the different forms of
musical interaction in the game are constrained to sound “pleasing” i.e. scales
that contain no strong dissonances, game environments whose note-triggering
is entirely tempo-quantized, and in most cases a significant portion of the
musical playback is automated (e.g. the player can set the parameters of a
musical pattern in motion, and the game will infinitely loop that pattern).
Obviously all such factors place limits on player-expressiveness in favour of
accessibility to a broader audience.

While Pallas’ performance system makes no claims to being accessible to a
wide audience, this is an implied factor of expressiveness in terms of good
interface design. Simply put, the more complex a digital interface is, the more it
gets in the way of the fluid execution of moment to moment performance
dynamics.

A secondary factor for which Electroplankton provides a succinct illustration is
the fictional game world context: rather than visually emulating a DAW or
synthesiser interface, the game is based in a fictional context (a miniature
underwater world). Here all its music-making capabilities involve the player
interacting with game characters (these interactions range, in different areas of
the game, between direct character control and indirect “influencing” of the
characters through interactions with the game environment). Electroplankton
could instead have been an abstract music application where game characters
and environments were replaced with abstract shapes, numbers for parameter
values, musical note-names, musical grids, and so on. As a contrasting
example, the KorgDS10 (Cavia, 2008) (also a NintendoDS “game”) is an
emulation of the real world hardware interfaces of the KorgMS range of
synthesisers: thus an abstract music-making tool with no fictional game-world
context or characters.

Given Iwai’s diverse experience as a multimedia artist in creating abstract
interfaces, the intentionality of his use of a fictional/character-based interface is

�21

clear (Mosely, 2016, 2). By using game characters and environments there is
immediately a narrative context (no matter how rudimentary), and thus players
can have at least the most basic level of expressive engagement with that
fictional environment, which becomes an aesthetic consideration in any
performance

In this sense Electroplankton can be seen as both an audio-visual composition
with a large possibility space for its realization, and an instrument for either
realizing itself as a composition, or for realizing some other score. This notion of
the composition as instrument is further explored in Section 3.2. In this co-
creative sense all games, even those of non-musical gameplay, are both
compositions and instruments.

Games disturb the relation between reader and story that narratives require.
In a game, “the player inhabits a twilight zone where he/she is both
an empirical subject outside the game and undertakes a role inside the
game.” Whereas narrative creates “cognitive identification” with generally
human or anthropomorphic characters, games implicate the player
personally in the work. (Bogost, 2006)

This expressive engagement with that fiction is also an important factor of this
research. Music-making in a virtual-world cannot be done in a void: there is no
way to create a nondescript 2D interface (Magnusson, 2005), much less a 3D
environment, populated with avatars and objects, that is generic or without
fictional context. There will always be some aesthetic sensibility to it and this will
always influence a player’s performance, whether consciously or not.

Thus my aesthetic decision in creating this performance system was to create
an environment that implicitly supports and nurtures creative dialectic
engagement. Thus the reason for the peaceful and contemplative natural
environment of Pallas of Vines, evocative of a harmonious and balanced
ecosystem. I acknowledge that that which constitutes an environment
conducive to “creative dialectic engagement” is highly subjective, so of course I
could only gauge this by my own aesthetic sensibilities. As with Electroplankton,
what is most important is that a context is established with which players can

�22

have expressive engagement, and to which they can choose to align or oppose
their performances and aesthetic intentions.

This notion of the relationship of aesthetic intention to performative gameplay of
narrative will be further explored in Section 5.2.

The digital screenshot archive of Appendix G illustrates the aesthetic evolution
of Pallas’ visual environmental.

2.2. Branching and Nesting to Enable Greater Expression While Minimising
Complexity

In the creation of this performance system the application of branching and
nesting principles creates the following affordances for players:

• The application of branching to performance objects wherever possible
and practical gives players maximum options for moment to moment authoring
of complex performance structures; that is, the real-time routing of signal flows
between objects. This authoring includes creation, augmentation and
destruction. Where possible, this includes the potential for one-to-many
connectivity.

• The application of nesting to performance objects wherever possible
and practical affords players the maximum potential for moment to moment
control of the hiding/revealing of parameters. This is required to maximise the
availability of parameters-per-object while minimising the complexity of on-
screen information. An object that is by default nested inside of another object is
essentially a component for the parent-object that can be hidden or revealed
during a performance if and when needed.

• A second kind of object-within-object nesting is also possible. This
pertains to a performance object that is specifically designed for nesting. Any
other objects of any kind can be assigned to this object, thus inheriting the
relative dynamic spatial orientation of this object. That is, if this object is moved,

�23

these attached objects will move with it while maintaining their distance and
rotation relative to it. This functionality can be used where the player wishes to
keep the relative positions/rotations of a group of objects static, but whose
positions/rotations relative to other objects outside of that group can remain
dynamic.

• The application of nesting in the second sense is the nesting of data
flows where any given “receiver” of data inherits any transformation applied to
that data from any “transmitter” that precedes it in a signal chain. This concept
can then be augmented with branching structures whereby complex structures
of data transformation can be created in real-time. Once manually configured by
the player, these nested data-transformations (whether branched or not) will
thereafter be automatically applied to any incoming data in that chain, unless/
until the configuration is altered by the player. This affords players the maximum
potential for applying any number of transformations to any given data input.
Thus even moving a single parameter can result in a cascade of responding
parameters, whose responses could be anything from subtle adjustments of the
incoming data, to dramatic transformations into an entirely different form of
data.

These applications of the branching and nesting principles just described all
pertain to mechanical functionalities: how data exchange is routed, how
information is hidden and revealed, how objects are held in spatial-relationships
to each other, and how data exchange is transmitted and transformed. However
these are all manifestations of a more essential philosophical foundation that
returns to the question of dialectic interdependence.

2.3. Branching and Nesting as a Philosophical Foundation

Branching and nesting at the philosophical level has been shown to be a means
of achieving clarity and depth in play, as well as in both implicit and explicit
narrative (see more on this in Section 3.2), through the creation of a language

�24

of dynamic interdependence over which players have high levels of both pre-
authored and real-time control of relationships between game-objects.

This results in a co-creative dialectic interaction between players and the game-
world that allows object relationships to come to the fore as sites of expressive
potential – where any level of pre-authored content can always be designed to
have any level of co-created content built into its interface.

As has been discussed, this allows players to re-configure branching data-
flows, as well as being able to navigate within information that is nested inside
other information, and steer the flow of transformations across nested
hierarchies. This ultimately reflects the player-avatar relationship beyond the
virtual world, where the player can thus reflect on their physical-selves as an
avatar of a higher-order awareness. Simply put, by synthesising the relationship
between their real-world selves as player, and their in-game avatars, the player
can witness their role in the simultaneous interdependence of both real and
virtual worlds.

Game designers Katie Salen and Eric Zimmerman suggest that digital
gameplay involves a "double consciousness" through which a player may
identify with an avatar and yet remain "fully aware of the character as an
artificial construct". Salen and Zimmerman propose this as a way of refuting
what they call the "immersive fallacy," the misconception that, in an ideal
gameplay scenario, "the player would identify completely with the character,
the game's frame would drop away, and the player would lose him or herself
totally within the game character” (Cheng, 2014)

As Bogost suggests in his elucidation of his concept of “unit operations”, the
“unit” is not just the discrete unfolding algorithms of the game, or even the
inclusion of the player’s agency to influence that unfolding, but it includes the
many and dynamically shifting contexts of moment to moment gameplay in both
the real and virtual worlds: the tangible and the abstract, and all their dynamic
interplays (Bogost, 2006).

�25

Understanding units as objects is useful because it underscores their status
as discrete, material things in the world…while I include in my understanding
of units ordinary objects…I also claim that units encompass the material
manifestations of complex, abstract, or conceptual structures. (Bogost,
2006)

Videogames ask the critic to ponder the unit operations of procedural
systems. It is only appropriate that we also begin thinking of such criticism
as…a set of relations between parts, not just in text, but in the world as well.
(Bogost, 2006)

Through this “double consciousness” players can thus recognise the nested
contexts in which performance takes place: the game world nested inside the
real world, the discrete motifs and gestures nested inside any given
performance, and so on. This allows us to view the vast magnitude of
perspective available to us when reflecting upon the player-avatar relationship
in performance: generally speaking performance of any kind is already self-
reflective for the skilful performer, so when we add this powerful metaphor, the
opportunity for freely navigating back and forth through higher-order states of
self-reflectivity becomes much more direct and palpable.

Simply put, we have nested feedback loops:

• the player has a thought and so executes a real-world input on the game-
hardware in order to move an avatar in the virtual world

• the avatar responds to the gestural input, thus effective the game’s audio-
visual output

• the player sees/hears the avatar’s response and adjusts their input
according to whether that response has satisfied their intention

And from a higher perspective:

• at any given moment the player has a conscious intention (e.g. an idea or
aesthetic intention)

�26

• they physically execute on this communication through gesture on the
game-hardware, thus moving the avatar

• the avatar responds to the gestural input, thus affecting the game’s audio-
visual output

• the player’s physical perception sees/hears the avatar’s response (and its
result on the game’s audio-visual output) and adjusts their input according to
whether it has satisfied their intention

• the player, through the lens of their original intention, witnesses both the
mind/body’s response and the avatar’s response and adjusts their
communication according to whether those responses have satisfied that
intention

However in itself this is not a linear process, as this is only one example of one
kind of relationship – the player-avatar relationship. In addition, different levels
of these processes could be happening across different time-frames: e.g. for a
given player, perhaps their aesthetic intention could change faster than their
physical ability to execute on it. Thus feedback loops at different levels may be
looping out of phase. The above example is used as it is human, and thus
easier to relate to. However, as this research is positing a context in which all
elements of a performance are interdependent, there are many such different
kinds of relationship.

At this point in the discussion the standard rational assumption would be that
we cannot apply the same analogy to all other kinds of unit relationships since,
for example, a sound source object in the game world does not have a
consciousness. However, for the purpose of this research framework we can
view an object in the game world as part of a performance context, and this
performance is itself infused with conscious intention that is informing the
possibility-space of the performance. Or to use a different lens, perhaps the
context in a given moment is a particular movement of a performance, or the
execution of a particular technique, gesture or motif. Whatever the case, it
returns to the notion that the player is not in a top-down dictatorial role, they are
navigating in and communicating with a space inhabited by other performance
entities, both abstract and tangible (in both the virtual and real worlds). Thus
when we look from within the performance itself, gauging who the performance,

�27

or any abstract part of the performance (a movement, a motif, a riff, a gesture,
and so on) “belongs” to cannot be answered simply by saying that it belongs
solely to the player. Any argument assigning ownership solely to the player
reduces or dismisses the dialectic context of the feedback loop of player/
performance intention: that synthesis for which this performance system’s
shared data-flows were designed.

Branching and nesting throughout the whole performance system of this
research is a means by which conscious intention of the player can be infused
into the creation of a possibility space for performance and shared between the
constituent elements (the game objects) whose dynamic relationships create
that possibility space.

Looking at branching in this sense, the diversity of dynamic relationships is of
great significance, and as this necessitates the continuous translation of data
between different types of game objects (as well as between abstract entities
formed and dissolved in the shifting moment to moment demands of the
performance), we thus have an additional powerful perspective on dialectic
synthesis: the different “languages” that the various types of game objects
speak all able to be dynamically “translated” whereby the translation process
can be consciously and continuously mediated in order to align it with the higher
aesthetic goals or intentions of the unfolding performance.

In order to understand what this dynamic process of translation is and how it is
facilitated we must return to the somewhat more mechanical aspects of this
performance framework.

3. Branching and Nesting Structures in the Game World

3.1. Real-time Creation, Destruction and Communication Between
Performance Objects

At this point it is useful to reiterate that this work is focused on “maximising
expressive potential" for players, and to define what that means in terms of

�28

player affordances. Affordances here should be viewed in the unified sense of
audio-visual-narrative performances in gameplay. In this way, this section
details the interactions and relationships that bring such performances into
being via player intention. Creating these objects and dynamically defining their
relationships is one level of affordance – such functions are the basic units of
gameplay – on another level the goal is then for the player to execute a
successful performance (i.e. one that satisfies their intentions) using those
objects and their relationships. For the latter goal, the affordances are extremely
broad and require that the reader synthesise several areas of this framework:
This Section, as well as Section 3.3 provide the grounding in general objects
and their dynamic relationships and data flows, and Appendices A, B, and D
detail, and demonstrate examples of, all performative gameplay functions.
Simply put, what constitutes the affordances of this system cannot be separated
from player intention, where the interrelation between available functionalities
(the player’s ability to create new units of functionality by synthesising different
kinds of pre-existing ones) is as important as the pre-existing functionalities
themselves. That is to say, this work is presenting functionalities in a branched
and nested sense, where affordances are used by the player to create new
affordances for themselves.
When the player begins a performance in this game they are greeted with a
clean slate of functionality. Although an implied narrative context is
communicated – through the nature of the game environment, the architecture,
the appearance of the avatar and its animations, the responsiveness of the
game controls, and so on – nothing is yet happening in the game world that
constitutes a performance, and no “instrument” as yet exists (at least in the
musical sense).

The player begins adding objects to the virtual performance space as needed,
in order to satisfy (or at least begin to explore) whatever aesthetic intentions
they have set for themselves. This intention could be anything from free
improvisation to faithfully following a score. The decisions of setting up the
virtual space involve not just what objects to instantiate but also where in the 3D
environment to create them, since proximity (and in some cases, also relative
rotation) is essential to the majority of interactions. However position and
rotation are not locked in once the object is created, and performances typically

�29

involve a great deal of repositioning objects relative to each other to effect these
proximity relationships.

It is important to note also that this instantiation of objects does not necessarily
only happen before a performance begins, but can continue throughout. In
essence the player can be creating the instrument as they are performing with it
(see Appendix D: Video 12.1). Further to this, in doing so they are reconfiguring
the virtual performance space: thus both creating the instrument and the
performance space, in response to the unfolding demands of the performance,
“the demands of the work to be a work, to become itself once under
way” (Peters, 2009).

Once created, objects can be freely destroyed by the player at any time. This is
something that is very familiar to the field of electronic music in software such
as Live (Ableton, 2016), where during a performance the creation, manipulation
and destruction of modular elements such as sound sources and signal
processing effects is commonplace. In this research framework, what is
significantly different to that electronic-music-software paradigm is that when we
instantiate game objects, at any given moment they inhabit a position in the 3D
world, thus affecting the way the player will perceive and navigate that space.
Thus destroying objects doesn’t just remove their functionality or expressive
potential from a given performance, it also changes the dynamics of the
navigable space: both literally removing an obstacle, and perceptually
reconfiguring the spatial flow for the player.

Communication between game objects is one of the most detailed aspects of
this research framework, and it is the aspect which has taken the most amount
work to successfully execute in all its diverse game world manifestations. This is
due to the fact that the potential for different kinds of connectivity between
different object types is vast. Added to this was the iterative development
process of ensuring that the player can rely on a consistent mode of interaction
in creating and destroying all these different connection types.

Looking just at the interface, in most cases connectivity simply involves the
player drawing a line with the cursor from the sending object to the receiving

�30

object (some objects can both send and receive, so the direction in which the
line is drawn is significant). If the player attempts a connection between two
object types that is not valid, the line will have no effect and will be immediately
destroyed.

Appendix A, Diagram 2 gives an overview of all the different object types
available to the player; the white boxes in that diagram show the objects that
have a physical form in the game world. In most cases the player can
instantiate and manipulate any number of these objects prior to or during a
performance. Objects that have “module” at the end of their name are scripts
only; modules of code that be added to other objects to augment their
capabilities, but which do not require a specific game-object manifestation in
and of themselves. Game objects can be further delineated by the kind of data
they are able to share, meaning the kind of performance information they can
exchange with the same or different object types. The Categories of Data Flow
below broadly defines the different types of information that can be shared
between connected game objects:

�31

Table 3: Categories of Data Flow

This table shows the different kinds of information that can be exchanged in a
performance. In the scope of this exegesis it would be an excess of information
to match all the above Categories of Data Flow with all their compatible object
types, so an overview of what is possible is much more useful. For more
exhaustive details see the Performance Manual in Appendix B.

Throughout this framework both default parameters (almost always manifested
in game as dials and faders) and proximity interactions are ubiquitously
available as a means of manipulating data between different object types. This
makes it easy, for example, for the player to connect many default parameters
together and use one to control many others (including for parameters
connected to different object types), or to create a chain of parameters where
the data is transformed at any given point, or for the player to connect an avatar

Name Data Being Output

Default Parameters A continuous stream of floating-point values that updates at the
game’s frame-rate

Proximity Distance dynamically calculated between 2 given objects. In some
cases also combined with relative rotation

Default Switching Trigger or Boolean only

Audio Signal Updates at Audio/Sample rate (for Pallas, locked to 44100Hz)

Pulse Used to drive sample envelopes, sample playhead positions, synth
arpeggiation, and node sequences

Note Data Pitch and velocity

DSP Effects …and their parameters, specific to each effect type

Camera Filter
Effects

…and their parameters, specific to each effect type

Object Colouration Sends/receives a composite colour determined by dynamic RGB
values

Size, Speed of
Movement, Angle of
Rotation

A continuous stream of floating-point values that updates at the
game’s frame-rate. Based on either oscillating values (e.g. size scaling
up and down) or player-driven (e.g. rotation speed only changes via
player input)

Physics Properties Dynamic relative position, velocity on each axis, magnitude of velocity

Mappable External
Hardware /
Software Data

Incoming MIDI / OSC

�32

to a default parameter in order to control that parameter via the avatar’s
proximity (see Appendix A, Diagram 16). Since most performance objects can
be readily controlled via their in-built dials and/or faders, the kind of routings
described in this paragraph are the most commonly used in performances to
create and destroy dynamic relationships between game objects.

