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Abstract

The Defense Advanced Research Projects Agency Defense Science Office (DARPA/
DSO) is sponsoring Open Manufacturing (OM), an initiative to develop new

technologies, new computational tools, and rapid qualification to accelerate the

manufacturing innovation timeline. Certification Methodology to Transition
Innovation (CMTI), an OM program, has developed a methodology to quantify the

effect of manufacturing variability on product performance to address the risk to

cost and performance associated with failure to take manufacturing capability and
material and fabrication/assembly variation into account early in the design process.

An important aspect of this program is the use of Bayesian networks (BN) to evaluate

risk. The BN is used as a graphical representation of the contributing factors that lead
to manufacturing defects. The reliability of the final product is then analyzed using

the contributing factors. There are many types of programs where there is little

relevant data to support the probabilities needed to populate the BN model. This is
very likely the case for new programs or at the end of long programs when

obsolescence challenges servicing a product when original vendors are no longer in

business. In these cases, probabilities must be obtained from expert opinion using a
technique called expert elicitation. Even under objective ‘Good Faith’ opinions, the

expert himself has a lot of uncertainty in that opinion. This paper details an approach

to obtaining credible model output based on the idea of having a hypothetical
expert whose unconscious bias influences the model output and discovering and

using countermeasures to find and prevent these biases. Countermeasures include

replacing point probabilities with beta distributions to incorporate uncertainty, 95%
confidence levels, and using a multitude of different types of sensitivity analyses to

draw attention to potential trouble spots. Finally, this paper uses a new technique

named ‘confidence level shifting’ to optimally reduce epistemic uncertainty in the
model. Taken together, the set of tools described in this paper will allow an engineer

to cost effectively determine which areas of the manufacturing process are most

responsible for performance variance and to determine the most effective approach
to reducing that variance in order to reach a target reliability.
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Background

The Defense Advanced Research Projects Agency Defense Science Office (DARPA/DSO)

is sponsoring Open Manufacturing (OM), an initiative to develop new technologies, new

computational tools, and rapid qualification to accelerate the manufacturing innovation

timeline. Certification Methodology to Transition Innovation (CMTI), one of the pro-

grams in the OM portfolio, has developed a methodology to quantify the effect of manu-

facturing variability on product performance to address the risk to cost and performance

associated with failure to take manufacturing capability and material and fabrication/as-

sembly variation into account early in the design process.

Motivation

The goal motivating this research is to first credibly ascertain the reliability of a product by

including the effects of variability and defects in manufacturing as well as uncertainty in the

environment. Note that credibility is a key requirement and is made more difficult when

using expert elicitation to determine the value of model parameters used to calculate the re-

liability. Secondly, upon evaluation of the manufacturing process, it is very likely that prod-

uct reliability will fall short of the desired target. The set of tools described in this paper will

allow the engineer to cost effectively determine which areas of the manufacturing process

are most responsible for performance variance and to determine the most effective ap-

proach to reducing that variance in order to reach a target reliability. These benefits will be

explained in detail in the sections entitled ‘Techniques to meet a target POF with a 95%

confidence level’ and ‘Putting it all together - an example using credibility tools’.

An exemplar problem

An exemplar problem used to drive development of the framework was the manufac-

ture of an out-of-autoclave composite panel stiffened with three hats (Figure 1 [1]).

The hat-stiffened panel represents a design/manufacturing feature-based element or

subcomponent in the traditional building block approach. The manufacturing steps

called out in the fabrication work order serve as the initial basis for creating a Bayesian

network (BN) [2] used to tailor risk with a quality control plan and to determine the

probability of defects. The BN is used as a graphical representation of the contributing

factors that lead to manufacturing defects. The reliability of the final product is then

analyzed using the contributing factors.

Figure 1 Isometric view of hat-stiffened panel (69 cm wide × 91 cm long).
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The environmental condition that this part is to be evaluated against for the purposes

of this paper is out-of-plane pull-off of a hat structure (Figure 2). It should be noted

that this approach used multiple load cases as shown in Figure 2, but for simplicity,

only the pull-off case will be discussed. As described in detail in reference [3], given a

probabilistic environmental load, geometrical and material property variation, as well as

probabilistic manufacturing defects, a probability of failure (POF) of the hat-stiffened

panel can be calculated.

POF is partially a function of the probability of defects occurring during the manufac-

ture of a part. A subset of all possible defects that can be introduced by the manufac-

turing process, tooling, etc., and that are thought to contribute to failure under

acknowledged conditions, were identified. The focus of this work was on quantifying

and reducing manufacturing defects. Although material and environmental variability

were accounted for, examination of the costs and benefits of reducing the variability of

those factors were beyond the scope of this research. They are however important

factors and will be considered in future work. For the hat-stiffened panel, the defects

recognized were wrinkles (nugget/noodle fiber waviness), noodle void/porosity/geom-

etry, lower radius thickening, upper radius thinning, and top crowning. If there is any

doubt as to if a defect can affect performance, it should be included in the analysis.

