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As with other instrumental variable (IV) analyses, Mendelian randomization (MR) studies rest on strong assumptions.
These assumptions are not routinely systematically evaluated in MR applications, although such evaluation could
add to the credibility of MR analyses. In this article, the authors present several methods that are useful for
evaluating the validity of an MR study. They apply these methods to a recent MR study that used fat mass and
obesity-associated (FTO) genotype as an IV to estimate the effect of obesity on mental disorder. These approaches to
evaluating assumptions for valid IV analyses are not fail-safe, in that there are situations where the approaches might
either fail to identify a biased IV or inappropriately suggest that a valid IV is biased. Therefore, the authors describe
the assumptions upon which the IV assessments rely. The methods they describe are relevant to any IV analysis,
regardless of whether it is based on a genetic IV or other possible sources of exogenous variation. Methods that
assess the IV assumptions are generally not conclusive, but routinely applying such methods is nonetheless likely
to improve the scientific contributions of MR studies.

causality; confounding factors; epidemiologic methods; instrumental variables; Mendelian randomization analysis

Abbreviations: BMI, body mass index; DAG, directed acyclic graph; IV, instrumental variable; MR, Mendelian randomization.

Mendelian randomization (MR) studies use genotypes as
instrumental variables (IVs) to estimate the health effects of
phenotypes influenced by those genotypes (1–6). MR-based
effect estimates rest on strong assumptions (7–9), but MR
applications often do not systematically evaluate these as-
sumptions. Routinely presenting such evaluations would add
to the credibility of MR studies (10–13). A recent article by
Kivimäki et al. (14) stands out as an example in which the
authors provide evidence regarding the plausibility of the
MR assumptions. Kivimäki et al. used fat mass and obesity-
associated (FTO) genotype as an IV to estimate the effect
of body mass index (BMI; weight (kg)/height (m)2) on risk
of mental disorder. They found large and statistically sig-
nificant IV effect estimates, suggesting that a high BMI in-
creased the risk of mental disorder (though these findings
have not been replicated (15)). Kivimäki et al. also provided
results useful for evaluating the validity of the FTO genotype
as an IV. They concluded that the findings suggest that FTO
is not a valid IV and that the MR-based effect estimate is

probably severely biased. Using Kivimäki et al.’s study as an
example, we describe methods for evaluating the validity
of an MR study (summarized in Table 1). To set the stage,
we begin by reviewing the assumptions an IV must satisfy
and causal structures that violate these assumptions.

ASSUMPTIONS FOR MR STUDIES

The assumptions of MR studies can be represented using
causal directed acyclic graphs (DAGs) (7, 8, 16–19). Figure 1A
shows a set of assumptions under which FTO provides a valid
IV for the effect of BMI on mental disorder:

1) FTO (the genotype) is associated with BMI (the pheno-
type);

2) there are no unmeasured common causes of FTO and
mental disorder (the outcome); and

3) every directed pathway (sequence of arrows) from FTO
to mental disorder passes through BMI.
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FTO might not affect BMI but rather may be in linkage
disequilibrium with an adjacent causal gene, for example,
KIAA1005 (20). This does not necessarily invalidate FTO as
an IV, provided that KIAA1005 fulfills the above assumptions
and there are no other pathways linking FTO to mental dis-
order (as shown in Figure 1B, where linkage disequilibrium
is represented as a double-headed arrow) (7).

It should be emphasized that FTO might be a valid IV
with which to estimate the effect of BMI on mental disorder
regardless of whether BMI affects mental disorder primarily
via psychosocial mechanisms or biochemical mechanisms.

Among the 3 IV assumptions, assumption 1 is easily evalu-
ated, andKivimäki et al. show thatFTO and BMI are positively
associated (14). Assumptions 2 and 3 cannot be proven but
can sometimes be falsified or shown to be inconsistent with
prior evidence.