Proximity as described above relates to the case where an avatar is connected
to a default parameter. Proximity also has specific effects for different object
types, and this is the kind of proximity that is based on fields (see Appendix A,
Diagrams 7 & 8). Fields are semi-transparent spheres surrounding most object
types that the player can dynamically resize at any time. The size of the field
determines the radius of the effect of the connected listener object’s (usually an
avatar) proximity to that object (note that the player can also determine a
specific avatar for that object to have a proximity relationship with). For
example, for a sound source the size of the field determines the radius in which
that sound is audible: if the connected avatar is within that radius they can
“hear” the sound, and the closer they are to the centre of the field, the louder
the sound. To use another example, the same analogy applies to a localised
light-source: if the avatar is outside the field the light is completely dimmed, if
the avatar is at the centre of the field, the light is at its brightest. Note that it is at
a developer’s discretion whether the proximity field on any given object is used.
While fields can be applied to most object-types, in practice it is not always
practical to do so, and it is often the case that choosing not to include a field
(and thus a proximity dependence) for a given object means sacrificing some
expressiveness for the benefit of stability. For example a Pulse object can be
given a field, such that an avatar’s proximity will determine its pulse-rate, but
generally speaking it is more useful to maintain a stable tempo, rather than to
expressively fluctuate it.

Switching is also widely implemented throughout the framework (see Appendix
D: Video 8), and the vast majority of performance objects are compatible with
default switches. Switches can be configured to respond to either cursor clicks
(thus responsive only to manual triggering by the player) or avatar-proximity (in
which case they have a visible field delineating their proximity threshold, within
which they will be “on” and outside of which they will be “off”). As there are

�33

various ways to automate the movement of avatars in the game world (such as
placing them on a rotating platform), proximity switches can be useful for
creating generative performance structures (see Section 4.1). Players also can
assign specific avatars to specific switches, which again is more significant in
generative structures or multiplayer contexts where we would have more than
one avatar moving at once.

What constitutes an “on” or “off” state can vary greatly from one object type to
the next, so what is important here is that a given switch simply sends out a
signal to all connected objects telling them to toggle their state. Then locally, i.e.
at the receiving object itself, this toggle is translated and executed in the way
relevant to that object (e.g. switching on a sound, switching on a light,
bypassing an effect, taking into account whether that response is immediate or
easing, and so on).

It should be noted also that all object types can be toggled without the need for
a switch object. Switches would only be used either when multiple objects need
to be toggled at once, or in the case of a generative context where an
automated movement (such as an avatar standing on a rotating platform) was
being used to toggle an object (or a group of objects) via a switch. Aggregate
switches (see Appendix A, Diagram 17) are a much less commonly used kind of
interdependent switching, suited to more complex and/or generative
performance setups.

Beyond the categories of Default Parameters, Proximity, and Switching, the
remaining Categories of Data Flow in Table 3 are each specific to just a few
types of connectivity, and while they may still be vastly important to almost any
performance – such as note and pulse data certainly are – in the context of this
framework it is only relatively few object types that need to “speak” any of these
other languages.

Thus communication between performance objects throughout this framework
can be seen to carefully negotiate a balance of generic and specific data
sharing. This allows on the one hand for very rapid exploratory routing together
and continuous exchange between (potentially vastly different) functions

�34

sharing a common language, and on the other hand for discrete control of
precisely timed and executed functions sharing a highly specific language.

3.2. Gameplay That Crosses the Boundaries of Instrument, Performance
and Composition

In the context of gameplay, the distinction between composition and
performance is not as significant as it is in the field of music. Gameplay always
entails performative co-creation (in both the player’s input and their reception/
interpretation).

Videogames participate in the struggle between authorial intent and
interpretive freedom. Video games require players to create a subjective
understanding of the synthesis of one or more unit operations. Games
demand that players be capable of making this synthesis palpable in their
own experience. (Bogost, 2006)

Indeed as the works of both Bogost, Murray and Laurel attest to, any form of
digital interactivity entails some level of performance/authorship on the part of
the user, in recombining units of meaning and/or function.

Janet Murray offers another way to look at the relationship between
narrative and technology, what she calls procedural authority: “The most
important element the new medium adds to our repertoire of
representational powers,” says Murray, “is its procedural nature, its ability to
capture experience as systems of interrelated actions.” (Bogost, 2006)

However, since this research was born out of musical performance practices,
and more specifically out of electronic improvisation, acknowledging this
composition/performance distinction is important. It is most significant where it
has been useful in creating a space conducive to players freely crossing these
boundaries between composition, performance, instrument and game, through
encouraging conscious engagement with the potential for their gameplay to
encompass all of these contexts.

�35

Taking this a step further, looking broadly at gameplay as performance renders
these questions of whether a piece of music/art etc. is a composition,
performance or instrument somewhat outmoded. Procedural co-authorship is
now so natural to multiple generations that have grown up with video games
that there is nothing revolutionary about acting as co-creator of a work at the
same time as one is performing within it. One could say that any kind of game in
the long human history of games, i.e. including pre-video games, is a form of
procedural co-authorship. However what is significant about games and digital
interactivity in general is the increasingly fine-grain nature of those procedural
units that continues to give players more options for more precise and detailed
control as digital processing power increases. This “fine-grain nature” is the
data resolution of procedural authorship, and in order to keep abreast of its
expressive potential, it is necessary that frameworks such as this research are
created, refined and evolved into new co-creative mediums. For this field of
research this entails continual refinement in moment to moment gameplay in
order to facilitate games that are more precise instruments, more nuanced
performances, and more detailed and/or refined compositions. It also means a
more fluidly responsive lens for navigating between these points of view.

It is in this sense that the title of this section is quite intentionally given as
gameplay that crosses those boundaries. This is to highlight the dual nature of
“play” – the difference between playing a game and playing a piece of music
(i.e. performing, even if there is no audience).

As freeing as gaming can be, it seldom entails the straightforward
possession of agency or some boundless capacity for action. In the same
way that musicians – even (or especially) during their most virtuosic
exhibitions – might feel as though they are getting lost in, giving over to, or
being swept up by the performance and instrument at hand, so players of
games oscillate between being in and out of control, playing and being
played, and acting and being acted upon…Working out these fundamental
tensions is what makes gameplay a dynamic, interactive experience.
(Cheng, 2014)

�36

A game itself is play, it is a performance context. Play, as in performing music, is
a game in the sense that it immediately creates a fictional context, a magic
circle in which certain specific rules and conventions apply which dissolve as
soon the performance is complete (Huizinga, 1955). Much has been said in
game research about the boundaries of play and the “magic circle”, and it is not
necessary to reiterate such discussions here. Suffice to say that a
consciousness of the boundary of a given performance, the divide between the
real and the virtual world, allows the player to “play at playing”: that is, they can
be both playing a game and performing a piece of music at the same time.
Thus, entirely within the magic circle of the game world they could be playing a
game that is only perceived by them in the physical world in the most minimal
way possible (e.g. through a screen, speakers, and the game controls in their
hands). Now imagine that at the same time they are on stage in front of an
audience who are also seeing and hearing the performance. The player thus
has the freedom to shift their consciousness back and forth between playing a
game for themselves and giving a performance for – and in collaboration with
the responsiveness of – the audience, and they can and should continue to shift
this conscious perspective in whatever way is most conducive to the flow of
their moment to moment expressiveness. The Pallas performance framework
has been designed to facilitate such an attitude, and this attitude is what is
meant by gameplay of a higher-order – where the performer, by consciously
authoring and navigating the relationships between units of a given
performance, can thus “play” back and forth between game world play and real
world.

Whether actively role-playing or not, players of games are tasked with
straddling and arbitrating between multiple frames of mind. As Ken Hillis
puts it, virtual environments in general offer "a space of performance, a
multipurpose theater-in-the-round for the many components of the
self” (Cheng, 2014)

As a composition the game provides a context that makes any given
performance distinctly a performance of Pallas. That is to say it is not a blank
slate or an attempt to make a piece of abstract music-creation software that just
happens to use gameplay to drive parameters. Instead, much like

�37

Electroplankton, it provides a game world that has a unique atmosphere and an
implied narrative in its distinct visual nature and in the consistency of its “feel” –
i.e. its responsiveness to player-input, its animation, virtual-physics and so on.
Clearly it is not a composition in the sense of a fixed linear piece of music, but
rather it is a field of possibilities where visuals can be augmented and altered to
a certain degree, and the audio can be created and altered to a much higher
degree. For any given audio-visual performance the “piece” being performed
would always be recognisable as Pallas. In a purely audio performance –
without the accompanying visuals – the audience may not be able to tell
whether or not it was Pallas being performed, but nonetheless it would be
comprised of distinct audio qualities, behaviours and idiosyncrasies that would
undeniably make it a performance of the “composition” Pallas.

Considering the game as a performance in its own right depends entirely upon
the intention of the player giving any particular performance. For example, it is
conceivable that scores could be composed specifically for Pallas, which could
be recreated in performances with a high degree of consistency and precision
(depending of course on the detail of the score and the skill of the performer).
Thus any performance of such a work could absolutely be identifiable as that
work. However, given the previous consideration of Pallas as a composition in
and of itself, this would mean that we have a composition executed within a
composition – so once again the nesting principle is at play.

As an instrument, the player can be creating, augmenting, deconstructing, or
indeed destroying it either before, during, or after they have performed with it.
Thus it is more than what would typically considered an instrument in a fixed
sense. However Pallas can also function in fixed configurations: for example a
player could quite easily set up a synthesiser in the game, plug in a MIDI
keyboard and execute a regular linear score of keyboard music. This stability
and consistency is as important as its potential for being dynamically altered
and reconfigured. Returning to the idea of a score specifically for Pallas, such a
piece could describe both musical content as well as timbral transformations in
great detail (both of which require moment to moment stability of configuration),
as well as prescribing gameplay as a means by which the “instrument” (i.e. the
apparatus upon which the music is being performed) is reconfigured: that is its

�38

constituent parts are created, augmented and destroyed. Indeed such a score
would perfectly illustrate the synthesis of all the “boundary crossing” concepts
elucidated in this chapter: the composition would not only include performance
instructions, but also gameplay instructions for “how to build/alter your
instrument”.

3.3. Flowing Data: Navigating the Shared and Translatable

Section 3.1 has already discussed communication between performance
objects in some detail. In the context of “Branching and Nesting Structures in
the Game World” it is important to now explore the data flows of those
communications.

In order to achieve maximum expressiveness, two aspects of the
communication between performance objects are important:

• How easily connections can be created, bypassed, navigated and
destroyed

• How easily the data-flow can be dynamically controlled or altered

In both cases it is essential that play/performance is uninterrupted. In the field of
live audio this is a precise operation. For example, even in the commercial
patching environment of Max, because the system is not designed for live-
patching, if one attempts to use it live it has a critical flaw that impedes the
majority of patching functions: that is, connections between audio objects
cannot be created or broken with causing at least a momentary glitch-artifact.
As Pallas is designed for live performances that do include real-time patching,
such limitations would not have been acceptable, and it fortunately came to
pass that uninterrupted live patching was achievable within very few design
iterations. However for any serious performer some understanding of audio
processing is still necessary to avoid other potential erroneous audio artifacting.
For example, removing a DSP effect from a chain takes it out immediately
which in many instances (depending on the effect) can cause such artifacting.
In this case it is up to the player to reduce the wet/dry level of the effect first

�39

(which, given a practiced hand, could be executed in less than 1 second) before
removing the effect. For some operations a fast automatic transition is
executed, such as when bypassing an effect a fade-in/fade-out of the wet/dry
setting. These are limited to contexts where it would be of no benefit to the
player for having any other options for doing otherwise e.g. in the above
example, there are several other means of controlling the wet/dry setting of an
effect, so the player would only ever use the bypass function if they wanted to
execute an instant transition, thus it is handled automatically. For all other object
types where it is relevant, bypassing is readily available and can be executed
instantaneously with no interruption to the flow of audio or visuals.

Regarding destroying connections, one of the key considerations is the ability
for the player to easily navigate a potentially large array of connections during a
performance. Early in the research the connectivity lines that the player draws
from one performance object to another would, once drawn, remain constantly
visible until disconnected. Once this research framework reached a certain level
of complexity a typical performance involved instantiating and connecting a
significant amount of objects. This resulted in a visual clutter of lines all over the
game space.

The solution was thus for a line to be visible while being drawn, but then to fade
quickly to complete transparency as soon as it is connected. A global list keeps
track of every object’s current connection-lines, and the player can thus move
the cursor over a given object and press a key to either “flash” all connected
lines, making them visible for a brief moment before fading again, or to toggle
the visibility of all connected lines as needed (when wishing to make them
remain visible) (see Appendix D: Video 9). This means that for any given object
in the performance space at any given moment, the player can quickly view all
its current connections.

As it is typical for many game objects to remain dormant for extended periods
during a performance (while the player is attending to some other area), this
ability to hide and reveal connection lines is essential for achieving a moment to
moment balance between detailed views of the current configuration of specific
areas of a given performance – i.e. the ability to perceive in an instant what

�40

relationships exists between specific objects – and visual/cognitive clarity on the
performance space as a whole – i.e. not cluttering it with connection lines. This
once again comes back to the hide-and-reveal nesting principle, and in this
sense since connection-lines are owned by both objects that they are
connected to, a global game-context is responsible for managing this particular
nesting function.

Destroying connections is the one significant function of the interface that
sacrifices consistency for contextual suitability. While a highly refined interface
such as the Reactable offers a powerfully simple solution to this problem, in
practice, that did not suit the 3D game context. In the Reactable, two modes of
breaking connections are possible depending on the connection in question.
The first is simply moving the objects out of proximity of each other, which is not
an option for this framework since inter-object proximity has too many other
dependencies. The second is for the performer to use their finger to swipe a line
perpendicular to any connection-line on the screen (Jorda, 2009). Since Pallas
supports one-to-many connections, and thus a single object may have many
outgoing connections to other objects, the risk of using the cursor to cut the
wrong connection is the first problem. The second problem is the camera
perspective. Even though the Reactable and its constituent components are
tangible 3D forms, the interface on which these forms interact is limited to a 2D
plane. However, in Pallas’ full 3D space, where the camera typically looks down
at an angle on the scene, it is not always so easy to distinguish which line a
cursor is passing through, and so again the player would risk cutting the wrong
connection, or accidentally cutting multiple connections.

This issue proved to be the one that has required the most design reiterations
and contingencies to solve. In the end a balance was achieved by
distinguishing between objects that could only receive a single instance of a
particular connection type – e.g. a sample player can have only one pulse
object connected to it at a time – and objects that could have any number of a
particular connection type – e.g. a switch can have any number of outgoing
connections.

�41

Where only a single instance of a particular connection type is possible, a node
is created (when that connection is made) on the receiving object which the
player can use to break the connection. For example, since any object that can
connect with a pulse object can only have one incoming pulse at a time, those
objects themselves will create the disconnection node.

Where any number of connection types are possible, disconnect nodes are
handled by the sending object. For example a switch may have many outgoing
connections to objects that it will trigger, and those objects may be connected to
any number of other switches. Thus, rather than accumulating disconnect
nodes (for each switch they are connected to) on those receiving objects, the
disconnect nodes can be “flashed” in a similar way to that which line-flashing
(described earlier in this section) takes place. In such cases when the player
executes this function on the switch object (or whichever object in question),
disconnect nodes for all connected objects will appear halfway between the
position of the switch object and each receiving object, which the player can
use to break the respective connection.

While implementing both of these above cases was an involved solution, the
result is an interface that supports the destruction of connections with no or
negligible interference to gameplay flow.

In addressing the question of how easily the data-flow can be dynamically
controlled or altered, I will address the Categories of Data Flow (Table 3) and
briefly return to the subjects of default parameters and proximity.

In Section 3.1 the basic means of manipulating default parameters and
proximity was discussed in detail. These means are the essential foundation for
controlling and altering data flow throughout this framework. But there are two
additional considerations further to this:

• automated parameters
• specific behavioural characteristics of the other Categories of Data-
Flow

�42

When considering the data-flow of default parameters and proximity, automated
parameters are a powerful means of controlling and altering that flow. Since this
research is focused on expressive gameplay for players, the notion of
automating parameters would not seem congruent with this philosophy.
However the history of electronic music performance has shown that, in the
right balance, automated parameters can enhance creative expression, and
allow even large and complex performance setups to be more easily navigated
by one or a small number of performers. Take for example the LFO – by its
nature an automated parameter that will continue indefinitely to run its course
until altered by the user. The LFO has expressive potential because the user
can alter its parameters: it is an automated parameter, but it is one whose own
parameters can be dynamically altered (or indeed even themselves automated
by another LFO), and in this way it becomes an instrument within the
instrument: a discrete piece of functionality that can be performed with.

So it is with Pallas where we have various objects that can perform different
types of automated oscillation – size, rotation, relative position, orbital-rotation
position, parameters LFOs, and so on, for which we can dynamically set the
rate of oscillation, and the minimum and maximum values. Various values of
these objects can either be mapped directly to default parameters (e.g. the
changing dynamic size of a scale-oscillating object), or they can be used to
either directly or indirectly effect proximity changes: again I return to the
example of a rotating platform with an avatar standing on its outer-edge. If the
avatar is listening to a sound source that is next to (but not on) this platform,
then the sound source’s volume and panning will be oscillating as the platform
causes the avatar to rotate periodically closer to and further away from the
sound (see Appendix D: Video 9).