Once the defects of interest were identified, the step-by-step manufacturing process

was analyzed to determine which steps or combinations of steps could possibly produce

one or more of those defects. Additionally, options that could affect the probability of

introducing defects were identified such as tooling choices, manufacturing capability

levels, and manufacturing process alternatives.

At this point in the knowledge collection process, enough information was ob-

tained to create the structure of a Bayesian network. If there is any doubt as to

whether or not a factor can influence the probability of a defect, it should be in-

cluded in the model and assigned a high uncertainty. Uncertainty assignment will be

discussed later in this paper. A fragment of the complete BN is shown in Figure 3.

The overall purpose of this Bayesian network is to calculate the probability of defects

and the resulting probability of failure of the structure. For those readers familiar

with process flows, it should be noted that the BN will not necessarily mimic this

flow, but will instead be built to capture direct relationships between the process var-

iables. The resultant probability of each defect (and thus the POF) is a function of

any and all combinations of the choices that can go into the manufacturing process.

The BN is used to determine POF with acceptable cost, or it can be used to find the

cost optimal manufacturing process choices given a desired POF as described in [3].

In order for the network to calculate these total defect and POF probabilities,

however, the probability that each individual manufacturing step can induce a defect

Figure 2 Hat-stiffened pull-off (max load).
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and that each individual quality assurance test can find it, if it exists, must be

provided.

Methods

An approach to determining the credibility of models

For those programs where there is little relevant data to support the probabilities

needed to populate the BN model, expert elicitation must be used to provide them.

Even under objective ‘Good Faith’ opinions, the expert himself has a lot of uncertainty

in that opinion. On a given day, the expert may even choose different probabilities than

the one he had chosen earlier. Given that the output of the model has real-world con-

sequences, possibly in terms of customer acceptance of the product, there may be bias

when choosing probabilities - especially if the model has not shown that it can meet a

target POF.

The chosen way to approach this issue is to make the potential bias explicit by figur-

ing out the best way to modify model inputs to get a desired result. Once this method-

ology is known, the idea is to reverse engineer it to find countermeasures and establish

the credibility of the model.

The expert's first approach - using and adjusting point probabilities

The expert's initial approach is to make estimates of the probabilities as objectively

as possible. If the target POF is reached, then the expert is done. If not, he will find

Figure 3 A fragment of the Bayesian network built to calculate the POF of a hat-stiffened panel.

This portion of the network calculates the probably of a wrinkle occurring in the panel as a function of

multiple manufacturing steps and quality assurance tests.
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the point probabilities that the output is most sensitive to and adjust them as little as

possible such that the target is reached. Note that point probabilities are probabilities

that are assumed to be known with absolute certainty and are represented by a single

scalar value. The reasoning behind this strategy is that adjusting the probabilities

that do not have much of an effect would require large unrealistic changes to have a

significant effect.

Derivative-based approach to sensitivity

The typical way to perform a sensitivity analysis [4] is to calculate the partial derivative

of the output with respect to a model parameter as shown in Equation 1.

SDi
¼

δY

δX i

ð1Þ

where SDi
is the derivative-based sensitivity measure with respect to parameter i, Y is

the model output of interest, and Xi is the model parameter i.

In practice for a Bayesian network model, this sensitivity analysis is performed nu-

merically. The output of interest for the exemplar problem is the POF of the three-hat-

stiffened panel under a pull-off load. To calculate the sensitivity of the POF to each

node's point probability of either inducing a defect or for QA nodes, the probability of

missing a defect if it exists, Equation 2 is used:

SDi
¼

ΔPOF

ΔPi

ð2Þ

where SDi
is the derivative-based sensitivity measure with respect to probability i, POF

is the probability of failure of the three-hat panel under pull-off load, and Pi is the

probability of node i inducing a defect or failing to detect a defect.

With this technique in hand, the expert would calculate the sensitivity of POF to

changing the probabilities within every manufacturing step or QA test node of the net-

work. After sorting from most sensitive to least sensitive, he could calculate exactly

how much to change the top few nodes to reach his target POF.

Quantifying uncertainty in the model probability parameters - the beta distribution

Although one possible countermeasure to this would be to perform a similar sensitivity

analysis and use the findings to focus scrutiny on the highest sensitivity nodes, a bigger

issue is that the point probabilities express complete certainty in the model values. The

first countermeasure is to note that it is not possible for an expert to have absolute cer-

tainty in the values used as model parameters. Even with hard data, there is some un-

certainty as to the exact value. The conclusion to be drawn, then, is that each model

parameter, each of which is a probability, should be represented by a probability density

function, ideally one that has zero as a lower bound and one as a higher bound due to

the fact that probabilities by definition are always between 0 and 1. The beta distribu-

tion is such a distribution and is useful for representing binary success/failure problems,

specifically the proportion of successes or failures that would be expected over time.