Parts A and B of Figure 1 show a vector U of unmeasured
confounders of BMI and mental disorder, indicating that
conventional analyses would be biased. The possibility of
unmeasured confounding typically motivates MR studies.
Kivimäki et al. (14) provide some evidence that the net re-
sidual confounding from unmeasured factors may be positive,
by noting that associations between BMI and mental disorder
have been less positive in studies that included statistical
adjustment for many potential confounders. As is discussed
below, such evidence suggests net positive confounding but
is not conclusive. Nonetheless, in the remainder of this article
we will assume unmeasured net positive confounding of
the BMI-mental disorder association. Reasonable researchers
may disagree with this assumption, but we do not further dis-

cuss its substantive merits. Our goal is to show how assump-
tions based on prior theory or evidence can be combined with
empirical data to assess the validity of an instrument and to rule
out certain causal structures. Without assumptions about the
direction of the unmeasured confounding of the BMI-mental
disorder association, there are fewer tools with which to eval-
uate the IV assumptions. Throughout, we suppose that the
data have been stratified on all measured confounders of the
BMI-mental disorder association that are unaffected by FTO.

In Figure 1C, FTO is a valid IV but the IV analysis is un-
necessary because there is no unmeasured confounding.

The DAGs in Figure 2 show modifications of those in
Figure 1, in which IVassumption 2 or 3 is violated and FTO is
not a valid instrument. If IVassumption 2 or 3 is violated, the
magnitude of bias in the standard IV effect estimate (defined
below and inWebAppendix 1 (http://aje.oxfordjournals.org/))
is generally inflated in inverse proportion to the strength of the
association between the instrument and the phenotype. Even
very weak direct pathways from the gene to the outcome can

Table 1. Four Alternative Empirical Approaches for Assessing the

Validity of Proposed Instrumental Variables in Mendelian

Randomization Studies

Approach

Leverage prior causal assumptions regarding confounding of the
phenotype-outcome association. There are 4 equivalent
versions of this test, including the simple comparison of the
Mendelian randomization effect estimate with a conventional
effect estimate. The test relies on the assumption regarding
the direction of confounding, and even with this assumption
the test is not guaranteed to be consistent in at least some
nonlinear causal structures.

Identify factors that modify the genotype-phenotype association.
Compare the IV effect estimate across groups in which the
population association between the instrument and the
phenotype is either silenced or reversed. This test could
identify a biased instrument provided that the biasing pathway
is active in both subgroups.

Apply instrumental inequality tests. These tests are applicable
only when the causal phenotype is known to be categorical.
Even with categorical phenotypes, these inequality tests can
only detect extreme violations of the assumptions, although
the greater the number of IVs, the more sensitive the tests are.

Use multiple IVs to conduct overidentification tests. Other genes
or even polymorphisms in the same gene might provide
additional instruments. Overidentification tests cannot detect
violations of the IV assumptions if all instruments have
identical biasing pathways. They may also reject even when
all instruments are valid if the model is incorrectly assumed to
be linear or if the phenotype is composite. These tests
generally have low statistical power.

Abbreviation: IV, instrumental variable.
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Figure 1. Causal structures in which fat mass and obesity-associated
(FTO) genotype provides a valid instrumental variable (IV) with which
to estimate the effect of body mass index (BMI) on the risk of mental
disorder (MD). In these diagrams, dotted lines indicate the hypothe-
sized causal pathway of primary research interest: the effect of BMI on
MD. The solid arrows represent hypothesized causal pathways, and
the absence of an arrow connecting 2 variables represents the as-
sumption that these variables do not affect one another. Whenever
2 variables in the diagram share a common cause, that relation is
shown in the diagram (even if the specific common cause is unknown
or unmeasured (U)). Thus, the directed acyclic graph (DAG) in part A
represents the assumptions that FTO and U both affect BMI, U affects
MD, there is no direct effect of FTO on MD, and there is no common
prior cause of FTO and MD. The DAG in part B introduces linkage
disequilibrium (LD) between FTO and the KIAA1005 gene. Under the
assumptions shown in part B,KIAA1005 would be a valid IV with which
to estimate the effect of BMI on MD, and because there are no other
pathways connecting FTO and MD, FTO is also a valid IV. The DAG
in part C is similar to that in part A, but U has been eliminated; thus,
part C represents the assumption that there are no confounders of
BMI and MD.
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severely bias the IV effect estimate if the gene has a tiny
effect on the phenotype.