Regarding the other Categories of Data Flow, each has specific behavioural
characteristics that must be considered in regards to the dynamic control and
alteration of performance data:

Audio signal (including DSP effects):

�43

Care must be taken to manage connections and disconnections of DSP
effects to avoid audio glitch-artifacts or other undesirably sudden drastic
changes to the audio stream. Such issues have intentionally not been
smoothed over in order to retain the maximum amount of flexibility for the
player to control the dynamics of those transitions.

Pulse:
(see Appendix D: Videos 3, 4, 12)

Pulses, like audio signals, operate at audio-rate. While audio-rate is used to
maintain the consistency of the pulse (since a game’s update rate constantly
fluctuates and thus cannot provide a stable tempo) the pulse itself obviously
does not output as a continuous audio signal but rather as discrete singular
bursts. These can be used to directly trigger samples – either to re-trigger
from their loop-start position or to trigger an instance of their currently set
envelope if they have one (in which case any number of such instances can
play concurrently). They can also be used to directly iterate through a
synthesiser’s arpeggiator. In order to use incoming pulse-data, a given
arpeggiator requires incoming note data (e.g. the player holding notes on a
MIDI keyboard) or the player needs to have previously locked-in some note-
data. Pulses can also be used to drive node-sequences (see Appendix A,
Diagram 18) – these are branches of nodes that the player can create and
route to audio-objects to trigger them to play sample-loops, envelopes, or in
the case of a synthesiser object, individual-notes. Since node-sequences can
be of any size and branching-complexity, and the player can at any time
restart, set loop positions, change sequence direction, loop both backwards
and forwards, and mute any given node, the flow of a node-sequence can
quickly transition from a “hands-off” automated process to a dynamically
authored one.

So while the pulse in itself is one of the simplest objects in the framework,
controlling its data-flow becomes incredibly nuanced when the player
considers how that data is to be received, and potentially received differently
at many different sources simultaneously.

�44

Note Data:
(see Appendix D: Video 5 from 7:13)

While note data in the context of Pallas is ostensibly the same as a standard
MIDI note-on note-off operation, the framework intentionally avoids using
MIDI for all note-operations, for two reasons. Firstly, not using MIDI means
that play speed/frequency (for both sample players and synthesizers) can be
set as a continuous floating-point value, allowing for high-resolution glissandi
of any length, as well as theremin-like implementations of a monophonic
synthesizer. Secondly, the formatting of a MIDI message would require
additional note information that is never used in this framework and would
just require an additional translation step back and forth to add or filter out
this extraneous information every time a note message is processed.
However, care has been taken to ensure that MIDI note input and output are
possible, so in these cases the translation (from MIDI data to Pallas’ own
note data format) only takes place as needed when MIDI note data is
incoming (from MIDI hardware or software external to Pallas) or translated in
the opposite way for outgoing data.

In performance most serious (i.e. technically/aesthetically skilful) uses of note
data would require external MIDI hardware or software, otherwise a player
would be relying on the extremely limiting QWERTY keyboard for note input
(thereby also losing the potential for note velocity). Thus any further
considerations of data-flow in this discussion are dependent on such external
sources, as well as the real-time mapping of such sources, all of which are
discussed in greater detail in Section 4.3.

Camera filter effects:
(see Appendix D: Video 7)

In order to provide consistency of interaction for players the design of camera
filter effects was initially conceived to have the same connectivity structure as
audio DSP effects. So for example where an audio source could have a low

�45

pass filter, a phaser and a flanger attached, each of which are separate
objects in the game world, a camera object could have a saturation, contrast
and vignette filter attached, each of which would be separate objects in the
game world. However there is one obvious problem with this model, that
being that with sound it is possible to hear many different audio sources
simultaneously. With visuals this is not possible, or if technically achievable,
is not at all practical. Simply put, the player only needs to see the output of
one camera-on-the-game-world at any given moment. Thus the connectivity
structure of camera filters was redesigned quite dramatically so that a chain
of filters can be stored and manipulated on any given camera filter object, but
behind the scenes each filter (i.e. each individual unit of signal processing) is
automatically processed on the game’s main camera. While it would be
technically possible and quite easily achievable to allow the player to
instantiate any number of cameras during a performance then apply filter
chains to specific cameras, thus making the interface an exact analog of the
DSP-effects-to-audio-source connectivity, in practice this is quite redundant.
The reason being that effectively navigating the 3D space is dependent on
the way that the camera moves with the avatar, in either a first or third person
view, and this is of vital importance concerning moment to moment accuracy
of control – not just of the avatars themselves, but also concerning the
player’s ability to see and manipulate parameters. Even if the player wanted
to use multiple pre-set camera angles each with its own chain of filter effects,
for example to create a machinima-style narrative performance, in the virtual
space this is still easier to achieve with just one camera, since the camera
can instantaneously move to a new position and angle, with a new set of filter
effects, as quickly as a hard cut would take place. If however to transition,
e.g. crossfade, from one camera to another, and thus also one camera filter
chain to another on multiple cameras, is not currently possible in this
framework.

Regarding data-flow, all of this means that any given camera filter object also
holds the controlling objects (and the parameters for each controlling object)
for however many filters the player has instantiated in its chain. Thus a great
deal of information is nested in every camera filter object, making it
essentially impossible for the player to see, at a glance, how each effect in a

�46

filter chain has been set. Again, this can be contrasted with an audio source
where any connected effects and their parameters would be separate objects
that are (along with their parameters) all simultaneously visible. So while
navigating and adjusting parameters on a camera filter object is relatively fast
and simple, it lacks the constant visual feedback of most other object types,
and in this respect it substitutes the constant availability of parameters for the
condensing of information.

Object colouration:
(see Appendix D: Video 6 from 5:05)

The data flow of object colouration relies of a very simple implementation of
default parameters. Using dials and faders, the colouration object allows
players to dynamically define values for red, green, and blue (RGB), thus
creating a single colour that is a composite of those values. Then any
compatible object connected to this colouration object will take on that colour
(and any given colouration object can output to any number of receiving
objects). This is most useful in performance for dynamically controlling the
colour of light sources, where it is possible to have any number of light
sources being controlled by any number of colouration objects.

Size, speed of movement, angle of rotation:

These have been covered earlier in this Section in the discussion of
automated parameters.

Physics properties:
(relative position, velocity on each axis, magnitude of velocity)
(see Appendix D: Video 9 from 6:34)

Almost all game objects in this framework use a vastly simplified physics that
essentially makes sure that they are obstacles (i.e. they can’t pass through

�47

each other), and that they have basic gravity to keep them grounded. Aside
from those functions, any other motion-based relationships they have are
faked in code. This is because physics simulations are highly CPU intensive,
and in a framework such as this where players have the freedom to
instantiate any number of objects at will, the burden of physics simulations on
all those objects, combined with of intensive audio and visual processing, is
too great for the average computer given the current state of computing
power.

Thus in this framework a specific object pair has been created with which the
player can explore physics-simulation interactions. This pair consists of an
anchor-object and a motion-object. The anchor is needed so that the player
can easily interact with the parameters of the motion object, freeze its motion
when needed, and as a point from which proximity from the motion object
can be measured and output. If there was no anchor object all of those
interactions would be very difficult to fluidly execute on a constantly moving
object.

In regard to data flow, the anchor object outputs three distinct sets of data: its
relative distance to the motion object (output as three separate parameters:
X, Y and Z distance), the velocity of the motion object (output as three
separate parameters: X, Y and Z velocity) and the magnitude of the velocity.
However, what the data flow really pertains to is the dynamic movement of
the motion object. In this sense, controlling those parameters means skilfully
applying forces to the motion object, and this is where some of the most
dynamic interactions between player, avatar and environment can be seen in
this framework. Using either the cursor-clicks, cursor-gestures, or avatar
movement, the player can knock the motion object around (the motion object
is by default a sphere, but can be substituted for other shapes). If this is done
on a flat plane, the player’s control will be very direct and predictable,
however if on an undulating terrain, then clearly a much more nuanced
performative dialogue can take place between player, avatar and
environment, where the player/avatar has a richer feedback loop of
responding to the nuanced motion of the object bouncing and rolling through
such a terrain. Extend this then to a multiplayer context where, for example,

�48

multiple player-avatars could engage in a kind of soccer match with this one
object type (which is outputting up to seven different parameters (per physics
object, remembering that we could have more than one) that could be used
to control any number of audio or visual parameters), and it is clear to see
the broad expressive potential of such a physics-driven data flow.

In addition, other object-types can also be made to move with the motion-
object, thus matching its position (though not its rotation). This allows the
player to set a proximity interaction in motion, for example between an avatar
and a sound source, and let the physics control the dynamics of that
interaction (e.g. the sound source rolls around the avatar through the terrain),
mediating only if and when they choose to.

Mappable external hardware/software data (incoming MIDI and OSC):
(see Appendix D: Videos 10.2, 10.3)
(see Section 4.3)

3.4. In-Game Interfaces in Narrative Play

The most ambitious promise of the new narrative medium is its potential for
telling stories about whole systems. The format that most fully exploits the
properties of digital environments is…the simulation: the virtual world full of
interrelated entities, a world we can enter, manipulate, and observe in
process. (Murray, 1997)

For the first year of its development this framework was focused solely on
becoming a means of allowing players to create original audio visual
performances. As such it did not prescribe any goals or game objectives for the
player.

At a certain point in its development, the real time authoring of text-based
conversations became a part of the framework, initially intended as a way for
one or many players to include narrative in their performance where they could

�49

potentially create machinima-style films within Pallas where music, visuals and
text-based conversations could all be performed in real time (and thus
potentially improvised) (Cameron, 2009).

While this implementation of a “performed-conversation object” was technically
successful, pursuing a machinima angle did not seem the best use of the core
strengths of this research, as it leaned more heavily on the linear end-product
rather than the branching potentials of the performative event. So the next
unfoldment became to explore the real-time creation of narrative objects, with a
mind to moving towards the real-time creation of narrative puzzles. To this end a
point-and-click adventure paradigm was employed, which eventually led to
forking this research into the two distinct streams of Performance and Story
Mode.

The point-and-click adventure, championed by Ron Gilbert’s Maniac Mansion
(1987) and its underlying scripting system known as SCUMM (Script Creation
Utility for Maniac Mansion) (Gilbert, 1987), is a genre of interactive narrative
gameplay that relies on cursor-based object interactions. It typically includes
gameplay systems for verbs (or at minimum a single “interact-with-object-x”
verb), inventory, and branching dialogue trees. SCUMM would subsequently
serve as technical foundation of a generation of highly influential narrative
adventure games (Bevan, 2013) from Lucasfilm Games (later to become
LucasArts) including Loom, for which the SCUMM interface was adapted to
allow for a focus on musical functionality (Moriarty, 2015, Maher, 2017). The
point-and-click adventure genre typifies the first large-scale cultural adoption of
Murray's “new narrative medium…the virtual world full of interrelated entities, a
world we can enter, manipulate, and observe in process” (Murray, 1997). While
the SCUMM system didn't aspire to great heights of sophisticated storytelling, it
had a significant historical impact (though indirectly, as LucasArts’ competitor
Sierra was much more successful in popularising the point-and-click genre)
through its crystallising of a tightly constrained set of types of interrelated
entities. This made the navigation of such narratives much more readily
accessible to players, and cleared many interface roadblocks, to thus enable
players to focus on “playing the narrative” without the added complexity of
figuring out how to play the narrative.

�50

Applying a point-and-click adventure interface to Pallas began very simply: the
player could place a default 3D cube into the scene. This could then be
assigned a name for whatever object it was meant to represent, and then it
could be routed to verbs or other objects, whereby text-based responses could
be authored for each of those routings. For example if the object was an apple,
and the player routed the apple to the “look at” verb, then they could author a
response to the command “look at apple” such as “it’s red and shiny”. This
could all be done, for any number of verbs or other objects, in real-time in the
game and exported as a text-file for each object (this exporting could even be
done invisibly to not interrupt gameplay). These text-files would contain the
object’s name and a list of all the verbs and other objects that it had responses
to, and what those responses were.

Aside from the obvious problem of how, in real-time, to make an object look like
what it was intended to be (how to access and assign an appropriate 3D mesh
to replace the default cube), the system relied too heavily on a convoluted
interface. Thus not only would it have been unsuitable for performance in front
of a live audience, but even as a means for developers to performatively
improvise the authoring of narrative objects and puzzles it proved to be more
cumbersome than simply doing so in non-real-time.

Nonetheless, realizing that such a system was more useful for developers to
perform with than for players led to an important augmentation to this research:
that was considering not just player-centric, but also developer-centric
performative expressiveness, which will be discussed in depth in Section 5.1.

Despite its shortcomings, the act of manifesting this real-time narrative object
system had several significant benefits that have remained relevant throughout
the course of this research. The first being that non-real-time authoring of
responses between verbs-and-object or objects-and-other-objects in this
framework is incredibly rapid, since at first it had been designed to function in
real-time. The second being that, in programming a system whereby a given
object would require only a string of text (e.g. the name of another object or
verb) in order to know what response to give, it became apparent that in this

�51

context verbs are equivalent to objects and thus verbs could be defined
contextually for each object. This means that, instead of choosing from a global
list of verbs that would apply to all objects in the game, the developer can, for
any given object, define any number of unique verbs that apply only to a given
object.

This realization thus had a dramatic impact on the narrative interface for the
game’s Story Mode and its potential for both communicating expressiveness
and for engaging the imaginative expressiveness of the player. Simply put, this
meant that what is possible depends upon the object being interacted with. This
also carries a clear philosophical implication: it is a bottom-up approach where
each object (which includes interactions with game-characters) is valued for
what it uniquely contributes to the field of interaction and the narrative context,
rather than a top-down approach where the developer/narrative applies an
unchanging set of verbs to any situation. This also resulted in nesting the verbs
as nodes within each object, to be hidden and revealed by the player as
needed: a game-world manifestation of the notion that the actions to be
performed on a given object belong to that object.

The narrative adventure game A House in California (Elliot, 2010) also played
an important role in the development of this particular concept. Although
manifesting a very different solution, it illustrates a unique example of the
expressive efficacy of changing the availability of verbs to suit (and to effect)
changes in the narrative.

The final and far-reaching factor in creating in-game interfaces for narrative
play, was in looking at the entire performance system and, step by step,
applying it to the design of puzzles. Since the performance system has such a
broad range of potentials for many styles of audio-visual interaction, this is an
ongoing undertaking that will extend far beyond the scope of this research.

Essentially this process entails either pre-configuring single performance
objects, or pre-routing combinations of performance objects, hiding away any
parameter controls that are extraneous to the context of the particular narrative/
puzzle element being created, then configuring an interface that is consistent

�52

with the visual/architectural/environmental/narrative atmosphere of the area of
the game world in which the puzzle in question is situated. The final step is then
to create the means to evaluate the “success-state” of the interaction, by which
the game recognizes the puzzle is complete and unlocks the reward (or
advances the narrative). This whole process is discussed in detail in Section
5.1.

See Appendix D: Story Mode Video for demonstrations of all concepts
explained in this section.

4. Branching and Nesting Structures in the Real World

4.1. Co-Creation of Place, Generative Structures and the Artist-Artwork
Feedback Loop

From the dialectic perspective of this research, where players are part of the
interdependent interplay of units of which Pallas’ framework is comprised, co-
creation of place in an inseparable part of gameplay, or more specifically, the
whole experience of playing the game.

Co-creation of place in this context refers to the performative feedback loop of
artwork and artist creating each other (Heidegger, 1960). This applies equally to
Pallas’ Performance Mode and Story Mode. In both cases gameplay has been
designed with the intention of encouraging the player’s awareness of
themselves in the real world as player, and of their power to manifest their
personal creative intentions in playing the game well (De Koven, 1978). By
encouraging an awareness of gameplay as performance, regardless of whether
there is an audience, this process of manifestation means that the “site” at
which the performance happens is always shared between the real and virtual
worlds. The better a player understands this, and the more fluidly they can
navigate their awareness between the two, the more effectively they can
achieve mastery of both technique and aesthetic intention. This is where I would
make the distinction between gameplay and performance. Any given play
session could potentially be both of these things at once, but without an

�53

awareness and conscious engagement with the atmosphere being created in
the real world, then gameplay can remain gameplay but never truly manifest as
a performance.

In this sense, the feedback loop for the player/performer requires a new kind of
discipline from that of the non-game musician/performer. This is due to the fact
that a game-as-instrument, such as Pallas’ performance system, comes with a
context, an implied narrative, that is compelling in its own right. Thus the
discipline of the player/performer is to not abandon themselves to the personal
satisfaction of creativity in compelling creative (virtual) space, but to at once
hold that space in their awareness and bring it out to the physical space where
the performance becomes manifest.

This kind of co-creation is an ongoing creative unfoldment and, as has been
discussed, the player of Pallas is a constant dialogue with all the elements of a
performance, all the game objects and audio-visual gestures and movements,
and the relationships between all those elements. But further to this, it is a co-
creation between the player and the game designer, between the player and
any other players (in the case of multiplayer), between the player(s) and
audience (whether live or asynchronous in the case of a recorded
performance), between player and score (if performing a pre-composed piece),
and between a community of player-performers who are mastering, evolving
and sharing their techniques an aesthetic sensibilities. All such relationships
also rely on this dynamic interplay of real and virtual engagement.