Mathematically, the beta distribution is represented by Equation 3 [5].

beta a; bð Þ ¼
1

β a; bð Þ
pa−1 1−pð Þb−1 ð3Þ
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where p = proportion of flaws 0 < = p < = 1, a = number of flawed examples (positive

number), b = number of flawless examples (positive number), and β = the beta function

(not to be confused with the beta distribution).

The beta distribution is quite flexible and can represent uniform (a = 1, b = 1), ramp, sym-

metrical, and asymmetrical distributions. It is simple to implement Bayesian learning using

newly introduced data using this distribution. For each step in the manufacturing process, if

a flaw occurs during that step, the parameter ‘a’ merely needs to be incremented by one.

Likewise, if no flaw is introduced during that step, the parameter ‘b’ should be incremented

by 1. For quality assurance (QA) tests, if a QA test does not miss a flaw that exists, then ‘b’

should be incremented. If the test misses a flaw that exists, ‘a’ should be incremented.

Using expert opinion elicitation to determine the parameters of the beta distribution

The goal of expert opinion elicitation is to determine the parameters of beta distribu-

tion such that it accurately represents the expert's opinion about the most likely value

of the probability to be specified (the mode) as well as his uncertainty in that opinion.

In this methodology, this is accomplished by having the expert express his uncertainty

in terms of the number of samples he has seen. The following basic example will build

the readers intuition about this process.

Upon purchasing an unlabeled trick coin received at a magic shop, it is desirable to deter-

mine the characteristics of that coin. The bin the coin was stored in noted only that the coin

could be weighted to always come up heads (a two-headed coin), always come up tails (a

two-tailed coin), or anything in between. This information from the bin represents prior

knowledge that the coin can be weighted to any degree. This can be represented by the uni-

form distribution denoted beta (1, 1). Beta (1, 1) is also known as the non-informative prior

distribution. Figure 4A shows a beta distribution in which every weighting is equally likely.

To gather more data, the coin is flipped three times and this results in three heads. Clearly,

while this coin is definitely not weighted to always come up tails, it is certainly possible that

this is a fair coin that has been weighted to come up heads or tails an equal number of

times, but it seems more likely that this coin is weighted towards heads. Figure 4B plots that

beta distribution after adding in this new data as beta (1, 1 + 3 heads).

Finally after 30 flips, and obtaining 30 heads in a row, it is clear that this is not a fair

coin but is very highly weighted towards coming up heads. The updated beta distribu-

tion is shown in Figure 4C. Note that even after 30 flips, it is not a sure thing that a

heads result will always be obtained. Also note that the distribution is getting narrower

and narrower representing an increase in the certainty of the coin's weighting value.

Using the above example as an intuitive example of the meaning of ‘samples seen’, the ex-

pert can be asked to provide a level of uncertainty in terms of samples seen. For the exem-

plar problem, what proportion of wrinkles has been observed during the debulking process

(i.e., the probability of a wrinkle occurring during the debulking process)? Note that this is

represented by the node named ‘Wrinkle induced during debulking’ in Figure 3.

Given these two pieces of information, the most likely value (mode) and the uncer-

tainty in terms of samples seen, the parameters of the beta distribution that meets these

requirements are as follows [6]:

a ¼ mode� k−2ð Þ þ 1 ð4Þ

b ¼ 1−modeð Þ � k−2Þ þ 1 ð5Þ
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Figure 4 The non-informative beta distribution updated with additional data. (A) The beta distribution

beta (1,1), which represents the non-informative state also known as the uniform. (B) The beta distribution

beta (1,4), which represents uniform distribution updated by getting three heads in three flips. (C) The beta

distribution beta (1,31), which represents uniform distribution updated by getting 30 heads in thirty flips.

Pado Integrating Materials and Manufacturing Innovation 2014, 3:20 Page 7 of 27

http://www.immijournal.com/content/3/1/20



where a = beta distribution parameter expressing the number of flawed examples,

b = beta distribution parameter expressing the number of flawless examples, mode = the

most likely probability of defect, and k = the expert's confidence in the estimate expressed

in terms of equivalent prior sample size (minimum 2).

In the debulking example above, the expert provided a most likely value of 0.11 with

a sample size of 120. Figure 5 shows how a point probability of 0.11 is now represented

by a beta distribution with parameters of beta (13.98, 106.02). Note that in this ex-

ample, the expert is implying that the range of likely values for that probability is ap-

proximately between 0.04 and 0.22.

This process is continued for every node in the network until every parameter of the

network is represented by a beta distribution.

Determining a 95% confidence value on the model output using Monte Carlo methods

Now that all of the model parameters have been replaced by beta distributions, the

distribution of the model output can be computed using Monte Carlo methods [7].

Specifically, a 95% confidence value [8] can be calculated on the model output,

which for the exemplar case is POF. Figure 6 provides intuition about the 95%

confidence level (CL). As shown in the figure, it is the value at which there is a

95% chance that the true value is less than or equal to the CL. As can be seen,

this is a quite conservative estimate since the most likely value (peak or mode) of

the shown distribution is much smaller.