In Figure 2A, the existence of a population group (G) that
influences FTO and separately influences mental disorder
violates assumption 2, a causal structure sometimes called
‘‘population stratification’’ (1). In Figure 2B, assumption 3
is violated by an (unmeasured) phenotype (P) that affects
mental disorder and is affected by FTO, for example, due to
pleiotropic effects of the gene (1). Figure 2C shows another
concern: Alternative components or versions (e.g., abdominal
obesity vs. thigh obesity) of the phenotype (BMI) may have
different effects on the outcome. If so, MR can only iden-

tify the effect on the outcome of that version of the pheno-
type (abdominal obesity) which is induced by the genotype
(FTO) (21). In Figure 2C, this effect, of abdominal obesity
on mental disorder, is null. Absent knowledge of the relevant
biology, this null effect might be misinterpreted as definitive
evidence that no aspect of obesity affects mental disorder,
overlooking the effect of thigh fat. This example shows how
prior knowledge of the biologic, clinical, or social mechanisms
linking the genotype and phenotype and the phenotype and
the outcome can help assess the interpretation and plausibility
of alternative causal structures (1, 2, 6).

Figure 2D shows a structure in which the causal BMI phe-
notype (BMIcausal) is measured with error and BMImeasured

has no causal effect on mental disorder. The error may rep-
resent any or all of the following: conventional random error,
incorrect specification of the dose-response function linking
BMI to mental disorder, or incorrect choice of the relevant
exposure period. An example of the latter would be using
adult BMI in the analysis when the causal phenotype is BMI
in childhood. Because genetic factors can affect the phenotype
throughout life, the choice of the relevant phenotype expo-
sure period is of greater concern in MR than in many other
IV applications.

Under the DAG shown in Figure 2D, FTO is a valid
instrument for the effect of BMIcausal on mental disorder,
although BMImeasured cannot necessarily be used to derive
an unbiased MR effect estimate for BMIcausal. FTO is not
a valid instrument for the (null) effect of BMImeasured on
mental disorder, because IV assumption 3 fails if the pheno-
type of interest is BMImeasured. Nonetheless, DAG 2D (unlike
DAG 2B) implies that a test for an association between FTO
and mental disorder remains a valid test of the null hypothesis
of no effect of BMI on mental disorder (i.e., of the hypothesis
that the arrow from BMIcausal to mental disorder is absent).

In Web Appendix 1, we show that if BMIcausal affects risk
of mental disorder, the MR estimate using BMImeasured may
be unbiased, inflated, or attenuated compared with the esti-
mate based on BMIcausal, depending on the regression slope
of BMImeasured on BMIcausal (i.e., the nature of the mismea-
surement). Under the classical measurement error model
(BMImeasured equals BMIcausal plus mean zero independent
random error), the MR estimand based on BMImeasured equals
that based on BMIcausal. In contrast, suppose BMImeasured and
BMIcausal were dichotomous and misclassification were
nondifferential—that is, the misclassification probabilities
did not depend on FTO or mental disorder. In this situation,
the magnitude of theMR estimate based on BMImeasured would
exceed that based on BMIcausal. However, the MR esti-
mate based on BMImeasured will be smaller than that based
on BMIcausal, if, when BMImeasured is regressed on BMIcausal,
the slope of the regression line exceeds 1. This may be
common in MR studies and would apply, for example, if
BMIcausal was BMI in childhood, BMImeasured was adult
BMI, or BMIadult ¼ 1.2 3 BMIchildhood plus an independent
measurement error.