Creating generative structures in the virtual space is a strategy that can help to
facilitate this co-creative interplay. This is precisely due to the fact that
executing a generative structure entails, or at least grants the potential, for
setting a process in motion and allowing it to unfold: to sit back in the real world
and allow and observe the virtual running a particular course, thus gaining
perspective on one’s agency when one does choose to interact with it. Pallas’
performance framework has no means nor need for locking out a player’s
control, so even while executing a generative structure the player can at any
time intervene to adjust or adapt any given part of that process. While
generative systems such as Nodal (McCormack, 2015) have been explored in

�54

this research, creating a dedicated generative system was never the intention.
However through the course of creating the performance framework it gradually
became apparent that a great deal of scope for interdependent automation
already existed.

This is an inherent benefit of realizing the performance capabilities of video
games: that many systems throughout the history of gaming already exhibit
generative behaviours and many more have the inherent potential to be
generative if, for example, certain gameplay constraints were lifted. Even the
simplest video games exhibit such a fine grain of dynamic procedurality that it
takes only a few well-crafted rules of behaviour between discrete entities, as
evidenced by digital realizations of the elegantly simple Game of Life (Conway,
1970), to create a system that can output a dynamic array of precisely crafted
responses that, like Nodal, they can be well suited for mapping to performance
parameters such as audio (Oliver, 2003).

Put simply, game world entities are commonly programmed to explore, to seek
out other entities, procreate, multiply, die, and so on: all such behaviours and
the resulting movements and interactions between characters in the game world
are rich sources of generative information that can easily be mapped to
performance parameters. While Pallas does not employ any of these video
game tropes, favouring instead direct-player control and placing NPC
behaviours outside the scope of this research, the research does acknowledge
this vast untapped potential in the field of performative gameplay, and in
particular what it would contribute to expressive performance in gameplay.

Pallas employs a dynamic interdependence between many object types that
can be made responsible for triggering audio/visual functions of objects, and a
few specific object types that create endless dynamic motion. By setting in
motion processes at different phases (such as different rotation speeds) and
creating networks of interdependent switching (toggling various audio and
visual objects based on the position of automatically moving objects) systems
can be skilfully crafted and set in motion by a player which, while not emergent
in the true sense, can exhibit an aesthetic outcome greater than the mechanical
means by which the system executed it (see Appendix D: Videos 12.1, 12.2).

�55

Returning to the concept of expressiveness, it could be said that this represents
a form of asynchronous expressive performance: more akin to composition in
the sense that the player executes their creative faculties before the
performance takes place. However, once set in motion the player can always
make the decision to intervene or rejoin the performance, thus this question of
expressive engagement once again depends on the intention of the player in
any given moment.

4.2. Local and Non-Local Multiplayer Affordances

The addition of other human players can dramatically alter the landscape of
what is possible in performance. At the time of this writing, only local multiplayer
on a shared screen has been implemented as a playable feature in the
framework. However online multiplayer has been both designed on paper and
prototyped sufficiently to show that it is not only possible but easily achievable.

The great benefit of multiplayer is that it alleviates the limitation of only having
one avatar in motion at any given moment, or of only directly moving one non-
avatar object at a time. In single player performance, particularly when also not
using an external (such as a MIDI) controller, these are both a continually
challenging aspects, especially avatar movement as it is the primary means of
controlling volume and panning of all the audio sources in a scene. It is not
uncommon to have three to five audio sources playing simultaneously, each
with its own avatar-listener. In such an example a single player is typically
adjusting the parameters on the sound source, and often the parameters on
attached effects, while attempting to move the avatars (one at a time) in order to
maintain the volume and panning balance between all the sounds in order to
create an aesthetically pleasing performance.

Local multiplayer (see Appendix A, Diagrams 3 and 5) as it currently exists in
the framework, has several distinct manifestations, each of which has different
affordances for players and audiences (in cases where an audience is present):

�56

• Shared-Computer: all players share one computer and thus one
screen. The audience sees the same visual output that the players are seeing
(typically a duplicate, shown on a projector screen). The same audio output is
shared by all players and audience (usually speakers, potentially a combination
of speakers for the audience and headphones for the players). This can either
take the form of each player controlling and switching between any available
avatars, or it could involve one or more of the players dedicated to external
hardware control (such as playing a MIDI keyboard, see Section 4.3)

• Audio-Hardware Network: each player has a separate computer and
thus their own screen (and headphones if desired). Each of their virtual game-
worlds is discrete and not digitally connected to each other (i.e. they are each
running a completely separate instance of the game), but the audio from all
instances of the game is routed from each computer to a single real-world
audio-mixer and output through a stereo system for all players and audience to
hear. In this case two visual options exist: to display one instance of the game
on a projector screen for the audience, or otherwise to switch between the
different instances on the projector screen.

Non-Local Multiplayer (see Appendix A, Diagrams 4 and 5) refers specifically to
online play. Here each player has a separate computer and thus separate
audio-visual output. One audio-visual output can be displayed to the audience
at every different physical location of each player in the multiplayer network.
Given the physically separated nature of each site of performance, players have
more freedom to be selective about which audio aspects are part of their local
instance of the performance. For example, any given player can mute any given
sound on their instance only, without that muting affecting what anyone else is
hearing. This creates the unusual potential for players to synchronously be
engaged in the same performance while each experiencing a potentially
dramatically different version of it.

Here also we have the most literal realization of the real-world/virtual-world
interplay, where the real-world performance is distributed among many discrete
physical locations, but the entire process of communication bringing those
instances of the physical performance into being is taking place through
gameplay in the shared virtual space. In fact this sharing of the virtual space is

�57

only an illusion (as it is in most online games), as a different instance of the
game is running locally on each player’s computer. Leveraging this illusion – i.e.
not simply assuming that all information needs to be synchronised across all
instances – is what allows Pallas’ online performance system the additional
flexibility for players to make those selective decisions about how they choose
to locally experience the collective performance.

Across all forms of multiplayer, it is clear that by introducing even one additional
human player, the expressive potentials of the performance are greatly
increased. Ideally the players’ aesthetic intentions for the given performance are
congruent, and they can get on with letting the piece unfold as it needs to,
allowing for an interdependent awareness of each other’s needs in that
unfolding. Thus not only can the technical challenges of fluidly navigating and
manipulating complex performances structures be distributed between players
and thus overcome (or at least eased), but also the cognitive challenges of
keeping track of everything that is happening in such structures.

4.3. Hardware/Software Interfaces and Real-time Mapping Strategies

Much has already been said about default parameters, connectivity/routing and
avatar control. To recap what is relevant here: dials, faders, toggling objects on/
off and inter-object connectivity all rely on cursor interactions, avatar movement
relies on QWERTY keyboard controls, and quick instantiation of objects during
performance is done with QWERTY hotkeys (see the Performance Manual in
Appendix B for exhaustive details).

In Story Mode the cursor is also used to handle verb-object interactions and
inventory, and the avatar always carries a synthesiser, used for puzzle solving,
that is played using the QWERTY keyboard to input an octave of notes, (this is
also an option for note-input in Performance Mode, but as previously discussed
is best avoided).

�58

These are essentially all the default modes of interaction in the game, and all
are pre-mapped and unchangeable for any given object.

However, real-time mapping of both MIDI and OSC is implemented in Pallas
such that its simplicity makes it a powerful means of transforming the nature of
a performance. First because it opens up performance to a whole new range of
gestures, and in the fields of MIDI and OSC the vast range of different
hardware/software means that a huge amount of different modes of gestural
performance are possible. Secondly as it allows for not just the creation but also
the alteration of mapping, so once created mappings can also be shut off, or the
incoming data can be scaled. This means that the mapping process itself can
be an expressive part of a performance. Thirdly it allows an alternative means
of distributing the demands of a performance between multiple human players:
where one player can focus on managing multiple avatars, and another (or
several others) can be controlling any other performance parameters via MIDI
or OSC, or playing notes into performance objects, e.g. playing an in-game
synthesiser object via a hardware MIDI keyboard. Thus clearly amplifying the
expressive potential beyond what a single player could achieve.

This mapping system is a descendent of Ableton Live’s MIDI mapping
paradigm, and has been refined through my own past design and
implementation of real-time MIDI and OSC mapping systems in Max. For any
given dial, fader or MIDI-note compatible game object the player can cursor
over and hold a specific QWERTY key, making that game parameter ready to
receive a MIDI mapping (see Appendix D: Videos 10.2, 10.3). Then by simply
moving a continuous-control or playing a note on the MIDI device, that in game
parameter is mapped to the MIDI control. In the case of a note receiving game
object, the player can use a modifier key to determine whether all notes of the
MIDI note device will be accepted by the game object, or just the specific note
that the player has pressed to make the mapping. This option to map just a
single note exists for the purpose of “trigger pad” style sample performance,
where the MIDI notes of a hardware device can be used as a bank of sample-
triggering buttons, so any given note can be assigned to a specific sample (thus
a specific game object). The player can use the cursor to toggle any mapping

�59

on or off at any time. Of course, as is usual for such a system, the mapping
potential is for one-to-many where, for example, any given MIDI hardware
control (e.g. a single dial) can be mapped to a limitless number of in-game
parameters to control them all at once.

The OSC implementation is more challenging to manage than MIDI since in
many cases OSC outputs a continuous stream of data. Thus when there are
multiple separate OSC streams incoming at once, the game would have no
means of knowing which one, at any given moment, it should be mapping a
given parameter to. While there are many possible strategies for dealing with
this issue, a unique solution was designed for Pallas. The player can pre-input
up to 10 OSC addresses that they wish to use into a numbered list before the
performance. Then during the performance they can input numbers 0-1 on the
QWERTY keyboard to assign the corresponding entry in the list to a cursor-
selected dial or fader in game. Then, as with MIDI, they are also free to toggle
the mapping on and off at any time. While this system limits the available
mappings to a set of 10, it facilitates uninterrupted performance with no overlaid
interface obstructing the view of the game world (note this OSC mapping
system has not been implemented in the current build).

A custom OSC application for controlling Pallas via iOS and Android was also
created for this framework. However, due to the technical challenges of sharing
iOS/Android software, it has not been included in the Appendix data. This
application has a touchscreen and accelerometer interface for avatar
movement, text-based dialogue input, and the carrying of virtual objects,
allowing for a basic implementation of local multiplayer (note that a more
advanced form of local multiplayer is possible via a PlayStation DS4 controller,
for which the game is also pre-mapped. See Appendix B, and Appendix D:
Video 10.1 for details).

Applying those design principles whereby interface overlays are avoided and
performance is not interrupted, a further mapping system, although not currently
implemented in this framework, could be created for QWERTY controls: both to
map QWERTY keys to trigger any switch-compatible object (e.g. toggling sound

�60

sources, lights, camera filters, and so on), and to allow the player to re-map the
hotkeys for object-instantiation. Such a system would function in the same way
as the MIDI mapping system already described.

As discussed in the introduction to this research, great care has been taken to
give the experienced player the option to perform with no extraneous text,
numbers, or other kinds of alpha-numeric or similar abstract symbolic data that
is not a part of the fictional context of Pallas as a game world. These MIDI and
OSC mapping systems have also been designed with this intention, and thus
the mapping process is all but invisible to an audience, relying only on the
slightest visual feedback to let the player know when an operation has taken
place.

Both MIDI and OSC are not simply hardware-to-software protocols, but also
allow for software-to-software communication. This means that other music/
controller software can also be used to control any aspect of Pallas. Taking this
a step further and applying the branching and nesting principles expands these
concepts into a rich field of future research: interdependent networks of different
games/applications sharing real-time performance data.

Developers of such inter-game performance communication would not be
limited to MIDI and OSC communication, but could easily design their own
protocol. However, I limit this discussion to MIDI and OSC since this retains the
potential for also communicating with existing music/controller software.

�61

5. Performative Narrative, Puzzles and Game Objectives

5.1. Performative Developer-Authoring of Narrative and Puzzles

At a certain point in this research the development of narrative and puzzle
elements could be seen as a valuable augmentation that was contributing new
material to the expressive intention of the work.

It soon became clear that this expressiveness no longer just concerned the
fluidity of gameplay in Story Mode, but included those instances where a
developer could use Pallas’ performance mode to improvise and export content
that could thus be imported into narrative and puzzles for Story Mode.

The principle that thus became apparent was: the more performatively
expressive the design process is for the developer, the more effortlessly they
can translate this to expressive gameplay for the player.

While this did at first mean literal improvisatory authoring and then exporting
content from Performance Mode to Story Mode, what later often occurred was
an internalised understanding of the performance system. So in the same way a
composer of music does not need to play the music before they can write it, so
it is possible to design puzzles that alter or hybridize performance objects, and
know ahead of time how they will behave. Essentially, the skilled developer can
execute performative elements of the puzzle in their mind and know how it will
thus respond for the player.

However, for myself this internalised understanding continually evolved with my
improvisatory practice and with the continual augmentation and refinement of
the performance system. Thus even without explicitly entering into a space of
narrative/puzzle authoring, such solutions would emerge naturally out of
improvisation or even out of the process of testing and bug-fixing a new
component.

�62

To expand on the process introduced in Section 3.4:

• either single performance objects are pre-configured, or combinations of
performance objects are pre-configured and pre-routed

• parameter controls extraneous to the context of the narrative/puzzle in
question are hidden away

• if necessary a new interface is configured (and new visual components
created as needed), consistent with the visual/architectural/environmental/
narrative atmosphere of the site at which the puzzle is situated in the
narrative game world

• a means to evaluate the “success-state” of the interaction is implemented,
by which the game recognizes the puzzle is complete and assigns the
reward. This is often also a hybrid process where, for example, the
completion of the puzzle might depend on the player setting 3 parameters
to the correct value. Thus 3 switches are used, one to test each
parameter, and an aggregate switch tests the state of all 3 switches, and if
all are satisfied then the puzzle is complete.

5.2. Performative Gameplay of Narrative and Puzzles

At this point the performative nature of Pallas’ Story Mode should be apparent
due to the fact that, as has been discussed, the expressive content of
Performance Mode has filtered down into the gameplay elements of Story
Mode.

This research started with the creation of a performance framework, initially
based on improvisation, where the player has the maximum expressive
freedom. Gradually it became clear how certain elements could, through the
expressive engagement of developers, be crystallised and incorporated into
fixed units of narrative and game-objectives. Then finally those units could once
again be assessed for their player-centric expressive potential, and adjusted/
reiterated to maximise that expressiveness.

�63

The unique aspect of this last step, compared to the rest of the research, is that
this expressiveness must also be measured against the given narrative and
aesthetic context in which that puzzle is situated. That is, it is not sufficient to
simply maximise the expressive potential of such puzzles, they must also be
congruent with their narrative/aesthetic context otherwise the player’s
imaginative engagement in the puzzle is diminished. This imaginative
engagement is another kind of feedback loop, and although this exegesis has
already touched on the importance of the consistency of the fictional world in
helping to maintain the integrity of a performance, the inclusion of narrative
progression in this consideration adds another dimension to this feedback loop.
For example, if a given puzzle looks or feels as if it is not congruent with its
surrounding fictional context – both in the sense of where it is situated in the
game space, and where in the timeline of the game’s unfolding narrative – then
the player will have neither the desire nor the means to fully engage with it on a
narrative level, and solving it would thus simply be a mechanical process of
getting it out of the way (rather than performing it as part of the unfolding story
that they are co-creating) in order to hopefully return to the consistency of the
narrative context.

Having no game-objectives or intrinsic goal, Electroplankton’s fictional context
could be easily subverted by an adventurous or antagonistic player without
necessarily destroying the expressive feedback loop of “performing with” that
context. However, the same cannot be said for games in which player-
performed music is an essential mechanism for advancing the narrative. In such
key works as Loom (Moriarty, 1990) and Zelda: Ocarina of Time (Miyamoto,
1998) musical gameplay (which in both cases involves the playing of specific
melodies to solve puzzles) is inseparable from narrative context, and as such
an antagonistic or subversive musical performance by the player would disturb
or shatter that fiction. Pallas of Vines, having both Story and Performance
Modes, is open to both forms of subversive play. In Performance Mode there is
no limitation imposed on the player to force them to make their music
harmonious with the game context, indeed such exploratory play could even
lead players (and audiences) to expand their ideas about what constitutes a
performance that is harmonious with Pallas’ aesthetic.

�64

Generally speaking, people know that things work better when they respect
the limits of a mimetic world as indicated by its structure and affordances as
well as the model of it that people are building through experience. In
exchange for this complicity, people experience increased potential for
effective agency...People may likely push on the edges of a mimetic world
as part of exploration or even in an effort to hack it. Designers need to be
flexible and to apply new constraints when they observe actions that disturb
the desired structure of experience. (Laurel, 2013)

Play is about more than make-believe; it’s about re making belief, redrawing
frontiers of the imagination through performances of actions, identities, and
ideologies previously unfulfilled (or assumed to have been outright
impossible). Inherent in creative and critical play is an element of virtuosity,
which…involves exceeding "the limit of what seems possible, or what the
spectator can imagine [and] insistently mobilizing, destabilizing, and
reconstituting borders” (Cheng, 2014)

While such exploratory play can also expand a player’s experience in Story
Mode, here the context of any given puzzle is the primary determinant of what
constitutes the aesthetic congruency of such gameplay. While Loom and
Ocarina both have just one very simple musical interface for puzzles, the range
of possibilities for designing different musical puzzle interfaces in Pallas is as
broad as the performance framework. This means that for a given puzzle there
may be more or less constraints than for another, and thus a greater or lesser
opportunity for a player to subvert the developer’s aesthetic intentions. For
myself as a developer, these constraints are put in place both to make the
puzzle design process manageable, and to focus in the player’s attention on the
few parameters that are important for understanding a given puzzle (which is
especially important for new players). This is a crucial distinction in the context
of this research, as “maximising expressive potentials” necessarily means also
allowing players great scope both to extend their skills through exploratory play
(which includes the scope to make their own mistakes), and to intentionally
subvert the intended or common uses of the game in order to expand their

�65

palette of performative techniques or make an aesthetic statement about the
nature of the game itself.