A Monte Carlo analysis entails pulling a single sample from each distribution within the

model, populating the model with these new samples, and then running the model to get

a single answer. This process is then repeated thousands of times to collect enough data

to establish the distribution of the output parameter of interest such as POF and enables

calculating its CL.

Figure 5 A Bayesian network fragment showing how network ‘point’ probabilities are handled as beta

distributions. To represent uncertainty in the probability. This example shown is beta (14.4048, 105.5952).
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Finding the 95% CL using histogram data is a straightforward process involving sort-

ing the POF data from lowest value to highest value and then selecting the value for

which 95% of the data is that value or smaller.

The expert's second approach - adjusting mode and certainties of PDFs

Using probability distributions instead of point probabilities and instituting a 95% confi-

dence level to introduce conservatism is a good first step for establishing credibility. The

expert's bias, if it exists, may now show up as a lower mode value or as a higher level of

certainty in that mode value. This type of bias must be detected if it is to be countered.

Countermeasure to the expert's second approach - sensitivity analysis on the mode with

respect to POF

The countermeasure to the impact of the expert's mode and certainty selection is to

perform a sensitivity analysis of the 95% confidence level to changes in the mode.

There are two conditions that have to be met before the 95% confidence level shows

significant sensitivity to the mode of a node:

� The node has to have already been shown to be important through the use of

sensitivity analysis. If the output has no sensitivity to the node, then the mode of

the node is inconsequential.

� The sensitivity of 95% CL to a mode increases as the certainty in the value of

probabilities increases. As discussed above, for beta distributions, certainty is a

function of the number of samples expressed. A sample size of 2 will result in no

sensitivity to mode with the sensitivity increasing as the number of samples

increases.

Figure 7 illustrates these concepts. In this figure, a beta distribution's mode is doubled

from 0.01 to 0.02 under 7A, a condition of high uncertainty (samples = 10) and 7B, a con-

dition of low uncertainty (samples = 1,000). Under the condition of high uncertainty, a

mode change has very little effect on the basic shape of the distribution. Under the condi-

tion of low uncertainty, the two distributions are much more distinct.

Figure 6 An example of a 95% confidence value on a distribution. The entire curve of the distribution

describes all of the values the POF could be. The 95% confidence value indicates a value for POF at which

there is a 95% chance that the true POF is of that magnitude or smaller as indicated by the arrow.
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Mathematically, the sensitivity of 95% CL to Δmode is measured as:

S95%CLi ¼
Δ95%CL

ΔModei
ð6Þ

Where:

where S95%CLi = the sensitivity of the 95% confidence level of the model output of

interest to a change in mode of node i, Δ95% CL = the change in the 95% confidence

level due to a change in mode of node i, and ΔModei = the change in mode of node i.

The following process can be used to calculate S95%CLi

� Calculate the baseline 95% CL by running a Monte Carlo analysis on the baseline

model.

� Choose a node i.

� Increase the mode of node i by a delta value.

� Calculate the new 95% confidence level by running a Monte Carlo analysis.

� Calculate the sensitivity as per Equation 6.

� Repeat this process for each node i of interest.

Table 1 shows the results of this process on three nodes for an illustrative exemplar.

As shown in Table 1, the credibility of the mode value in the first two nodes listed in

the table is very high as even a very large change in the mode value would have very lit-

tle effect on the 95% CL POF. In fact, the mode value of node ‘QA test finds debulking

wrinkle if it exists’ has absolutely no effect on the value of 95% CL POF due to having

the maximum uncertainty in its value. It should be noted, however, that the uncertainty

in the mode value has a large impact on the variance of the output, as will be discussed

in more detail below. The final node, ‘UltraSonic inspection finds wrinkle,’ with a sensi-

tivity of 0.01453, indicates that it would have been possible for the expert to signifi-

cantly change the 95% CL POF by changing the mode. More specifically, the 95% CL

changes by 1.45 × 10−5 for every 0.001 change in the mode. This means, for example,

that if the mode was originally 0.008 and the expert lowered it to 0.001, the 95% CL

would have been 7 × 1.45 × 10−5 higher or 1.5 × 10−4 instead of the reported 4.8 × 10−5

Figure 7 The effect of mode changes on high and low uncertainty beta distributions. (A) A beta

distribution with a sample confidence of 10 has its mode doubled from 0.01 to 0.02. Note that the basic shape

remains the same and random sampling from either distribution would be very similar. (B) A beta distribution

with a sample confidence of 1,000 has its mode doubled from 0.01 to 0.02. Note that that the two distributions

are quite distinct and random sampling from either distribution would also be quite distinct.
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Table 1 Sensitivity calculations of 95% CL to a change in mode for an illustrative exemplar

Node i NumSamples Old_mode New_mode Delta_mode 95POF New95POF Delta_POF Sen

Wrinkle introduced during debulking 120 0.114 0.227 0.114 4.80 × 10−5 8.07 × 10−5 3.26 × 10−5 0.00029