In Figure 2E, IV assumption 3 is violated because FTO
affects risk of mental disorder, which in turn affects BMI.
This elaboration of Figure 2B is especially relevant to MR
studies because the temporal order of the phenotype and
outcome measurements often provides little information, or

A)

B)

C)

D)

E)

BMI MDFTO

Population
Group (G)

BMI MDFTO

Unmeasured
Phenotype (P)

MDFTO BMI

BMIcausal MDFTO

BMImeasured

Abdominal
Adiposity

MD

FTO

BMI

Thigh Fat

Figure 2. Causal structures in which fat mass and obesity-associated
(FTO) genotype is not a valid instrumental variable (IV) with which to
estimate the effect of bodymass index (BMI) asmeasured on the risk of
mental disorder (MD). FTO would not be a valid instrument for estimat-
ing the effect of BMI on MD if FTO and MD shared an unmeasured
common cause such as population group (G), sometimes called pop-
ulation stratification (as in part A), or if there is a causal pathway from
FTO to MD that is not mediated by BMI, as with pleiotropy (shown in
part B). In part C, FTO influences abdominal adiposity but not thigh fat.
Both thigh fat and abdominal adiposity influence BMI, but only thigh
fat affects MD. The Mendelian randomization effect estimate based
on FTO would not correspond to the effect of thigh fat on MD. If, as in
the directed acyclic graph (DAG) shown in part D, BMI as measured
is not the causal version of BMI, then the IV estimate based on
measured BMI would correspond to the causal effect only under
special circumstances. In the DAG shown in part E, MD affects
BMI, rather than vice versa, and the IV estimate would not corre-
spond to the effect of BMI on MD.
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even misleading information, regarding the causal direction
linking the phenotype and the outcome.

We next turn to some empirical approaches to evaluating
whether proposed IVs are valid (summarized in Table 1).

FALSIFYING IV ASSUMPTIONS BY LEVERAGING
PRIOR CAUSAL ASSUMPTIONS

One approach to testing IV assumptions is to attempt to
determine whether the data are compatible with prior assump-
tions of positive residual confounding of the phenotype-
outcome association. We first explain the approach and then
provide informal intuitions; relevant proofs are given in Web
Appendix 2. We show that under the assumption that net
unmeasured confounding is positive, this approach often
(but not always) provides a valid test of the IV assumptions.

Constructing the test requires a formal definition of pos-
itive net unmeasured confounding. We provide a useful
counterfactual definition that allows for the possibility that
the vector U of common causes of mental disorder and BMI
contains components that result in negative confounding,
provided that net unmeasured confounding is positive. Let
FTO ¼ 0, 1, 2 denote the number of minor FTO alleles
a particular individual carries. Define the counterfactual
BMI(FTO ¼ z) to be a subject’s (centered) BMI if, possibly
contrary to fact, he was of type z at the FTO locus.
BMI(FTO) represents the set (bolded to indicate a set) of
counterfactual BMI values for this subject for all possible
values of FTO. Let MD(BMI ¼ x) be a subject’s counter-
factual mental disorder (MD) if, possibly contrary to fact,
his BMI was x. MD(BMI) represents the set of counterfac-
tual values of mental disorder for all possible values of BMI.
This notation incorporates the IV assumption that mental
disorder depends on BMI but not further on FTO.

Definition: Positive net confounding of the association
between mental disorder and BMI exists if MD(BMI ¼ x)
and BMI(FTO¼ z) are positively correlated for all possible
values x of BMI and z of FTO.

This is consistent with conventional accounts of confound-
ing. It holds if BMI and mental disorder share one common
cause which positively affects both conditions or multiple
common causes, some of which might result in negative con-
founding, provided the magnitude of positive confounding
exceeds the negative confounding. Under our definition, ad-
justing for positive confounders would generally reduce the
magnitude of the coefficient for BMI in the regression of
mental disorder on BMI, consistent with prior studies of
BMI andmental disorder noted in Kivimäki et al.’s paper (14).

This definition is motivated by Figure 3, which adds
MD(BMI) and BMI(FTO) to DAG 1A. This DAG encodes
the fact that U influences the observed BMI and mental disor-
der only through its effects on the counterfactuals BMI(FTO)
and MD(BMI). If the unmeasured common causes U posi-
tively (or negatively) affect both BMI(FTO) and MD(BMI),
then the counterfactuals will be positively correlated.