In the context of a fiction in which players must develop new skills in order to
advance the narrative, such configurative constraints function as pathways and
signposts without which a player’s expressive engagement can become
dispersed or disrupted through a sense of unfair difficulty, ambiguous
motivation, directionlessness and so on. Thus contrary to Performance Mode,
and somewhat paradoxically, Story Mode relies greatly on constraints in order
to focus and amplify the player’s expressive engagement with the narrative, and
these constraints themselves must also be congruent with the game’s fictional
context.

Some constraints on interactors' choices and actions are technically
essential to any designed interaction. The question is how those constraints
should be determined and expressed. Some explicit techniques for
introducing constraints…can be destructive of people’s engagement in the
activity by forcing them to "pop out" of the mimetic context. (Laurel, 2013)

6. Conclusion: Expressive Dynamic Relationships for Player and Developer

The overarching principles displayed in this framework are centred on the
dynamics of relationships, and the understanding of the moment-to-moment
context in which aggregate relationships can be reframed as a single
expressive unit in a higher-order context. As both player and developer
relationships with game spaces and real world performance spaces become
more sophisticated, and players/developers are more readily able to navigate
between them, the relationship between performance and gameplay will thus
continue to develop into new hybridized mediums where original creativity is
paramount: co-creative dialectics between developers, players, hardware and
software performance components, and responsive game worlds.

In this research dialectic interactions underpin all the performative interactions
available to both player and developer. By including the perspective of

�66

developers and their expressive potentials into this framework, this dialectic
interaction can be seen to take place not just between all the units involved in
and synchronously present in any given moment of gameplay, but also
asynchronously between the performative moment and the developer’s pre-
authored intentions and narrative communications.

As systems of this nature continue to be refined in the future, modular
components of both code and concept can be translated, evolved and
integrated into new games that will continue to facilitate the expressive potential
for developers to mirror the performative experience of players during the
development process. As players, by playing performatively, continue to master
and find their own ways to expand these expressive potentials, they evolve and
feed back new techniques that developers can again adapt and integrate into
their own performance techniques and performative development frameworks in
subsequent works, and thus a community of creative expressive performance
and play continues to unfold.

In conclusion, the original contributions of this work to the field of videogames
and expressive gameplay can be summarised as follows:
• expressiveness in gameplay has been defined, as it relates to the realisation

of player intention during gameplay. Subsequently a measure by which
expressiveness in gameplay can be planned for (before the fact) and
analysed (after the fact) has been devised and demonstrated

• through a practice-led approach a game has been designed, created, and
demonstrated to effectively unify audio and visual performance with gameplay
dynamics and narrative context. This is all encompassed in an expressive, co-
creative framework for performative gameplay – a collection of game objects,
behaviours and play-contexts framed by a dialectic principle of branching and
nesting structures of interdependence

• by dividing this framework into Story and Performance modes, key
contingencies have been illustrated that allow both modes to remain
expressive and narratively contextualized. Broadly speaking, these are
designing puzzle and narrative constraints in Story Mode that retain sufficient
co-creative affordances for player expressiveness, and in Performance Mode

�67

providing sufficient game world context while maximising the player’s ability to
co-create within, or subvert, that context

• Bogost’s unit operations, Murray’s “virtual world full of interrelated entities”,
and the author's own discussion of branching and nesting structures have
been practically applied, thus demonstrating the value of those theories as
framing principles that can enhance the expressiveness of moment to
moment gameplay, when both game design and player performance/creation
participate in the formation of dynamic dialectic gameplay systems

�68

Bibliography

Books

Bogost, I. 2006, Unit Operations: An Approach to Videogame Criticism, MIT
Press, Cambridge

Bogost, I. 2010, Persuasive Games: The Expressive Power of Videogames,
MIT Press, Cambridge

Caillois, R. 1961, Man, Play and Games, University of Illinois Press, Illinois

Cheng, W. 2014, Sound Play: Video Games and the Musical Imagination,
Oxford University Press, Oxford

Collins, K. (ed) 2008, From Pac-Man to Pop Music: Interactive Audio in Games
and New Media, Ashgate, Hampshire

Collins, K. 2008, Game Sound: An Introduction to the History, Theory, and
Practice of Video Game Music and Sound Design, MIT Press, Cambridge

Collins, K. 2012, Playing with Sound: A Theory of Interacting with Sound and
Music in Video Games, MIT Press, Cambridge

De Koven, B. 1978, The Well Played Game: A Player’s Philosophy, Anchor
Press, New York

Heidegger, M. 1960, trans. Krell, D. 2008 “The Origin of the Work of Art” in
Martin Heidegger: The Basic Writings, HarperCollins, New York

Huizinga, J. 1955, Homo Ludens: A Study of the Play Element in Culture,
Beacon Press, Boston

Kwastek, K. 2013, Aesthetics of Interaction in Digital Art, MIT Press, Cambridge

Laurel, B. 2013, Computers as Theatre: Second Edition, Addison-Wesley,
Boston

Liebe, M. 2012, "Interactivity and Music in Computer Games" in Music and
Game: Perspectives On a Popular Alliance, Springer VS, Berlin

�69

Minsky, M. 1986, The Society of Mind, Simon and Schuster, New York

Moorman, P. 2013, Music and Game: Perspectives on a Popular Alliance,
Springer VS, Berlin

Mosely, R. 2016, “Nintendo’s Brand of Ludomusicality” in Keys to Play,
University of California Press, California, Chapter 5-1, pp. 243-250

Mosely, R. 2016, “The Ludomusical Emergence of Toshio Iwai” in Keys to Play,
University of California Press, California, Chapter 5-3, pp. 258-263

Murray, J. 1997, Hamlet On the Holodeck: The Future of Narrative in
Cyberspace, The Free Press, New York

Oxford Press, 2018, “Oxford Dictionary of English” in oxforddictionaries.com,
Oxford University Press, Oxford

Peters, G. 2009, The Philosophy of Improvisation, University of Chicago Press,
Chicago

Strank, W. 2013, "The Legacy of iMuse: Interactive Video Game Music in the
1990s" in Music and Game: Perspectives On a Popular Alliance, Springer VS,
Berlin

Upton, B. 2015, The Aesthetic of Play, MIT Press, Massachusetts

Articles, Journal Articles and Research Papers

Aallouche, K. et al, 2007, “Implementation and Evaluation of a Background
Music Reactive Game” in IE '07 Proceedings of the 4th Australasian conference
on Interactive Entertainment, RMIT, Melbourne

Begy, J. 2010, Interpreting Abstract Games: The Metaphorical Potential of
Formal Game Elements, Masters Thesis, MIT, Cambridge

Bencina, R. 2005, "The AudioMulch Process: Software Development in Musical
Practice" in Australian Computer Music Conference 2005 Proceedings,
Queensland University of Technology, Brisbane

Bencina, R. 2005, “The Metasurface – Applying Natural Neighbour Interpolation
to Two-to-Many Mapping” in International Conference on New Interfaces for
Musical Expression 2005 Proceedings, University of British Columbia,

�70

Vancouver

Cameron, D. & Carroll, J. 2009, “Encoding Liveness: Performance and Real-
Time Rendering in Machinima” in Proceedings of DiGRA 2009 Conference,
London

Carlson, C. & Wang, G. 2011, Borderlands: An Audiovisual Interface for
Granular Synthesis, NIME 2011 Proceedings, University of Michigan, Ann Arbor

Carroll, J. & Cameron, D. “Machinima: Digital Performance and Emergent
Authorship” in Proceedings of the 2005 DiGRA Conference, Finland

Fernandez-Vara, C. 2009, “Play’s the Thing: A Framework to Study Videogames
as Performance” in Proceedings of the 2009 DiGRA Conference, London

Georgen, C. 2015, “Well Played & Well Watched: DOTA 2, Spectatorship, and
Esports” in Well Played, Volume 4, No. 1, ETC Press, Pittsburgh, pp. 179-191

Gilbert, R. 1986, Maniac Mansion: Proposal, game design document, Lucasfilm
Games, California

Gilbert, R. 1990, Mutiny on Monkey Island: a step by step breakdown of the
game flow, game design document, Lucasfilm Games, California

Grace, L. 2014, “Critical Games: Critical Design in Independent Games” in
DiGRA Proceedings 2014, Utah

Gursoy, A. 2013, Game Worlds: A Study of Video Game Criticism, Masters
Thesis, MIT, Cambridge

Hamilton, R. 2014, Perceptually Coherent Mapping Schemata for Virtual Space
and Musical Method, PhD Thesis, Stanford University

Hamilton, R. et al. 2011, “Multi-Modal Musical Environments for Mixed-Reality
Performance” in Journal on Multimodal User Interfaces, Springer, Berlin, No. 4,
pp. 147-156

Herber, N. 2007, “The Composition-Instrument: Musical Emergence and
Interaction” in Hz, No. 9, Fylkingen, Stockholm, <http://www.hz-journal.org/n9/
herber.html>, accessed 3/1/2015

Iwai, T. 2006, “Tenori-On” in NIME 2006 Conference Proceedings, Paris, <http://
www.nime.org/proceedings/2006/nime2006_172.pdf>, accessed 5/8/2014

Jorda, S. 2003, “Interactive Music Systems for Everyone: Exploring Visual

�71

http://www.hz-journal.org/n9/herber.html
http://www.nime.org/proceedings/2006/nime2006_172.pdf

Feedback as a Way for Creating More Intuitive, Efficient and Learnable
Instruments” in Proceedings of the Stockholm Music Acoustics Conference
2003, Stockholm

Jorda, S. et al 2009, “The reactable: Tabletop Tangible Interfaces for
Multithreaded Musical Performance”, Kepes Journal, Vol 6, No. 5, pp. 201-223

Kayali, F. et al 2011, “Serious Beats: Transdisciplinary Research Methodologies
for Designing and Evaluating a Socially Integrative Serious Music-Based Online
Game” in DiGRA Conference Proceedings 2011

Magnusson, T. 2005, “ixi software: The Interface as Instrument” in Proceedings
of the 2005 International Conference on New Interfaces for Musical Expression,
Vancouver

McConnell, P. & Land, M. 1994, Method and Apparatus for Dynamically
Composing Music and Sound Effects Using a Computer Entertainment System,
patent, Lucasarts Entertainment Company, California, <http://www.google.com/
patents/US5315057>, accessed 13/2/2016

McCormack, J. et al 2007, Generative Composition with Nodal, research paper,
Centre for Electronic Media Art, Monash University

McCormack, J. & Mcilwain, P. 2005, “Design Issues in Music Composition
Networks” in Proceedings of Australasian Computer Music Conference 2005,
pp. 96-101

Mitgutsch, K. & Weise, M. 2011, “Subversive Game Design for Recursive
Learning” in DIGRA 2011 Proceedings, Utrecht

Oldenburg, A. 2013, "Sonic Mechanics: Audio as Gameplay" in The
International Journal of Computer Game Research, Vol. 13, Issue 1,
<www.gamestudies.org>, accessed 1/5/2014

Pichlmair, M. & Kayali, F. 2007, “Levels of Sound: On the Principles of
Interactivity in Music Video Games” in Situated Play: Proceedings of DiGRA
2007 Conference, Tokyo

Rafinski, A. & Zielke, M. 2013, “Defragging the Magic Circle: From Experience
Design to Reality Design” in DiGRA 2013 Proceedings: DeFragging Game
Studies

Ramirez, F. 2015, “Playing for the Plot: Blindness, Agency, and the Appeal of
Narrative Organisation in Heavy Rain, in Well Played, Volume 4, No. 1, ETC
Press, Pittsburgh, pp. 51-70

�72

http://www.google.com/patents/US5315057
http://www.gamestudies.org/

Ramsay, D. & Paradiso, J. 2015, “GroupLoop: A Collaborative, Network-
Enabled Audio Feedback Instrument” in NIME 2015 Proceedings, Louisiana
State University

Schacher, J. & Neff, P. 2015, “The Fluid and the Crystalline: Processing of the
Music Performing and Perceiving Body” in Proceedings of The 11th
International Symposium on Computer Music Multidisciplinary Research
(CMMR), pp. 16-19, June 2015, Plymouth

Sidhu, S. 2013, Poetics of the Videogame Setpiece, Masters Thesis, MIT,
Cambridge

Smith, G. 2015, “Spore’s Playable Procedural Content Generation” in Well
Played, Volume 4, No. 1, ETC Press, Pittsburgh, pp. 89-105

Stenros, J. 2014, “In Defence of a Magic Circle: The Social, Mental and Cultural
Boundaries of Play”, Transactions of Digital Games Research
Association, DiGRA, Vol. 1, No 2, pp. 147-185

Tannenbaum, J. & Bizzocchi, J. 2009, "Rock Band: A Case Study in the Design
of Embodied Interface Experience" in Proceedings of the 2009 ACM
SIGGRAPH Symposium on Video Games, pp. 127-134

Verneau, L. 2013, Paralect: An Example of Transition Focused Design, Master’s
Thesis, University of Southern California, California

Wang, G. 2015, “Game Design for Expressive Mobile Music” in NIME 2015
Proceedings, Louisiana State University

Westecott, E. 2009, “The Player Character as Performing Object” in
Proceedings of the 2009 DiGRA Conference, London

Yang, Q. & Essl, G. 2015, “Representation-Plurality in Multi-Touch Mobile Visual
Programming for Music” in NIME 2015 Proceedings, Louisiana State University

Games, Instruments and Interactive Media

Carlsen, J. 2013, 140, video game, independent release,
<http://game140.com/>, accessed 17/4/2014

Cavia, 2008, Korg DS-10, video game instrument, Nintendo Australia, Victoria

Conway, J. 1970, Game of Life, cellular automaton, Liverpool
�73

http://game140.com/

Elliot, J. 2010, A House In California, video game, Cardboard Computer,
Chicago, <http://cardboardcomputer.com/games/a-house-in-california/>,
accessed 12/4/2014

Fischer, R. 2015, TouchOSC, mobile audio control application, Hexler, Karlsfeld,
<http://hexler.net/software/touchosc>, accessed 12/4/2015

Flanagan, R. 2014, Fract OSC, video game, Phosfiend Systems, Montreal,
<http://fractgame.com/>, accessed 28/4/2014

Furukawa K. et al, 1999, Small Fish, multimedia instrument/score application
DVD, ZKM Centre for Art and Media, Karlsruhe

Gabriel, P. 1996, Eve, video game, Real World Multimedia, London

Gilbert, R. 1987, Maniac Mansion, video game, Lucasfilm Games, San
Francisco

Griffiths, R. 2015, Glitchspace, video game, Space Budgie, Dundee

Hines, A. 2016, Oxenfree, video game, Night School Studio, California

Iwai, T. 1987, Otocky, video game, ASCII Corporation, Tokyo

Iwai, T. 1996, SimTunes, video game, Maxis, California

Iwai, T. 2005, Electroplankton, video game, Nintendo, Kyoto

Kay, R. et al, 2005, Guitar Hero, video game, Red Octane, California

Kay, R. et al, 2007, Rock Band, video game, Electronic Arts, California

Key, E. 2013, Proteus, video game, independent release, <http://
www.visitproteus.com/>, accessed 11/4/2014

Klimus, C. 2015, Twine, interactive non-linear authoring tool, independent
release, <http://twinery.org/>, accessed 14/5/2015

�74

http://cardboardcomputer.com/games/a-house-in-california/
http://hexler.net/software/touchosc
http://fractgame.com/
http://www.visitproteus.com/
http://twinery.org/

Martin, A. 2013, Starseed Pilgrim, video game, independent release, <http://
www.starseedpilgrim.com/>, accessed 11/4/2014

Matsuura, M. 1996, PaRappa the Rapper, video game, Sony Computer
Entertainment, Tokyo

Matsuura, M. 1999, UmJammer Lammy, video game, Sony Computer
Entertainment, Tokyo

Matsuura, M. 1999, Vib Ribbon, video game, Sony Computer Entertainment,
Tokyo

Miyamoto, S. 1998, The Legend of Zelda: Ocarina of Time, video
game, Nintendo, Kyoto

Miyamoto, S. 2002, The Legend of Zelda: The Wind Waker, video
game, Nintendo, Kyoto

Miyamoto, S. 2006, The Legend of Zelda: Twilight Princess, video
game, Nintendo, Kyoto

Mizuguchi, T. 2001, Rez, video game, Sega, Tokyo

Mizuguchi, T. 2011, Child of Eden, video game, Ubisoft, Montreal

Moriarty, B. 1990, Loom, video game, Lucasfilm Games, San Francisco

O’Brien, C. 2014, Tiber Synth, web-based experimental synthesiser,
independent release, <http://tibersynth.prtcl.cc/>, accessed 14/5/2015