QA test finds debulking wrinkle if it exists 2 0.100 0.200 0.100 4.80 × 10−5 4.80 × 10−5 0.00E + 00 0.00000a

UltraSonic inspection finds wrinkle 1,000 0.001 0.002 0.001 4.80 × 10−5 6.25 × 10−5 1.45 × 10−5 0.01453b

aNote that the sensitivity of 95% CL POF is zero for the mode of node ‘QA test finds debulking wrinkle if it exists’. This is due to the mode having maximum uncertainty (samples = 2) as discussed previously; bthe

sensitivity of the mode of node ‘UltraSonic inspection finds wrinkle’ is fairly high at 0.01453. Thus, for every .001 change in mode, 95% CL POF changes by 1.45 × 10−5. This effectively means that if the expert started

with a mode of .008 and reduced it down to 0.001, a magnitude change in 95% CL POF would have occurred.
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from Table 1. The consequence of this observation is that the expert should be required

to provide documented proof of the 1,000 sample size or else he should be required to

reduce his reported sample size.

Techniques to meet a target POF with a 95% confidence level

With these procedures in place, the expert may find that it is not possible

to meet the target value of product reliability (i.e., a low enough probability of

failure). What guidance can be provided to the expert to cost effectively increase

reliability?

The goal is to raise the ‘certain’ reliability cost-effectively. The word ‘certain’ here is used

to indicate that a reported low reliability may be due in part to a lack of process know-

ledge, while the other portion is due to variability in the manufacturing process coupled

with a lack of suitable quality assurance tests. These ideas are captured by the following

two types of uncertainty [9]:

� Aleatory variability is the natural randomness in a process. Aleatory uncertainty

cannot be reduced thru data collection. For example, the knowledge of what number

will turn up on a six-sided die. This type of uncertainty can be reduced through

better process control and through quality assurance testing. In the die analogy, this is

equivalent to reducing the number of sides on the die or weighting the die to come

up favorably.

� Epistemic uncertainty is the scientific uncertainty in the model of the process. It is

due to limited data and knowledge. This uncertainty can be reduced through more

data collection, better expert knowledge, or through analytical means.

Reducing aleatory uncertainty through improved process control to lower randomness

is application dependent and will not be discussed in this paper other than to note that

the identification of the processes that drive uncertainty in the output is invaluable.

This section will discuss improving reported reliability by reducing epistemic uncer-

tainty through targeted testing.

The most direct way to reduce uncertainty in the output (thus reducing 95% CL) is

by reducing the variance in the output. Thus, the goal at this stage is to discover

which nodes are most responsible for variance in the output. Once that is known,

the focus should be on reducing the variance of those nodes. This may involve break-

ing a single mode into multiple subnodes to increase the level of detail of a particular

process.

Saltelli et al. [4] have developed a technique to efficiently determine which variables

in a probabilistic model contribute the most to variance in the output. This technique

is called variance-based global sensitivity analysis and herein will also be referred to as

the Saltelli method.

It is illuminating to compare point or derivative-based sensitivity analysis (previously

discussed) and to which Equation 1 refers, with Saltelli global sensitivity analysis.

Conventional derivative (point)-based sensitivities

� Do not take into account uncertainty in the parameters.

� Do provide good information about a parameter at its most likely value.
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Global sensitivity analysis (GSA) (the Saltelli method)

� Does take into account uncertainty in the parameters

� Is capable of determining which factors have a major effect on the variance of the

POF calculation

� Is capable of determining which factors interact with others in an important way

(synergistic effects)

� Is especially useful for determining the small subset of parameters that are important

� Is essentially a variance decomposition algorithm - it determines to some degree

what portion of the output variance is due to variance in a particular parameter

The Saltelli process produces two sensitivity measures for each variable. Si indicates

the main effect of variable i, and STi indicates the total effect of variable i. There are a few

characteristics of these two types of sensitivities that are important to know. Si indicates by

how much one could reduce (on average) the output variance if variable i could be fixed. It

is a measure of the main effect. STi is useful in determining two important aspects of a

variable. This first is if it has interactions with other variables. This can be measured by

(STi − Si). The second is if the variable is non-influential and can safely be ignored by setting

it to a fixed value when performing time consuming analyses. This is indicated by STi = 0.

Table 2 shows the results of a Saltelli global sensitivity analysis of the exemplar problem.

The variables are sorted from greatest total effect to least total effect. For the example BN

configuration, 8 out of 81 nodes have been identified as contributing significantly to variance

in the BN output as shown by a total effect of over 0.013. Note that this algorithm tends to

‘bottom out’ at a non-zero number which in this case is approximately 0.013. Observe that

all eight significant nodes are related to inducing or detecting wrinkles in the part.