Assume for now a linear causal model in which the effect
of BMI on mental disorder is linear with the same slope r for
every subject, so thatMD(BMI¼ x)¼ r3 xþMD(BMI¼ 0).
For any 3 random variables (X, Y, Z), let CXY denote the
coefficient of X in the ordinary least squares regression of

Yon (1, X) and CXYjZ correspond to the coefficient of X in the
regression of Y on (1, X, Z). In the regression of mental dis-
order on FTO, the coefficient for FTO would be represented
by CFTO,MD. When FTO is a valid instrument, the causal
slope r describing the effect of BMI on mental disorder equals
the standard IVestimand: the ratio of CFTO,MD to CFTO,BMI.
The standard IV estimate referred to above is the sample
version of this ratio.

We now describe the tests of positive unmeasured confound-
ing. Given that FTO and BMI are positively correlated, we
prove in Web Appendix 2 that if FTO is a valid IV and the
linear causal model holds, then positive unmeasured con-
founding of BMI and mental disorder implies the following
4 equivalent statements.

1. The IVeffect estimate is less than the ordinary least squares
effect estimate: CFTO,MD/CFTO,BMI < CBMI,MD.

2. In the regression predicting mental disorder with FTO and
BMI, the coefficient for FTO is negative:CFTO,MDjBMI < 0.

3. The estimated slope for BMI predicting mental disorder
is closer to the IV estimate than is the slope for BMI
predicting mental disorder with additional adjustment
for FTO: jCBMI,MD-CFTO,MD/CFTO,BMIj<jCBMI,MDjFTO-
CFTO,MD/CFTO,BMIj. Under the linear causal model, this
implies that the magnitude of the bias of the ordinary
least squares estimate for the causal slope r adjusted for
FTO exceeds the bias of the ordinary least squares
estimate without adjustment for FTO.

4. The residual MD � (CFTO,MD/CFTO,BMI) 3 BMI is pos-
itively correlated with BMI: Cov(MD � (CFTO,MD/
CFTO,BMI) 3 BMI, BMI) > 0. Under the linear causal
model, this residual is an estimate of the counterfactual
MD(BMI ¼ 0).

If confounding is positive and the linear causal model holds,
then empirical violations of any of the above 4 statements
imply that FTO is not a valid instrument. More generally, this
result is true if a structural nested mean model with no effect
modification or treatment interaction holds (18). A linear
causal model is a special case.

Kivimäki et al. (14) found that the IV estimate CFTO,MD/
CFTO,obesity was more than 10-fold larger than Cobesity,MD

BMIFTO

Unmeasured Trait (U)

MD

BMI(FTO) MD(BMI)

Figure 3. Directed acyclic graph showing that positive confounding
arises from the association between counterfactuals. BMI(FTO) rep-
resents the set of counterfactual values of body mass index (BMI) for
all possible values of fat mass and obesity-associated (FTO) genotype.
MD(BMI) represents the set of counterfactual values of mental disorder
(MD) for all possible values of BMI. An unmeasured trait (U) does not
affect FTO, but U does affect the value BMI would take for any specific
value of FTO.
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(0.907 vs. 0.064), violating statement 1. Kivimäki et al.
reported an unadjusted coefficient regressing mental disorder
score on FTO (CFTO,MD) of 0.074 (95% confidence interval:
0.019, 0.129) among men (14). In the model including
both FTO and BMI as independent variables, Kivimäki
et al. found that the adjusted FTO coefficient (CFTO,MDjBMI)
was 0.071 (P ¼ 0.006 for the 1-sided test of the null hypoth-
esis that the adjusted estimate was�0), violating statement 2.
Kivimäki et al. did not provide an estimate ofCBMI,MDjFTO or
Cov(MD � (CFTO,MD/CFTO,BMI)3 BMI, BMI) and thus did
not directly test statement 3 or 4. However, all 4 statements
are logically equivalent, so violations of statements 1 and 2
imply that statements 3 and 4 do not hold.