Oliver, J. 1999, Quilted Thought Organ, game-based performance environment,
independent project, http://julianoliver.com/output/qthoth, accessed 21/9/2014

Oliver, J. 2003, q3apd, game-based auto-performance environment and tool,
independent project, <http://julianoliver.com/output/q3apd>, accessed
21/9/2014

Oliver, J. 2009, Fijuu, game-based interactive audio installation, independent
project, <http://www.fijuu.com/>, accessed 5/8/2014

Phillips, L. 2016, Blokdust, browser-based sound-creation utility, <https://
blokdust.com/>, accessed 26/8/2016, Brighton

�75

http://www.starseedpilgrim.com/
http://tibersynth.prtcl.cc/
http://julianoliver.com/output/qthoth
http://julianoliver.com/output/q3apd
http://www.fijuu.com/
https://blokdust.com/

Zolotov, A. 2014, SunVox, audio application, independent release, Ekaterinberg

Game Development Software and Systems

Gilbert, R. & Wilmunder, A. 1987, Script Creation Utility for Maniac Mansion
(SCUMM), point and click adventure game engine, Lucasfilm Games, California

Unity Technologies, 2016, Unity, game development environment, Unity
Technologies, San Francisco

Lectures and Documentaries

Anderson, M. 2016, “Designing the Audio for Inside: A Game That Listens” at
gamasutra.com, <http://www.gamasutra.com/view/news/277712/
Video_Designing_the_audio_for_Inside_a_game_that_listens.php>, accessed
24/7/2016

Antonio, L. 2014, “The Art of The Witness” at GDCvault.com, <http://
www.gdcvault.com/play/1020552/The-Art-of-The>, accessed 19/5/2015

Bahrami, M. et al, 2016, “Experimental Gameplay Workshop” at Game
Developer’s Conference 2016, lecture, San Francisco

Blow, J. 2007, “Jonathan Blow: Design Reboot” at youtube.com, <https://
www.youtube.com/watch?v=K0kup_anLeU>, accessed 4/8/2015

Blow, J. 2007, “Jonathan Blow: How and Why” at youtube.com, <https://
www.youtube.com/watch?v=RsT-5VSqk8I>, accessed 4/8/2015

Blow, J. 2008, “Fundamental Conflicts in Contemporary Game Design” at
youtube.com, <https://www.youtube.com/watch?v=mGTV8qLbBWE>, accessed
4/7/2015

Blow, J. 2010, “Video Games and the Human Condition” at youtube.com,
<https://www.youtube.com/watch?v=SqFu5O-oPmU>, accessed 10/7/2015

Blow, J. 2013, “The Witness Walkthrough with Jonathan Blow Developer
Exclusive Gameplay PS4 & PC” at youtube.com, <https://www.youtube.com/
watch?v=rDSrYiheVow>, accessed 29/12/2014

�76

http://www.gamasutra.com/view/news/277712/Video_Designing_the_audio_for_Inside_a_game_that_listens.php
http://www.gdcvault.com/play/1020552/The-Art-of-The
https://www.youtube.com/watch?v=K0kup_anLeU
https://www.youtube.com/watch?v=RsT-5VSqk8I
https://www.youtube.com/watch?v=mGTV8qLbBWE
https://www.youtube.com/watch?v=SqFu5O-oPmU
https://www.youtube.com/watch?v=rDSrYiheVow

Blow, J. 2016, “Storytime with Jonathan Blow at PAX East 2016” at
youtube.com, <https://www.youtube.com/watch?v=UwBl7Rnkt78>, accessed
17/5/2016

Cardwell-Gardner, P. 2014, “Cadence Dev Chronicles: Part 2” at youtube.com,
<https://www.youtube.com/watch?v=h8hunxj83Xw>, accessed 4/7/2015

Cardwell-Gardner, P. 2014, “Cadence Dev Chronicles 3: Parallel Prototyping” at
youtube.com, <https://www.youtube.com/watch?v=W1Hw1uhEwOw>, accessed
4/7/2015

Crawford, J. 2014, “Preserving a Sense of Discovery in the Age of Spoilers” at
vimeo.com, <https://vimeo.com/91436410>, accessed 27/4/2015

Elliott, J. 2014, “Designing for Mystery in Kentucky Route Zero” at
gamasutra.com, <http://www.gamasutra.com/view/news/220199/
Video_Designing_for_mystery_in_Kentucky_Route_Zero.php>, accessed
20/7/2016

Fullerton, T. 2012, “Walden: The Video Game" at youtube.com, <http://
www.youtube.com/watch?v=TaZ9BiSJ-KI>, accessed 11/4/2014

Gilbert, R. 2011, "Maniac Mansion Post Mortem", lecture given at Game Forum
Germany, at youtube.com, <http://www.youtube.com/watch?v=wNpjGvJwyL8>,
accessed 27/4/2014

Graves, J. et al, 2016, “Storytelling Tools: Using Music & Sound Creatively” at
Game Developer’s Conference 2016, lecture, San Francisco

Haggis, M. 2016, “Writing ‘Nothing’: Storytelling with Unsaid Words and
Unreliable Narrators” at Game Developer’s Conference 2016, lecture, San
Francisco

Johnson, M. 2015, “Handmade Detail in a Procedural World” at gdcvault.com,
<http://www.gdcvault.com/play/1022751/Handmade-Detail-in-a-Procedural>,
accessed 15/12/2015

Juul, J. 2010, “The Pure Game: A Short History of Video Game Aesthetics” at
youtube.com, <https://www.youtube.com/watch?v=NwAuHhpbgfY>, accessed
1/1/2016

Juul, J. et al 2010, “Art History of Games: Panel Discussion with Jesper Juul,
Frank Lantz and John Sharp” at youtube.com, <https://www.youtube.com/
watch?v=dbqvU_Q66i4>, accessed 2/10/2015

�77

https://www.youtube.com/watch?v=UwBl7Rnkt78
https://www.youtube.com/watch?v=h8hunxj83Xw
https://www.youtube.com/watch?v=W1Hw1uhEwOw
https://vimeo.com/91436410
http://www.gamasutra.com/view/news/220199/Video_Designing_for_mystery_in_Kentucky_Route_Zero.php
http://www.youtube.com/watch?v=TaZ9BiSJ-KI
http://www.youtube.com/watch?v=wNpjGvJwyL8
http://www.gdcvault.com/play/1022751/Handmade-Detail-in-a-Procedural
https://www.youtube.com/watch?v=NwAuHhpbgfY
https://www.youtube.com/watch?v=dbqvU_Q66i4

Key, E. 2012, “Abstraction and Experience: Observations on Proteus” at
gdcvault.com, <http://www.gdcvault.com/play/1016480/Abstraction-and-
Experience-Observations-on>, accessed 15/12/2015

Kipnis, A. 2015, “Practice 2015: Considerations for Expressive Simulation” at
vimeo.com, <https://vimeo.com/149287018>, accessed 8/2/2016

Lowood, H. 2010, “Players Are Artists Too” at youtube.com, <https://
www.youtube.com/watch?v=PVnUDWhCEpE>, accessed 18/7/2015

Moriarty, B. 2016, “Jonathan Blow Interview @ WPI” at youtube.com, <https://
www.youtube.com/watch?v=tRHnHlV96Jg>, accessed 17/5/2016

Murray, J. 2010, “NYU Game Center Lecture Series: Janet Murray (Parts 1–6)”
at youtube.com, <https://www.youtube.com/watch?v=pPV1wMVGPDM>,
accessed 3/1/2016

Nesky, J. 2015, “50 Common Game Camera Mistakes and How to Fix Them”,
at gamasutra.com, <http://gamasutra.com/view/news/259610/
Video_50_common_game_camera_mistakes__and_how_to_fix_them.php>,
accessed 28/11/2015

Owens, P. 2014, Double Fine Adventure, video documentary series,
downloadable distribution, 2 Player Productions, Portland

Pearce, C. 2010, “Play’s the Thing: Games as Fine Art” at youtube.com,
<https://www.youtube.com/watch?v=3x7GTjQFT18>, accessed 31/12/2015

Phillipps, C. 2016, “All Choice No Consequence: Efficiently Branching
Narrative” at Game Developer’s Conference 2016, lecture, San Francisco

Platz, C. 2014, “ECHO::Canyon 2014” at youtube.com, <https://
www.youtube.com/watch?v=enGvXaNLbo8>, accessed 16/12/2014

Robinson, E. 2016, “Punching Up the Juice with Proactive Audio” at Game
Developer’s Conference 2016, lecture, San Francisco

Rohrer, J. et al, 2010, “Artgame Sessions”, at gdcvault.com, <http://
www.gdcvault.com/play/1012249/Artgame>, accessed 1/8/2014

Rohrmann, A. 2015, “Creating Hyper-Adaptive Game Music on an Indie Budget”
at gdcvault.com, <http://www.gdcvault.com/play/1021886/Creating-Hyper-
Adaptive-Music-on>, accessed 15/12/2015

Sessler, A. 2013, “The Witness: Jonathan Blow on His PS4 Open-World Puzzle

�78

http://www.gdcvault.com/play/1016480/Abstraction-and-Experience-Observations-on
https://vimeo.com/149287018
https://www.youtube.com/watch?v=PVnUDWhCEpE
https://www.youtube.com/watch?v=tRHnHlV96Jg
https://www.youtube.com/watch?v=pPV1wMVGPDM
http://gamasutra.com/view/news/259610/Video_50_common_game_camera_mistakes__and_how_to_fix_them.php
https://www.youtube.com/watch?v=3x7GTjQFT18
https://www.youtube.com/watch?v=enGvXaNLbo8
http://www.gdcvault.com/play/1012249/Artgame
http://www.gdcvault.com/play/1021886/Creating-Hyper-Adaptive-Music-on

Game – Adam Sessler” at youtube.com, <https://www.youtube.com/watch?
v=16wLW9hJTkg>, accessed 1/8/2014

Sharp, J. 2010, “The Art History of Games” at youtube.com, <https://
www.youtube.com/watch?v=p4m3Vl1DexA>, accessed 31/12/2015

Smith, R. 2016, “Advanced Environmental Storytelling in ‘Spider: Rite of the
Shrouded Moon’ ” at Game Developer’s Conference 2016, lecture, San
Francisco

Swink, S. 2007, “IGS 2007: Innovation in Indie Games w Swink, Gabler, Chen,
Mak, Blow” at youtube.com, <https://www.youtube.com/watch?v=PR-
ZtrOGHiY>, accessed 4/8/2015

Ten Bosch, M. 2015, “Practice 2015: Marc Ten Bosch: Exploring and Presenting
a Game’s Consequence Space” at vimeo.com, <https://vimeo.com/
150690511>, accessed 18/1/2016

USC School of Cinematic Arts, 2014, "Leviathan Featured at CES" at USC
School of Cinematic Arts Website, <http://thecreatorsproject.vice.com/blog/
leviathan-the-future-of-storytelling>, accessed 11/4/2014

Victor, B. 2012, “Inventing On Principle” at vimeo.com, <https://vimeo.com/
36579366>, accessed 16/12/2015

Victor, B. 2012, “Stop Drawing Dead Fish” at vimeo.com, <https://vimeo.com/
64895205>, accessed 9/7/2015

Victor, B. 2013, “Drawing Dynamic Visualizations” at vimeo.com, <https://
vimeo.com/66085662>, accessed 18/12/2015

Victor, B. 2013, “The Future of Programming” at vimeo.com, <https://
vimeo.com/71278954>, accessed 19/12/2015

Victor, B. 2014, “Seeing Spaces” at vimeo.com, <https://vimeo.com/97903574>,
accessed 19/12/2015

Victor, B. 2014, “The Humane Representation of Thought” at vimeo.com,
<https://vimeo.com/115154289>, accessed 20/12/2015

Weinberg, J. 2016, “Journey Into the DAG: Puzzle Dependency Charts,
Tentacles and You” at Game Developer’s Conference 2016, lecture, San
Francisco

�79

https://www.youtube.com/watch?v=16wLW9hJTkg
https://www.youtube.com/watch?v=p4m3Vl1DexA
https://www.youtube.com/watch?v=PR-ZtrOGHiY
https://vimeo.com/150690511
http://thecreatorsproject.vice.com/blog/leviathan-the-future-of-storytelling
https://vimeo.com/36579366
https://vimeo.com/64895205
https://vimeo.com/66085662
https://vimeo.com/71278954
https://vimeo.com/97903574
https://vimeo.com/115154289

Zimmerman, E. 2016, “How I Teach Game Design: The User-Customizable
Game” at Game Developer’s Conference 2016, lecture, San Francisco

Music Software

Ableton, 2016, Live, digital audio workstation, Berlin

Bencina, R. 2016, AudioMulch, modular audio software, Sonic Fritter,
Melbourne

Carlson, C. 2011, Borderlands, software instrument, <https://
ccrma.stanford.edu/~carlsonc/256a/Borderlands/index.html#Downloads>,
accessed 27/8/2014
(see also iPad version (2014) <http://www.borderlands-granular.com/app/>,
accessed 27/8/2014)

Cycling ’74, Max, music and multimedia development environment, Cycling ’74,
San Francisco

McCormack, J. 2015, Nodal, generative music software, Monash University,
Melbourne

Unity Code Libraries

Audiokinetic, 2016, Wwise, audio middleware for Unity, Audiokinetic, Montreal

Hourdel, T. 2015, “Colorful FX: Post-Processing FX for Unity 3D” at
thomashourdel.com, <http://www.thomashourdel.com/colorful/>, accessed
13/2/2017

Ledvina, M. 2014, “MIDI Unified 3.0” at assetstore.unity3d.com,
<https://www.assetstore.unity3d.com/en/#!/content/576>, accessed 13/2/2017

Pennington, J. 2014, “Audial Manipulators” at assetstore.unity3d.com, <https://
www.assetstore.unity3d.com/en/#!/content/17032>, accessed 13/2/2017

Schlupek, S. 2014, “UniOSC” at uniosc.monoflow.org, <http://
uniosc.monoflow.org/>, accessed 13/2/2017

�80

https://ccrma.stanford.edu/~carlsonc/256a/Borderlands/index.html%23Downloads
http://www.borderlands-granular.com/app/
http://www.thomashourdel.com/colorful/
https://www.assetstore.unity3d.com/en/%23!/content/576
https://www.assetstore.unity3d.com/en/%23!/content/17032
http://uniosc.monoflow.org/

Starscene Software, 2014, “UniFileBrowser” at assetstore.unity3d.com, <https://
www.assetstore.unity3d.com/en/#!/content/151>, accessed 13/2/2017

Zanon, G. 2016, “G-Audio: Dynamic Audio for Unity” at g-audio-unity.com,
<http://www.g-audio-unity.com/>, accessed 13/2/2017

Web Pages and Articles

Alexander, L. 2012, “How XCOM Enables Players to Tell Their Own Stories”, at
gamasutra.com, <http://www.gamasutra.com/view/news/178600/
How_XCOM_enables_players_to_tell_their_own_stories.php>, accessed
2/6/2015

Antonio, L. 2016, “Trusting the Player and Trusting Your Game” at
twelveminutesgame.com, <http://twelveminutesgame.com/2016/06/trusting-the-
player-trusting-your-game/>, accessed 22/7/2016

Ashwell, S. 2015, “Standard Patterns in Choice-Based Games” at
heterogenoustasks.wordpress.com, <https://
heterogenoustasks.wordpress.com/2015/01/26/standard-patterns-in-choice-
based-games/>, accessed 2/12/2016

Bevan, M. 2013, “The SCUMM Diary: Stories Behind One of the Greatest Game
Engines Ever Made” at gamasutra.com, <http://www.gamasutra.com/view/
feature/196009/the_scumm_diary_stories_behind_.php>, accessed 2/2/2017

Boom, H. 2013, “FRACT Audio Tech: Getting Started” at fractgame.com, <http://
fractgame.com/news/126-fract-audio-tech-getting-started>, accessed 31/1/2017

Boom, H. 2013, “FRACT Audio Tech: Connecting to Pure Data” at
fractgame.com, <http://fractgame.com/news/127-fract-audio-tech-connecting-to-
pure-data>, accessed 31/1/2017

Boom, H. 2013, “FRACT Audio Tech: Wrapping Pure Data” at fractgame.com,
<http://fractgame.com/news/130-fract-audio-tech-wrapping-pure-data>,
accessed 31/1/2017

Boom, H. 2013, “FRACT Audio Tech: Message Basics” at fractgame.com,
<http://fractgame.com/news/131-fract-audio-tech-message-basics>, accessed
31/1/2017

Cannon, B. 2015, “Radio Days: Inside the Oxenfree Radio” at
nightschoolstudio.com, <http://nightschoolstudio.com/radio-days-inside-the-
oxenfree-radio/>, accessed 17/12/2015

�81

https://www.assetstore.unity3d.com/en/%23!/content/151
http://www.g-audio-unity.com/
http://www.gamasutra.com/view/news/178600/How_XCOM_enables_players_to_tell_their_own_stories.php
http://twelveminutesgame.com/2016/06/trusting-the-player-trusting-your-game/
https://heterogenoustasks.wordpress.com/2015/01/26/standard-patterns-in-choice-based-games/
http://www.gamasutra.com/view/feature/196009/the_scumm_diary_stories_behind_.php
http://fractgame.com/news/126-fract-audio-tech-getting-started
http://fractgame.com/news/127-fract-audio-tech-connecting-to-pure-data
http://fractgame.com/news/130-fract-audio-tech-wrapping-pure-data
http://fractgame.com/news/131-fract-audio-tech-message-basics
http://nightschoolstudio.com/radio-days-inside-the-oxenfree-radio/