Reducing epistemic uncertainty using confidence level shifting (CLS)

Now that the nodes causing variance in the output have been identified, the next step

is to determine which, how much, and in what order testing should be done to most

Table 2 Saltelli global sensitivity analysis of the exemplar problem

Factor name Hat_max_load_FE Hat_max_load_TE Mode NumSamples

QA test finds debulking wrinkle if it exists 0.407223 0.633979 0.010 20

Wrinkle introduced during debulking 0.210948 0.525119 0.010 120

Wrinkle intro. during final cloth overwrap 0.056164 0.187127 0.010 120

QA test finds final cloth overwrap wrinkle 0.033471 0.172301 0.020 120

QA test finds bagging wrinkle 0.024144 0.154588 0.010 120

Wrinkle introduced during release film 0.029566 0.152148 0.010 120

QA test finds release film wrinkle 0.025807 0.15214 0.010 120

Wrinkle introduced during bagging 0.033863 0.142558 0.010 120

Radius thickening intro. during cloth
overwrap

0.002573 0.126621 0.020 35

QA test finds debulking radius thickening 0.002591 0.12661 0.010 2

Hat_Max_Load_FE corresponds to Si whereas Hat_Max_Load_TE corresponds to STi. The variables are sorted from

greatest total effect to least total effect. For the example model configuration, 8 out of 81 nodes have been identified as

contributing significantly to variance in the model output as shown by the italicized entries. Note that all eight nodes are

related to inducing or detecting wrinkles in the part. Mode refers to the mode of the beta distribution and NumSamples

refers to the parameter ‘k’ in Equations 4 and 5.
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effectively reduce 95% CL. This is known as ‘targeted testing’ using confidence level

shifting (CLS). Confidence levels were explained in Figure 6. Examine Figure 8 in com-

parison to Figure 6 to understand the idea behind confidence level shifting. To get to

Figure 8 from Figure 6, testing would take place to understand if a particular manufac-

turing step introduces a flaw or not. If not, the step was performed flawlessly and the

parameter ‘b’ should be incremented as described above. A flawless test is also known

as a negative result test or NRT. As NRTs accumulate, the beta distribution will narrow

and shift to the left. Likewise, its associated 95% confidence level will also shift to the

left. This is what is known as confidence level shifting or CLS.

To begin the CLS process, a Monte Carlo procedure will be run for the baseline net-

work and the 95% confidence level of POF will be calculated before any NRTs have

been applied to a beta distribution. Note that each beta distribution represents a prob-

ability (a factor). Next, a NRT is applied to a single factor and the Monte Carlo analysis

is rerun and a new 95% confidence level of POF will be calculated. This provides

enough information to calculate a Δ 95% confidence level for POF which is calculated

as the original 95% confidence level for POF minus the newly calculated original 95%

confidence level for POF. This term can be expressed more compactly as Δ 95% POF

or even more simply as ΔPOF. If the cost of performing the test is known, another

term, ΔPOF/$, can be defined which is the amount of change in 95% POF per dollar

spent. The metric can be used to determine what data should be collected to most cost

effectively drive the 95% POF value to the left.

With the previous information as background and referring to Figure 9, the CLS

process can be explained. First determine ΔPOF/$ for each factor of the set. Add 1 to

the ‘b’ value of the factor with the highest ΔPOF/$. If the target 95% POF has not been

reached continue the process while keeping track of which factors received the ‘b’ in-

crement and in what order. When the target 95% POF has been reached, the process

provides a list of what data should be taken and in what order to most cost-effectively

drive the 95% POF value to its target value.

Figure 8 Illustration of confidence level shifting (CLS). Note how the distribution shown in this figure is

narrower and shifted to the left as compared to the distribution shown in Figure 5. This type of effect can

be observed after running tests to gather data and obtaining negative test results (NRT) (no defects are

found). Applying these results to the beta distribution will narrow it and shift it to the left. Consequently,

the 95% confidence level will shift to the left as well.
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Figure 9 The process for confidence level shifting (CLS).
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Note that a single complete fabrication of a part with appropriate inspection will sim-

ultaneously provide a data point for every node in the network. Partial part construc-

tions can be accomplished to gather data for just the most important nodes. The ratio

of decrease in POF to the cost of running a trial is the measure by which it is decided

which trials to run. Note that a test that simultaneously provides data for multiple

nodes is called a ‘unitized test’. Unitized tests are a time- and cost-efficient technique

for generating data to reduce epistemic uncertainty.

Figure 10 shows a plot of decreasing 95% CL POF as a function of (non-unitized) tar-

geted testing. Note that in this example, 700 discrete targeted tests must be run to re-

duce the 95% CL probability of failure from 4.8 × 10−4 to 1 × 10−4.

Table 3 is a detailed look at exactly what tests were performed and in what order.

Table 3 shows the results of targeted testing analysis using confidence level shifting.

Each row of this table provides a breakdown of how much data should be collected for

each factor for a maximum reduction in 95% CL POF. For example of 75 collected data

points, 25 data points should be collected to check for inducing wrinkles during the

final cloth overwrap, and 50 QA tests should be performed to see if wrinkles can be de-

tected during the debulking manufacturing step.