Statements 1–4 describe relations between empirical re-
gression coefficients. The logical equivalence between these
statements is a statistical fact that is true for any 3 measured
variables (this is not generally recognized; seeWebAppendix 2
for the proof), regardless of whether 1) the assumptions under
which FTO is a valid instrument hold, 2) the BMI-mental
disorder relation is positively confounded, or 3) the linear
causal model is true. The only connection to causality is that
CFTO,MD/CFTO,BMI happens to be the causal coefficient r if
the linear causal model is correctly specified and FTO is
a valid IV.

The informal intuition for why violation of statement 1
appears to imply that FTO is not a valid instrument is that
if the conventional estimate is positively biased, a valid IV
estimate should be smaller than the conventional effect esti-
mate. However, if FTO is not a valid IV, there exists an open
path from FTO to mental disorder that does not pass through
BMI (as in part B or C of Figure 2). This path increases the
FTO-mental disorder association CFTO,MD, without increasing
the FTO-BMI association CFTO,BMI. Thus, the ratio CFTO,MD/
CFTO,BMIwill be inflated by this open path. The weaker the
association between the genotype and phenotype (CFTO,BMI),
the greater the degree of inflation. This explanation applies
regardless of whether the bias in the numerator is attribut-
able to violations of IV assumption 2 or 3. Assessing state-
ment 1 is only informative regarding the validity of the IV if
we have a strong prior assumption about the direction of con-
founding of the conventional effect estimate. If the unmeasured
confounding of the BMI-mental disorder association could
plausibly be negative, then finding that the IV estimate is
much larger than the conventional estimate does not suggest
that FTO is an invalid instrument.

Applications of the logically equivalent test in statement 2
have been used in prior MR analyses (11). To see the intuition
for statement 2, note that in Figure 1A (showing a valid IV),
adjusting for BMI would render FTO and mental disorder
statistically independent except for the association induced by
‘‘collider bias.’’ Collider bias arises because BMI is a common
effect of FTO and the unmeasured confounder U; conditional
upon BMI, FTO and U become statistically associated (22).
In Web Appendix 2 we show that, in all linear models and
many nonlinear models, this collider bias will be negative
provided that the net unmeasured confounding of the BMI-
mental disorder association induced byU is positive. Because
with a valid IV this collider bias is the only source of statistical
association between BMI and mental disorder conditional
upon BMI, the regression coefficient CFTO,MDjBMI will

likewise be negative. Statement 3 is essentially equivalent to
Wooldridge’s (23) and Pearl’s (24) recent results showing that
if true effects are additive, adjusting for valid IVs exacerbates
bias in associations estimated with ordinary least squares.

Despite these intuitions, these criteria cannot be used to
conclusively disprove the validity of the IV. Even when FTO is
a valid IVand confounding is positive, we show in Appendix 2
that there exist certain extremely nonlinear causal models for
which statements 1–4 are false. However, we also show that
other, quite nonlinear causal models agree with our result for
linear models: Under positive confounding, if statements 1–4
are false, then FTO is not a valid IV.

FALSIFYING THE IV ASSUMPTIONS BY IDENTIFYING
MODIFYING SUBGROUPS

A second approach sometimes used in efforts to falsify the
MR assumptions is to identify a subgroup among whom the
genotype does not predict the phenotype (13, 25, 26). For
example, in Kivimäki et al.’s results (14), FTO is independent
of BMI among women. Figure 4A is consistent with this
structure: The only path linking FTO and BMI is mediated

A)

B)

C)

BMIFTO MD

Male

BMIFTO MD

Male

Unmeasured
Phenotype (P)

BMIFTO MD

Male

Unmeasured
Phenotype (P)