Cifaldi, F. 2013, “The Technique Lucasarts Used to Design Its Classic Adventure
Games” at gamasutra.com, <http://www.gamasutra.com/view/news/189266/
The_technique_LucasArts_used_to_design_its_classic_adventure_games.php
>, accessed 21/4/2016

Clark, T. 2012, “The Most Dangerous Gamer” at The Atlantic,
<http://www.theatlantic.com/magazine/archive/2012/05/the-most-dangerous-
gamer/308928/>, accessed 25/5/2015

Cook, D. 2007, “The Chemistry of Game Design” at gamasutra.com, <http://
www.gamasutra.com/view/feature/129948/
the_chemistry_of_game_design.php>, accessed 2/8/2015

Cook, D. 2009, “Three False Constraints” at lostgarden.com, <http://
www.lostgarden.com/2009/11/three-false-constraints_29.html>, accessed
5/7/2015

Einhorn, A. 2015, “What, Not How: A Goal Centered Approach to Player
Motivation” at gamasutra.com,<http://www.gamasutra.com/blogs/AsherEinhorn/
20150529/244602/
quotWhat_not_Howquot__A_goal_centred_approach_to_player_motivation.php
>, accessed 5/7/2015

Felder, D. 2015, “Design 101: Complexity vs. Depth” at gamasutra.com, <http://
gamasutra.com/blogs/DanFelder/20150521/243962/
Design_101_Complexity_vs_Depth.php>, accessed 5/7/2015

Gilbert, R. 2014, “Puzzle Dependency Charts” at grumpygamer.com, <http://
grumpygamer.com/puzzle_dependency_charts>, accessed 21/4/2015

Gilbert, R. 2015, “Dialog Puzzles” at blog.thimbleweedpark.com, <http://
blog.thimbleweedpark.com/dialog_puzzles>, accessed 1/7/2015

Hanson, B. 2014, “Creating No Man’s Sky’s Infinite Soundtrack” at
gameinformer.com, <http://www.gameinformer.com/b/features/archive/
2014/12/22/creating-the-infinite-soundtrack-of-no-man-s-sky.aspx>, accessed
9/1/2015

Harris, D. 2013, “The Suite Science: Paul Weir Talks Generative Music” at
Rock, Paper, Shotgun, <http://www.rockpapershotgun.com/2013/11/20/the-
suite-science-paul-weir-talks-generative-music/>, accessed 5/12/2015

Karras, D. 2014, “Sound Synthesis Theory / Oscillators and Wavetables” at
wikibooks.org, <http://en.wikibooks.org/wiki/Sound_Synthesis_Theory/
Oscillators_and_Wavetables>, accessed 5/6/2015

�82

http://www.gamasutra.com/view/news/189266/The_technique_LucasArts_used_to_design_its_classic_adventure_games.php
http://www.theatlantic.com/magazine/archive/2012/05/the-most-dangerous-gamer/308928/
http://www.gamasutra.com/view/feature/129948/the_chemistry_of_game_design.php
http://www.lostgarden.com/2009/11/three-false-constraints_29.html
http://www.gamasutra.com/blogs/AsherEinhorn/20150529/244602/quotWhat_not_Howquot__A_goal_centred_approach_to_player_motivation.php
http://gamasutra.com/blogs/DanFelder/20150521/243962/Design_101_Complexity_vs_Depth.php
http://grumpygamer.com/puzzle_dependency_charts
http://blog.thimbleweedpark.com/dialog_puzzles
http://www.gameinformer.com/b/features/archive/2014/12/22/creating-the-infinite-soundtrack-of-no-man-s-sky.aspx
http://www.rockpapershotgun.com/2013/11/20/the-suite-science-paul-weir-talks-generative-music/
http://en.wikibooks.org/wiki/Sound_Synthesis_Theory/Oscillators_and_Wavetables

Kukshtel, K. 2014, “The Clash Between Systems and Narrative Comes to a
Head in The Hit” at killscreendaily.com, <http://killscreendaily.com/articles/clash-
between-systems-and-narrative-comes-head-hit/>, accessed 9/8/2015

La Burthe, A. & Hen, D. 2012, “Procedural Audio with Unity” at develop-
online.net, <http://www.develop-online.net/tools-and-tech/procedural-audio-with-
unity/0117433>, accessed 5/6/2015

Maher, J. 2017, “Loom (or How Brian Moriarty Proved That Less is Sometimes
More)” at filfre.net, <http://www.filfre.net/2017/02/loom-or-how-brian-moriarty-
proved-that-less-is-sometimes-more/>, accessed 20/2/2017

Moriarty, B. 2015, “I Sing the Story Electric” at ludix.com, <http://ludix.com/
moriarty/electric.html>, accessed 16/12/2015

Moriarty, B. 2015, “No, Ask Me About Loom: Classic Game Postmortem:
LucasFilm Games’ Loom” at ludix.com, <http://ludix.com/moriarty/loom.html>,
accessed 28/7/2015

Remo, C. 2008, “The Last Express: Revisiting an Unsung Classic” at
gamasutra.com, <http://www.gamasutra.com/view/feature/3862/
the_last_express_revisiting_an_.php>, accessed 11/9/2016

Still Eating Oranges, 2012, "Hi Your Recent Post About Conflict..."
at stilleatingoranges.tumblr.com, <http://stilleatingoranges.tumblr.com/post/
25248152114/hi-your-recent-post-about-conflict-was-an-interesting>, accessed
6/5/2014

Still Eating Oranges, 2012, "Mark Essen's Worlds Without Maps"
at stilleatingoranges.tumblr.com, <http://stilleatingoranges.tumblr.com/post/
25789094763/mark-essens-worlds-without-maps>, accessed 6/5/2014

Still Eating Oranges, 2012, "The Significance of Plot Without Conflict"
at stilleatingoranges.tumblr.com, <http://stilleatingoranges.tumblr.com/post/
25153960313/the-significance-of-plot-without-conflict>, accessed 6/5/2014

Still Eating Oranges, 2013, "Plot Structure All the Way Down"
at stilleatingoranges.tumblr.com, <http://stilleatingoranges.tumblr.com/post/
53045164430/plot-structure-all-the-way-down>, accessed 6/5/2014

Still Eating Oranges, 2014, "Kishotenketsu in Mario"
at stilleatingoranges.tumblr.com, <http://stilleatingoranges.tumblr.com/post/
76178051254/kishotenketsu-in-mario>, accessed 6/5/2014

�83

http://killscreendaily.com/articles/clash-between-systems-and-narrative-comes-head-hit/
http://www.develop-online.net/tools-and-tech/procedural-audio-with-unity/0117433
http://www.filfre.net/2017/02/loom-or-how-brian-moriarty-proved-that-less-is-sometimes-more/
http://ludix.com/moriarty/electric.html
http://ludix.com/moriarty/loom.html
http://www.gamasutra.com/view/feature/3862/the_last_express_revisiting_an_.php
http://stilleatingoranges.tumblr.com/post/25248152114/hi-your-recent-post-about-conflict-was-an-interesting
http://stilleatingoranges.tumblr.com/post/25789094763/mark-essens-worlds-without-maps
http://stilleatingoranges.tumblr.com/post/25153960313/the-significance-of-plot-without-conflict
http://stilleatingoranges.tumblr.com/post/53045164430/plot-structure-all-the-way-down
http://stilleatingoranges.tumblr.com/post/76178051254/kishotenketsu-in-mario

Stuart, K. 2015, “Everybody’s Gone to the Rapture: Writing a Score for the End
of the World” at thegaurdian.com, <http://www.theguardian.com/technology/
2015/jul/30/everybodys-gone-to-the-rapture-video-game-sound-music>,
accessed 9/8/2015

Stubbs, D. 2014, “Dynamic Narrative in The Hit” at gamasutra.com, <http://
www.gamasutra.com/blogs/DanStubbs/20140402/214565/
Dynamic_Narrative_in_The_Hit.php>, accessed 9/8/2015

Weinberg, J. 2016, “Game Developer’s Conference: Day of the Tentacle Puzzle
Dependency Graph” at thewebsiteisdown.com, <http://thewebsiteisdown.com/
twidblog/?p=947>, accessed 17/3/2016

�84

http://www.theguardian.com/technology/2015/jul/30/everybodys-gone-to-the-rapture-video-game-sound-music
http://www.gamasutra.com/blogs/DanStubbs/20140402/214565/Dynamic_Narrative_in_The_Hit.php
http://thewebsiteisdown.com/twidblog/?p=947

Part 2
Appendices 

�85

Table of Contents

Appendix A: Diagrams of Game Object Functionality

Appendix B: Performance Manual

Appendix C: Description of External Code Libraries Used in Unity

Appendix D: Gameplay Videos

Appendix E: Pallas of Vines (playable game for Mac OSX)

Appendix F: Performances, Conferences and Academic Involvement

Appendix G: Design Process Screenshot Archive 

�86

Appendix A: Diagrams of Game Object Functionality

See attached USB Drive.

Diagrams Table of Contents

1. Overview and Working Example

2. Overview of Object Types by Category

3. Multiple Avatars in Single Player & Local Multiplayer

4. Multiple Avatars in Remote Multiplayer

5. Multiple Players, Multiple Avatars & Multiple Sound-Sources

6. Assigning Avatars as Listeners to Audio Source Objects

7. Assigning Avatars as Listeners to Non-Audio-Source Objects

8. Fields and Defining Proximity Relationships

9. Proximity and Orientation Relationships

10. Player-Controlled Creation, Destruction and Movement of Objects

11. Advanced Movement and Parameter Dynamics Using Game-Physics

12. Connectivity: One-to-One and One-to-Many Relationships

13. Connectivity: DSP Effect Chains: Linear and Branching

14. Connectivity: Visual Effects: Camera Filters, Colouration and Lights

15. Player and Parameter Interactions

16. Player and Parameter: Advanced Interaction Mapping

17. Dynamic Creation of Performative Switching-Structures

18. Node-Based Pattern Sequencing 

�87

Appendix B: Performance Manual

Also available as a separate document on attached USB Drive.

Note that there is no manual for Story Mode, however an in-game tutorial is
available and is highly recommended before proceeding. From the title screen
select “Story > New Game > Tutorial” 

�88

Appendix C: Description of External Code Libraries Used in Unity

The following code-libraries were used to augment Unity’s capabilities in the
manner listed below:

• G-Audio (Zanon, 2016): in Pallas’ Performance Mode, G-Audio completely
replaces Unity’s default audio system, allowing for many otherwise
unachievable functionalities such as real-time routing of audio (including real-
time uninterrupted instantiation of DSP effects chains), real-time instantiation
of audio channels, pulse-based envelope triggering of samples, smooth-
continuous pitch-shifting and reverse sample playback

• Audial (Pennington, 2014): a collection of audio DSP effects that can be
implemented in effects chains within G-Audio’s channel system

• Wwise (Audiokinetic, 2016): used in Pallas’ Story Mode to support real-time
interpolation between spatially distributed synchronised music sources, as
well as expressive musical parameter manipulation in puzzles

• Colorful (Hourdel, 2015): a collection of camera filter processing effects

• MIDI Unified (Ledvina, 2014): basic MIDI input/output library. Used here only
to specify connections to MIDI input/output devices, and to retrieve incoming
Note and Continuous Control data

• UniOSC (Schlupek, 2014): implements Open Sound Control connections and
real-time messaging

• UniFileBrowser (Starscene Software, 2014): an in-game file-browser. Allows
players to access their local hard-drive to load/save files: for example to load
audio samples into a performance 

�89

Appendix D: Gameplay Videos:

See attached USB Drive.

Performance Mode:

Before watching please note the following:

• These videos are unedited: they each demonstrate unbroken passages of
real-time gameplay dynamics.

• The intention of these videos is to demonstrate specific functionalities, as
described in their titles 1-12 below. As such they should be considered
instructional, and not taken as cohesive performances or polished audio-
visual pieces in their own right. The below commentaries are focused purely
on functionality and not on aesthetic outcome, and it is expected that the
reader (via the entire contents of this thesis) build up an understanding of the
many and varied ways a cohesive performance could be executed.

• These videos should be understood as a set where each will help to make
sense of the others, and are intended to be watched in order. As such each
subsequent commentary below omits any details that have been explained in
a previous video’s commentary. The commentaries should also be cross-
referenced with the Diagrams in Appendix A and the Manual in Appendix B.

• The content of these videos does not represent an exhaustive demonstration
of all the objects and functionalities available in framework. The Manual in
Appendix B (in its entirety) should be considered the most complete list of
functionalities.

1) Overview Example: Avatars, Audio and Visual Object Basics
2) Multiple Avatars, Multiple Sound Sources and Audio Busses
3) Sample Players, Pulses, Effects Chains and User Sample Pools
4) Synthesis, Arpeggiators and Synth LFOs

�90

5) Pitch Objects, Note Sequencers and Sample Loopers
6) Lighting, Colouration and Links Between Audio and Visual Parameters
7) Camera Filters (this video intentionally has no audio)
8) Switches, LFOs, X/Y Panels, Parameter Store/Recall
9) Cyclical and Physics-Based Motion: Spinners, Orbits, Anchor-Motion
10) Hardware Mapping: MIDI Note and CC, Gamepad (Examples 1, 2 & 3)
11) Node Sequences
12) Basic Generative Structures (Examples 1 & 2)

A brief commentary on each of the above videos follows:

1) Overview Example: Avatars, Audio and Visual Object Basics

This video shows a range of the most common audio and visual functionalities.
The player extracts a sample from a Sample Store object, thus creating a
Sample Player sound source. The field around this sound is adjusted, thus
affecting it listener-radius.
The player then creates a Delay effect (the blue cylinder), and uses the cursor
to make a connection from the sound source to the effect. The field around the
effect is adjusted, which changes how much of that effect is applied to the
sound.
A second Avatar is created, which is then used to pick up and move the Delay
effect. Moving it away from the sound source reduces the amount of Delay
applied to that sound.
As the first Avatar has been automatically assigned as the listener of the sound
source, the movement of the second avatar does not affect the volume or
panning of that sound.
An LFO effect (the pink/red cylinder) is connected to the same Sound Source’s
effects chain, after the Delay effect and its field is adjusted with a more audible
result. The second Avatar is connected to a fader on the LFO effect, such that
the proximity of the avatar to that fader (which in this case represents LFO-rate)
will determine its value.

�91

A Global Light Source is created, as well as a standalone fader. 2 parameters of
the light source and one parameter of the LFO are connected to the fader, so
that the one fader controls all 3 parameters at once. Then the avatar is
connected to that fader so that its proximity will control all 3 parameters. The
light source is destroyed, and a Parameter LFO (update-rate) is created, which
is used to oscillate the value of the LFO effect (audio rate).
A Pulse object and a new Sound Source are created. The Pulse is connected to
the Sound Source and the player creates a new Avatar, connects the sound to
the same Delay effect as the previous sound, and uses the cursor to move the
playhead along the sound’s waveform to determine which portion of the sample
the Pulse will trigger.
A Camera Filter object is added, and one filter is created on it and manipulated,
later followed by a second filter. The connected Avatar moves around the
Camera Filter object to demonstrate the proximity relationship.
The player connects the Pulse to the original Sound Source and manipulates its
playhead as previously described.
The player selects all the fields in the scene and reduces their respective radii
simultaneously, thus fading out all sounds and all audio and visual effects.

2) Multiple Avatars, Multiple Sound Sources and Audio Busses

Many of the same principles from the previous video are applied in setting up
the sounds in this scene. The second sound is created by duplicating the first.
On the second Sample Player the bottom glyph is clicked (where a white dot
appears), meaning that this sound is now playing in reverse.
Avatar proximity and rotation are used to demonstrate their effects on volume
and panning on the second Sample Player, while the first sound (connected to
the first avatar) remains stable in its volume and panning as that Avatar is not
moving.
An Audio Bus is created and both sounds are connected. The sounds maintain
their relative volume and panning (based on their individual avatar-listener
positions), and a secondary layer of volume and panning alteration is applied
via the third Avatar’s position and rotation relative to the Audio Bus object. The

�92

player toggles the appearance of the connection lines to illustrate where both
the sound-to-avatar and sound-to-bus connections are taking effect.
By destroying the Audio Bus object, its mediation of the volume and panning of
the sounds is immediately nullified, thus immediately returning the sounds to a
direct relationship with their avatars.
Two new sounds are created from a second sample, and a single Avatar is
connected as the listener of all 3 of the sounds in the scene. Thus at that point,
the movements of a single Avatar are used to mix the volume and panning of all
three sounds at once.

3) Sample Players, Pulses, Effects Chains and User Sample Pools
(Note there is a small audio glitch at around 2:30)

A User Sample Pool object is created and is set to “Auto add any new samples”
meaning that if the player goes through the usual process of creating a Sample
Store via a WAV file retrieved from their hard-drive, this WAV file will be store in
the User Sample Pool instead (as shown by a golden sphere for each sample).
A Sound Source is then created and controlled by a Pulse as previously
described. A duplicate of the sound is then also controlled by the same pulse
and 2 effects are applied to it.
A second Pulse object is created and put into “Loop Sync Mode”, shown by its
cylinder coloured red. Loop Sync Mode outputs pulses at a much higher rate,
and is used to drive the position of the playhead (either forwards or in reverse)
on any connected Sound Source.
The player creates a new Sound Source by dragging a sample from the User
Sample Pool, and then connects a Delay effect. The player controls the final
sustain and decay of this sound by setting a high feedback value on the Delay
before moving the avatar-listener away.