Unitized test for efficient collection of testing data

The example shown in Figure 10 and Table 3 shows the most efficient possible data col-

lection to reduce epistemic uncertainty using individual tests. In this case, however, the

burden of testing is high, requiring 700 individual tests to reach a target POF. One tech-

nique to reduce this burden is to create a unitized test structure that can test all eight sig-

nificant features per test. As per Figure 11, only 95 of these unitized tests would have to

be performed to reach the target 95% CL POF. This is a sevenfold reduction in the

Figure 10 Confidence level shifting applied to the exemplar problem. Note that in this example, 700

non-unitized targeted tests must be run to reduce the probability of failure from 4.8 × 10−4 to 1 × 10−4.

Pado Integrating Materials and Manufacturing Innovation 2014, 3:20 Page 16 of 27

http://www.immijournal.com/content/3/1/20



Table 3 Results of targeted testing analysis using confidence level shifting

Data MS final cloth
overwrap wrinkle

QA final cloth
overwrap wrinkle

MS during
debulking wrinkle

Q during debulking
wrinkle

MS during bagging
wrinkle

Q during bagging
wrinkle

MS placing release
film wrinkle

Q placing release
film wrinkle

Lowest POF

0 0 0 0 0 0 0 0 0 4.80 × 10−4

25 0 0 0 25 0 0 0 0 3.28 × 10−4

50 0 0 0 50 0 0 0 0 2.92 × 10−4

75 0 25 0 50 0 0 0 0 2.75 × 10 − 4

100 0 25 0 75 0 0 0 0 2.56 × 10−4

125 25 25 0 75 0 0 0 0 2.45 × 10−4

150 25 25 0 75 0 25 0 0 2.31 × 10−4

175 25 25 0 75 0 25 25 0 2.18 × 10−4

200 25 25 0 75 0 25 25 25 2.13 × 10−4

225 25 50 0 75 0 25 25 25 2.05 × 10−4

250 25 50 0 100 0 25 25 25 1.94 × 10−4

275 25 50 0 100 0 25 25 50 1.88 × 10−4

300 25 75 0 100 0 25 25 50 1.80 × 10−4

Each row of this table provides a breakdown of how much data should be collected for each factor for a maximum reduction in 95% CL POF. For the example of 75 collected data points (shown in italics), 25 data

points should be collected to check for inducing wrinkles during the final cloth overwrap, and 50 QA tests should be performed to see if wrinkles can be detected during the debulking manufacturing step.
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number of tests. Despite this large reduction in the number of required tests, in some

cases, this will still be too expensive or time-consuming. A few points should be noted

however. The first is that every problem will be different. For example, in some cases, the

number of tests may be reduced from 70 down to 10. In addition, CLS is only one of the

tools used to improve the 95% CL. As discussed above, reducing aleatory variability

through the use of QA tests and better process control are alternative options that can be

used in addition to or in place of CLS depending in the problem at hand.

Results and discussion

Putting it all together - an example using credibility tools

This section will provide an example of using the credibility tools discussed in this paper

to reach a 95% confidence level probability of failure of 1 × 10−4 when starting with a

manufacturing process for a three-hat-stiffened panel that has a 4.4% probability of failure

under certain environmental conditions when no quality assurance testing is done.

As discussed in detail in reference [3], a Bayesian network is constructed for the

three-hat-stiffened panel that includes all possible manufacturing options, including

many potential quality assurance (QA) tests to catch defects both during the manufac-

turing process and as a final check. Using the network's point probabilities, it is pos-

sible to quickly evaluate all possible combinations of options to find the highest

reliability part at any given price point or conversely the lowest probability of failure.

Figure 12 is plot of optimal POF for any given price point. A few conclusions can be

Figure 11 Confidence level shifting applied to the exemplar problem using unitized testing. Note

that in this example, only 95 unitized targeted tests must be run to reduce the probability of failure from

4.8 × 10−4 to 1 × 10−4 instead of the 700 individual tests shown in Figure 10.
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drawn from Figure 12. This first is that the manufacturing process is highly dependent

on QA checks for reliability. With no quality checks, the POF is .044 or 4.4% per part

(the leftmost marker in the plot). The POF can range as low as 1.01 × 10−5 with a full

set of QA checks in place. It should be noted that this plot does not include the price of

rework or scrap due to faulty manufacturing. Future work will address this issue.

To reach the stated goal of 1 × 10−4 POF or 0.9999 reliability, the $2,626 option is the

most cost-effective (not including scrap or rework). This option represents the case that

all QA tests are off except for the ultrasonic inspection for wrinkle QA test.

The Bayesian network with this configuration is evaluated using Monte Carlo ana-

lysis to include the effects of uncertainty in the expert elicited opinions. The result is

shown in Figure 13.

While the mode of this analysis meets the goal of 1 × 10−4 (being 5.6 × 10−5), the 95%

confidence value in POF is slightly too large at 2.3 × 10−4. Another issue with using

only the ultrasonic inspection for wrinkle QA test is that it only catches the wrinkle

after the part is complete, leading to a very high rejection rate of a finished part. Ac-

cording to the model, there is a 46% chance of a wrinkle defect. This means that nearly

half of the completed parts would have to be rejected. This is unacceptable. To better

understand what is causing the wrinkles, an analysis of manufacturing steps as modeled

by the Bayesian network is undertaken.