M

Figure 4. Causal structure in which the effect of fat mass and obesity-
associated (FTO) genotype on body mass index (BMI) is silenced
among women. In part A, FTO is a valid instrument and the association
between FTO and mental disorder (MD) is silenced among women
because the variable Male 3 FTO is zero among women (modified
from Figure 1C). In part B, FTO is not a valid instrument, and the
biasing pathway linking FTO and MD would create a statistical associ-
ation between FTO and MD even among women (this is a modification
of Figure 2B). In part C, FTO is not a valid instrument, but the biasing
pathway linking FTO and MD would not create a statistical associa-
tion between FTO and MD even among women, because the biasing
pathway with the unmeasured phenotype originates after the Male3
FTO interaction. In this diagram, the variable M represents a media-
tor which is influenced by Male 3 FTO interaction and affects both
BMI and the unmeasured phenotype (this is also a modification of
Figure 2B).
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by the interaction of male gender and FTO (27). Among
women, this interaction variable is always zero (i.e., for
women, male3 FTO¼ 0): The path is silenced. Because this
path is silenced, FTO is statistically independent of BMI and
mental disorder among females if there are no other pathways
linking FTO to mental disorder. As shown in Figure 4B, if
FTO has a pleiotropic pathway to mental disorder which
is not mediated by this interaction, the biasing pathway will
create a statistical association between FTO and mental disor-
der even among women. Thus, if FTO predicts mental disorder
in the subgroup (women) in which FTO does not predict
BMI, this suggests that the MR assumptions are violated.
Kivimäki et al. find that FTO is independent of mental dis-
order amongwomen, consistent with assumptions under which
FTO would provide a valid instrument. Again, this is not
conclusive evidence supporting the validity of the instrument.
An invalid instrument may ‘‘pass’’ this test, if both the BMI-
mediated pathway and the biasing phenotype have a common
cause, say M, subsequent to FTO and thus subsequent to the
male3 FTO interaction (Figure 4C). In this case, the biasing
phenotype is only active among men.

Using ‘‘modifying subgroups’’ to assess the IVassumptions
is likely to be most convincing in situations where reasons for
subgroup differences in the genotype-phenotype association
are well understood. The association between FTO and BMI
has been demonstrated in other female samples, suggest-
ing that the independence observed among women in the
Whitehall II study (14) may be a statistical fluke.

FALSIFYING THE IV ASSUMPTIONS WITH
INSTRUMENTAL INEQUALITY TESTS

A third approach to testing for violations of IVassumptions,
applying Bonet’s ‘‘instrumental inequality tests’’ (19, 28), can
be used with categorical phenotypes. These tests only detect
rather extreme violations of the IVassumptions. To illustrate,
suppose we hypothesize a risk threshold at a particular BMI
cutpoint (obesity) and that BMI levels above or below this
cutpoint do not further affect the risk of mental disorder. The
IV assumptions then imply that a valid IV satisfies the fol-
lowing inequalities (where Y is an indicator for 1 or more
episodes of mental disorder; the binary variable X represents
the presence or absence of obesity; and Z represents FTO
minor allele frequency, taking the value 0, 1, or 2):

d maxi½PrðX ¼ 0; Y ¼ 1 j Z ¼ iÞ�
� mini½1� PrðY ¼ 0;X ¼ 0 j Z ¼ iÞ�:

d maxi½PrðX ¼ 1; Y ¼ 1 j Z ¼ iÞ�
� mini½1� PrðY ¼ 0;X ¼ 1 j Z ¼ iÞ�:

d maxi½PrðX ¼ 0; Y ¼ 1j Z ¼ iÞ�
þ PrðX ¼ 1; Y ¼ 1 j Z ¼ iÞ�
þ maxi½PrðX ¼ 0; Y ¼ 1 j Z ¼ iÞ�
þ PrðX ¼ 1; Y ¼ 0 j Z ¼ iÞ�
þ maxi½PrðX ¼ 0; Y ¼ 0 j Z ¼ iÞ� � 2:

Based on data provided to us by Kivimäki et al. (14), we
confirmed that all of these inequalities were satisfied, so we

could not reject FTO as a valid IV using these tests (Web
Appendix 3). If BMI levels above or below the cutpoint
independently affect mental disorder, then the IV assumptions
for dichotomized obesity are certainly violated, even if the
Bonet tests do not reject them.