4) Synthesis, Arpeggiators and Synth LFOs

The player creates a Synthesizer object, which by default is in monophonic
mode. They cycle through some of the available waveform-types (Square,

�93

Triangle, Sine, etc.), then manipulate FM rate and depth parameters. A second
Avatar is then connected to the FM rate dial and controls it via proximity.
A Synth LFO object is created. This is conceptually the same as the Parameter
LFO discussed in Video 1, but it is specifically designed to manipulate synth
parameters at audio rate. While it is only connected to one parameter here,
note that it could be connected to any number of compatible parameters on any
number of Synth objects simultaneously. Synth LFOs can also be used to
control other Synth LFOs.
It is connected to the FM depth dial, then the player adjusts its parameters and
cycles through some of its waveform-types (Square, Triangle, Sine, etc.). The
player enables note-input on the Synth (shown by the small gold sphere above
it) and inputs notes via the QWERTY keyboard. The Synth is then put into
Polyphonic Mode, and its ADSR amplitude envelope is adjusted.
A Pulse is connected to the Synth, automatically setting it to Arpeggiator Mode.
The player continues to input notes which are thus arpeggiated by the Pulse. A
set of 3 notes are locked into the arpeggiator (shown by the two gold bars
above the synth).
A second Synth object is created, and set up to be arpeggiated by the same
Pulse. The AM parameters on this second synth are manipulated, then a
Phaser effect is connected and both the AM and Phaser rates are manipulated
via the proximity of a third Avatar. An LPF effect is connected and manipulated.
On the first Synth the player inputs notes while the Arpeggiator is locked on,
thus adding new notes to its cycle. A Parameter LFO is created and used to
oscillate the LPF frequency.
The first Synth is faded out via Avatar proximity and the second Synth is faded
out and FM manipulated via Avatar proximity, while the Pulse is slowed.

5) Pitch Objects, Note Sequencers and Sample Loopers

Two Sample Players and a Pitch object are created. The Pitch object is
connected to both, along with a Delay effect. Both samples are played and
pitch-manipulated.
The Pitch object is put into Record-Player mode and the player uses scroll input
(in this case trackpad-scrolling) to manipulate the pitch-wheel. The reverse-

�94

glyph is toggled thus controlling reverse playback of both samples. The Pitch
object’s on-screen keyboard is revealed and used to input specific pitches to the
Sample Player.
The Sample Player is targeted for Loop Recording (shown by a red sphere
above it), then the player begins recording a loop (shown by a red sphere
above the Avatar). A new Sample Player containing the recorded loop is created
automatically as soon as the player completes the loop recording. In the same
way a second loop is then recorded from a new Sample Player.
The player then initiates a Master Loop Recording. This is done by not targeting
a specific sound source to record, thus defaulting to record the Master Output
Channel (i.e. the aggregate of all audible sounds in the scene). The player then
sets the resulting loop to play in reverse.
A Synth and a Note Sequencer are created and connected. The Note
Sequencer is loop-record enabled (shown by the flashing red/white cube), and
the player inputs a sequence of notes (in this case via the QWERTY keyboard).
As the Note Sequencer loops, the player adds additional notes to the sequence.
The Synth is targeted for loop recording, resulting in a new Sample Player
looping a portion of the Synth’s recorded output, which is then played in
reverse.
A new Master Loop Recording is made, capturing portions of both the Synth’s
output and the previously recorded sample-loop of the Synth, and this is used to
then complete the piece.

6) Lighting, Colouration and Links Between Audio and Visual Parameters

Note: the first half of this video intentionally has no audio

A Global Lighting object is created, and its sunlight and ambient light
parameters are decreased, darkening the scene. The player moves the
connected Avatar to show how proximity affects the lighting. The Global Lighting
object is toggled on and off.
Two Local Lighting objects are created and altered. Other Global Light
parameters such as light-angle (affecting the shadows in the scene), fog density

�95

and fog colour are altered, and a single Fader is then used to control several
parameters at once.
A Colouration object is created, connected to two Local Lights, and thus used to
alter their colour.
A Sample Player is connected to a LPF effect and the LPF frequency is
connected to the Fader that is controlling the Global and Local Light settings.
This Fader is thus used to control both lighting and audio. A Parameter LFO is
then used to oscillate that Fader, as well as the Colouration object (thus
oscillating colours of the Local Lights).
The Global Light is eventually switched off, restoring default lighting to the
scene.

7) Camera Filters

Note: this video intentionally has no audio

A Camera Filter object is created and a single filter slot is added. The player
cycles through some of the available filters on that slot. The Camera Filter
object is toggled on and off, and its field resized thus altering its Avatar
proximity-relative intensity. A second slot is added and the player cycles through
some of the available filters (note this works like an audio effects chain, where
each subsequent filter is processed in a chain after any that precede it).
A second Camera Filter is created and proximity relationships are explored. The
player then alters parameters via dials on individual filters, both via cursor and
Avatar proximity.
A Global Light is then manipulated to demonstrate the breadth of influence this
has over the Camera Filters.

8) Switches, LFOs, X/Y Panels, Parameter Store/Recall

A Switch object is created and is left in its default proximity mode (shown by the
continuously visible field surrounding it). A usual Sample Player plus effects
setup is created, and the effects are connected to the Switch. When the Avatar
exits or enters the Switch’s field, the effects are toggled on or off (shown be

�96

their upper golden-rings disappearing) and this bypasses them on the Sample
Player.
A Parameter LFO is also connected to the Switch, and used to control
parameters on both effects. The Phaser effect is disconnected from the Switch
(shown by the white sphere exploding), so the toggling of the Parameter LFO
by the Switch can be better demonstrated.
A Multi-Parameter Gesture Surface is created. This outputs the X and Y position
of the inset gold-square relative to its distance from the bottom-left of the panel
(i.e. where the bottom-left is X = 0, Y = 0). A Lofi effect is created (the yellow
cylinder). A parameter of the Lofi effect is connected to Surface’s X value, and a
parameter of the Phaser effect is connected to the Surface’s Y value. The Lofi
effect’s sample-rate parameter (controlled by the Surface’s X) is then scaled
down into a more audible range via the two scaling dials on the fader. A Global
Lighting object and a new Sample Player are created and toggled via the
Switch.
A Parameter Store object is created (the pyramid with two spheres) and two
effects parameters are connected to it. The player creates to storage nodes on
it, stores different parameter positions in each (shown by the node turning red),
and then both smooth-interpolates and instant-switches between the stored
values, also demonstrating variable interpolation speeds via the dial on each
node. The Sample Player is then triggered by a Pulse in order to demonstrate
the Parameter Store object’s ability to store, retrieve and interpolate between
playhead positions along the Sample Player’s waveform.

9) Cyclical and Physics-Based Motion: Spinners, Orbits, Anchor-Motion

An Avatar listening to a Sample Player is placed on a Spinning Platform, thus
both the volume and panning of the Sample Player are modulated according to
the Avatar’s rotational position. The platform’s spin-rate is adjusted to make this
affect clearer. A parameter of an LFO effect is connected to the Avatar on the
platform, so that this parameter oscillates according to the Avatar’s rotation.
Both of these Avatar connection-lines are made visible in order to make these
proximity relationships clearer.

�97

A Phaser object (connected to the Sample Player) is placed on the Spinning
Platform, thus oscillating the amount of the effect applied to the Sample Player
via its rotation. The Phaser’s rate parameter is then connected to the Avatar
who is not on the platform, thus also oscillating that parameter.
Two Orbiter objects are created and one is set in motion around the other. The
position of the outer-most Orbiter is used to control the filter-frequency of a LPF
(this momentary cuts off the sound as the filter-frequency parameter maps to
the Orbiter’s rotation speed, which at that point is zero. This is resolved when
the player switches the mapping to the Orbiter’s proximity). A more complex
orbital relationship is created whereby the outer-most Orbiter’s position is
determined by both its own around a parent-object, and that parent-object’s
orbit around a higher-level parent-object.
A second Spinning Platform is created and set to a different speed, and the
Phaser is moved onto that platform. The LPF effect’s filter-frequency parameter
is attached to the relative Y-position of an Anchor and Motion object pair (this Y-
position is the Y-axis distance between the Anchor and the Motion (where the
Motion is the moving sphere). Using, at different times, the cursor and the
Avatar, the player applies various forces to the physics-simulation-based Motion
object which thus applies its height to the LPF filter-frequency as it rolls over the
terrain, flies through the air, and so on. The LFO effect’s frequency is also
mapped to this height parameter (relative Y-position) of the Anchor Motion pair.

10) Hardware Mapping: MIDI Note and CC, Gamepad (examples 1, 2 and 3)

Note: There are 3 separate videos for Hardware Mapping:

10.1) Gamepad

The gamepad is essentially pre-mapped, and is demonstrated here in a local-
multiplayer context (although it can also be used for single-player in which case
the camera would be following the Avatar as usual). In this context the camera
remains fixed on Player 1 (who in this case is QWERTY + cursor controlled, and
who remains stationary in this video) and the gamepad player is free to move
around the visible play-area. The gamepad player is attached as the listener to

�98

the Sample Player, and can assign themselves as the listener to any available
sound source at any time. The player can pick up and move objects, and toggle
any switchable object on or off. They can map their controls to any fader or dial-
based parameter by targeting it with the Left/Right shoulder buttons (controlled
by the index fingers) and moving the right analog stick up and down (right
thumb) to alter the parameter.
In a single player context (not shown here) the gamepad can also be used to
control the cursor, and thus all the inter-object connectivity, field scaling, and on-
screen button toggling controls.

10.2) MIDI CC (Continuous Control)

Two effects are connected to a Sample Player and each has a parameter
mapped to a dial on the MIDI hardware device. The hardware device is simply
selected from an in-game menu (not shown here). In order to make a MIDI CC
mapping the player places the cursor over the desired parameter and holds F
on the QWERTY keyboard, then moves the MIDI CC control on the hardware
(here the dial) and releases the F key. Repeating this method, any parameter
can be remapped to a different hardware control (e.g. another dial, fader, etc.).
A mapping can be toggled on/off at any time by right-clicking the parameter. Any
visual parameter, as shown here with the example of a Local Light object, can
be mapped in exactly the same way as an audio parameter. Any number of
parameters can be mapped to a single hardware control (e.g. a single hardware
dial could control any number of in-game parameters simultaneously).

10.3) MIDI Note

A Synth object is created and set to Polyphonic Mode. The MIDI hardware
device is simply selected from an in-game menu (not shown here). Then, in
order to create a MIDI Note mapping, the player places the cursor over a
compatible object (such as a Synth, Sample Player, Pitch object or Note
Sequencer), holds Shift + F (showing a cone-shaped “ready” glyph) and
presses any note on the MIDI keyboard. While a note mapping is active, the
object will show a small white sphere above.

�99

As shown, multiple objects can be mapped to the same hardware. A second
Synth is created and mapped to the MIDI keyboard and is set to a different
waveform-type to differentiate its sound.
A Pulse is used to arpeggiate the Synth, as previously described, and the
viewer can observe how this changes the way that note-input is received from
the MIDI device.

11) Node Sequences

Two Sample Players, a chain of Sequence Nodes, and a Pulse are created. The
Pulse is used to drive the sequence. The Sample Players are connected to
different nodes in the sequence and are set to envelope mode, meaning that
the nodes will trigger an envelope of the samples, according to where their
respective playheads are positioned.
A third and fourth Sample Player are created, as well as a Delay effect which is
then connected to all Sample Players. The player then spends some time
adjusting the playhead positions and envelope parameters for each sample
while the sequence plays.
The sequence is slowed, some of the envelopes are extended in order to match
the slower tempo, and the sequence is eventually stopped.

12) Basic Generative Structures (Examples 1 & 2)

12.1) Basic Generative Structures 1

A Synth arpeggiator setup is created, as previously described, and a second
arpeggiating Synth is added. Two Spinning Platforms are created to move a
Synth and an Avatar listener, and they are set in motion at different spin-
speeds. A third arpeggiating Synth is added on its own Spinning Platform and
this is connected to a Lofi effect. The first Synth is placed on a newly created
Spinning Platform and set to spin, again at a different speed.
Two Sample Players are created and are driven by the same Pulse that drives
the Synths. A new Pulse is created, set to Loop Sync mode and used to drive

�100

the playhead position of one of the Sample Players. A Delay effect is connected
to one of the Sample Players and the player spends some time configuring the
delay-time parameter to suit the Pulse rate.
A Parameter LFO is used to control the speed of the Loop Sync pulse. A loop is
recorded from the Sample Player, its playback pitch is altered, and its listener is
placed on a small Spinning Platform. A Phaser effect is connected.
A Delay effect is added to one of the Synths.
The recorded loop is destroyed, along with its Avatar and Spinner. The Phaser
is connected to the Sample Player along with a LPF, which is set to oscillate via
the Parameter LFO.
The Synths are gradually destroyed, then the Loop Sync pulse is toggled
backwards and forwards to sustain a portion of the sample to the end of the
piece.

12.2) Basic Generative Structures 2

This is an exception from all the other videos as it begins with a performance
setup already established.

Less detail will be give here, as it is easy to see at a glance that this setup is
very similar to the previous video. The main difference is that the Synths are
just playing drones rather than arpeggiating, and there are initially two Sample
Players being controlled by a Pulse and Loop Sync combination and connected
to a single Delay effect.
The player spends some time adjusting the pitch of one of the Sample Players.
An Avatar is connected to a Synth’s FM rate parameter and then placed on a
Spinner, so that its spinning proximity will modulate the FM rate.
A new Sample Player is created as a duplicate of an existing one. This is also
Pulse and Loop Sync controlled. The higher-pitched Sample Player is moved
closer to the Delay, thus increasing its affect.
The previously stationary Synth is placed on its own Spinner and set in motion,
again at a different speed from the rest.
A Phaser is added to the third Sample Player, and its Avatar is turned to the
right in order to pan the sound left. The Phaser rate is modulated by a
Parameter LFO.

�101

The player selects and reduces the size of all fields simultaneously, thus fading
out the scene.

�102

Story Mode:

Please note the Performance Mode videos should be considered the primary
illustration of the expressive capabilities of this research.

Chapter 1: Full Playthrough

A full commentary will not provided for Story Mode in the same step-by-step
detail as Performance Mode. As discussed in the Exegesis all of the audio-
visual interactivity in Story Mode has filtered down from the development of the
Performance Mode framework.

In general the interactivity in the demonstrated section of Story Mode is much
simpler than Performance Mode, as this section represents an early part of the
game where players are eased into new concepts. Broadly speaking, the
concepts applied are:

1) Avatar-proximity-based mixing of multiple sound sources, particularly in the
case of the “background music”, whose various parts each emanate from
specific epicentres around the game-space.

2) Melody puzzles: where the player learns/interprets a melody and must play
it back (using the Avatar’s instrument) in the correct context. When the
flame appears above the Avatars head, this means the player is playing
notes via the Avatar’s instrument.

3) Draggable parameters: examples seen in this video include the sundial
puzzle where a dial can be dragged up/down on a single axis, and the moon
and stars puzzle where multiple parameters can be moved on X and Y axes
(equivalent to Performance Mode’s Multi-Parameter Gesture Surface).
These can control any of the parameters common to Performance Mode,
and the video demonstrates many examples such audio effects, camera
filters, and global lighting.

4) Note input into synthesisers or sample-players: the player-characters
instrument (shown by the flame above the Avatar’s head) is the most

�103

common example of this, but there are also several environmental
examples in this video, such as the vertical music-stones, the stepping-
stones, the spinning crystals, the song of freedom, and the lily-pad puzzles,
each of which show different modes of interaction whereby the player can
directly trigger individual notes or note sequences. 

�104

Appendix E: Pallas of Vines: video game for Mac OSX

See attached USB drive.

�105

Appendix F: Performances, Conferences and Academic Involvement

Performances

• Music for Strings and iThings, Adelaide, 2014
• a commissioned video-game piece for the Zephyr String Quartet, based on

an early prototype of the research, 2014

• Art Gallery of South Australia, Adelaide, 2015:
• Pallas of Vines as an audience-interaction performance

International Conferences

• Games for Change Festival, New York, 2015
• Pallas of Vines as interactive installation

• Computer Music Multidisciplinary Research: Music, Mind and Embodiment,
Plymouth, 2015

• Pallas of Vines as interactive installation

• International Symposium for the Electronic Arts, Vancouver, 2015
• Pallas of Vines as interactive installation

• New Interfaces for Musical Expression (NIME), Brisbane, 2016
• Pallas of Vines as a 3 day interactive installation

• Radio interview with ABC Brisbane at NIME (see attached USB,
Appendix F)

• Unite, LA, 2016
• Presentation on Pallas of Vines (see attached USB, Appendix F, for video

of presentation)

• Montreal International Game Summit, 2016
• Presentation on Pallas of Vines

�106

Academic Involvement

• Visit to MIT Game Lab, including expert feedback from Philip Tan and Scot
Osterweil, 2015

• University of Southern California’s Game Innovation Lab: 6 months of Visiting
Scholar research, including expert feedback from Chanel Summers, Sean
Bouchard, Richard Lemarchand and Tracy Fullerton, 2016

�107

Appendix G: Design Process Screenshot Archive

These screenshots were taken throughout the 3 year development of this
research. They document the transition from an abstract 2D prototype to the
fully realized Performance and Story environments of Pallas of Vines.

See attached USB drive.

�108