FALSIFYING THE IV ASSUMPTIONS WITH
OVERIDENTIFICATION TESTS

Overidentification tests are another promising approach
to evaluating IVs (29), but they require multiple IVs. Over-
identification tests use Sargan-type statistics to evaluate the
null hypothesis that effect estimates from multiple IVs are
identical: If they differ significantly, intuition suggests that
at least 1 of the putative instruments is not valid (29, 30). If
the estimates from multiple instruments are all similar and
thus the overidentification test does not reject them, intuition
suggests that none are biased. However, overidentification
tests cannot rule out the possibility that all of the IVs are
biased in the same way. Overidentification tests can use mul-
tiple genes, each of which influences the phenotype of interest;
they will thus become increasingly feasible as MR studies
use genome-wide data (10). It is also possible to use multiple
polymorphisms in the same gene or heterozygote/homozygote
contrasts as instruments (31), although this approach is some-
what less reassuring when the instruments appear to ‘‘pass’’ the
overidentification test. The value of overidentification tests
rests in our intuition that biasing pathways (e.g., DAG 2A
or 2B) could not plausibly be identical for different IVs.
When alternative instruments are based on multiple poly-
morphisms of 1 gene, this intuition is less appealing. It seems
possible that polymorphisms of the same gene could all trig-
ger identical biasing pathways, giving identically biased IV
effect estimates.

There are important limitations of overidentification tests,
regardless of the source of the different instruments. They
can neither conclusively verify nor conclusively falsify pro-
posed instruments. Even when all of the instruments are valid,
overidentification tests may inappropriately reject them if
the phenotype-outcome association is falsely assumed to be
linear. Overidentification tests may also inappropriately reject
if all IVs are valid but affect different components or versions
of the phenotype which themselves have differing effects on
the outcome.

Furthermore, overidentification tests may inappropriately
fail to reject even when one or more of the putative instruments
are invalid, because the tests usually have low statistical
power (10, 29). IV effect estimates tend to be imprecise, so
an overidentification test of whether 2 IVestimates are con-
sistent with each other may not reject even when one or both
are severely biased. With multiple genetic IVs, it may be
possible to combine instruments to develop more precise
estimates and stronger overidentification tests (10, 32, 33).

CONCLUSION

It is not generally possible to prove MR assumptions, but it
is often possible to find empirical (though usually not con-
clusive) evidence suggesting that the putative IV is invalid.
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There is no fail-safe or certain approach to evaluating pro-
posed IVs: Any of the proposed tools for evaluating IV
assumptions may fail to identify biased IVs under various
circumstances. This does not preclude the potential contri-
butions of IV or MR methods. Rather, it implies that stan-
dards long accepted in observational epidemiology should
extend to IV results. Understanding of causal effects is
generally advanced by triangulation of evidence from mul-
tiple alternative sources, preferably sources which do not
all rest on identical assumptions; transparency of analytic
assumptions; and concerted efforts to verify or falsify those
assumptions. Given that it will often be nearly free to con-
duct IV analyses with secondary data, they may prove ex-
tremely valuable in many research areas. Evidence fromMR
studies will be most appealing when 1) genotype-phenotype
associations are both strong and physiologically comprehen-
sible or multiple independent genotypes provide similar MR
effect estimates and 2) the MR study is replicable in differ-
ent populations. Potential contributions of MR are greatest
when there is good reason to worry that conventional studies
are biased; in this case, even imperfect evidence from MR
studies might strengthen the evidence base. We recommend
that when employing MR applications, investigators routinely
use applicable methods to evaluate the IV assumptions.
Although IVestimates are often quite sensitive to violations
of assumptions, sensitivity analyses illustrating whether
plausible violations could account for observed IV effect
estimates would be valuable areas for future IV research.
Even when MR assumptions are violated, critical evaluation
may provide information regarding the pathways linking the
genotype and phenotype (26). In Web Appendix 4, we dis-
cuss the causal structure most consistent with the evidence
Kivimäki et al. present.

The accumulation of additional genetic information will
probably expand the range of feasible MR studies (34, 35).
If MR evolves into a reliable tool for causal discovery, the
significance for health research could be great. On the other
hand, if MR is uncritically adopted into the epidemiologic
toolbox, without aggressive evaluations of the validity of
the design in each case, it may generate a host of false or
misleading findings.
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