By removing all QA tests and running a Saltelli global sensitivity analysis, the manu-

facturing steps most responsible for output variation can be found.

Looking at Table 4, it is clear that wrinkles are the primary cause of increased failure

and that there are four manufacturing steps that contribute to wrinkles. Given the high

mode values (these are used as the point probabilities) it is also clear that the probabil-

ity of incurring wrinkles during the manufacturing process is quite high.

Figure 12 A plot of optimal POF for any given price point. Note that each marker in the figure represents

a subset of manufacturing options that when selected will give the indicated level of POF. This plot shows only

the optimal points; there are many other options subsets than will give higher POF at the same price point.
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The relationship between p (wrinkle) and POF

Now that it is clear the wrinkles are the primary driver behind increased POF for this particular

example, it is informative to note the relationship between the two quantities. Figure 14 shows

a plot of POF vs. p (wrinkle). Note that by Figure 14, POF is linearly related to p (wrinkle) and

POF is generally 0.096 of p (wrinkle). Thus, to get a POF of 1 × 10−4 or better, p (wrinkle) must

be 1 × 10−3. Occasionally, it is simpler to use p (wrinkle) as a proxy for POF, as this is directly

displayed in the Bayesian network rather than needing to be calculated outside of it.

Examining the effect of four in-process QA checks

Observing the mode values of Table 4, the major issue in reaching a POF of 1 × 10−4 is

not the uncertainty around the manufacturing process but the high mode value. The high

mode value indicates that the manufacturing steps have a very high probability of indu-

cing a wrinkle. Improving the actual manufacturing process reduces or eliminates rework

or scrap and for that reason is normally considered the best way to improve quality and

will be considered in the next section. The most expeditious way, however, to attack this

problem without expending effort improving the manufacturing process is to apply qual-

ity assurance tests (QA tests) at the four manufacturing steps that can induce wrinkling in

order to find and correct the wrinkles at the stage where they are introduced. The four

tests, their costs, and their relative effectiveness are shown in Table 5. These tests are in-

cluded in the Bayesian model to view their effect in p (wrinkle).

Table 4 Saltelli global sensitivity analysis results

Title Hat_max_load_FE Hat_max_load_TE Mode NumSamples

Wrinkle placing release film strips 0.435196 1.101102 0.2153 120

Wrinkle induced during debulking 0.192996 0.950746 0.1136 120

Wrinkle during bagging and pleating 0.713702 0.824299 0.2153 120

Wrinkle applying final cloth over wrap 0.039608 0.776457 0.0100 120

Top four variables contributing to variance identified. Hat_Max_Load_FE corresponds to Si whereas Hat_Max_Load_TE

corresponds to STi. The variables are sorted from greatest total effect to least total effect. For the example model

configuration, 4 out of 81 nodes have been identified as contributing significantly to variance in the model output. Note

that all four nodes are related to inducing or detecting wrinkles in the part. Mode refers to the mode of the beta

distribution and NumSamples refers to the parameter ‘k’ (expert confidence) in Equations 4 and 5.

Figure 13 Monte Carlo result of a three-hat panel network using only ultrasonic Inspection as QA.
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As Figure 15 shows, the p (wrinkles) is reduced from 46% to 2.43% by applying all

four of these QA tests. Although that is a significant drop, p (wrinkle) must be lowered

to 0.1% (1 × 10−3) in order to reach the reliability target.

Identifying manufacturing process areas to target for improvements

Based on the point probability of a wrinkle being 0.0243 and needing to be 0.001, it is

clear that process improvements must be made. Both global and point sensitivity ana-

lysis are performed on the four QA test model to determine the focus areas. Tables 6

and 7 show the results of this analysis.

Table 6 shows that most of the variance is due to the debulking and bagging steps

and also that there is synergy between those nodes and other nodes. The point sensitiv-

ity analysis of Table 7 shows that those nodes are also prominent in affecting POF.

Based on these two tables, it appears that the most efficient means of decreasing POF

is by improving the manufacturing debulking related steps and the QA of the debulking

simultaneously (top two globally sensitive) to take advantage of the synergy between

them as well as their high point sensitivity. If this is not enough, then the nodes related

to bagging and the release film should be worked on next.

To simulate working on the debulking process, it is assumed for the purposes of this ex-

ample that engineers improve the process by examining and improving such elements as

the bulk factor of the product form, tack or lack of tack, and the debulk process itself.

Figure 14 Probability of failure as a function of probability of wrinkle.

Table 5 Efficacy and cost of QA tests for wrinkles

Node Mode NumSamples Cost

QA test finds bagging wrinkle 0.0400 120 $30

QA test finds debulking wrinkle 0.1000 2 $315

QA test finds release film wrinkle 0.0200 120 $30

QA test finds final cloth overwrap wrinkle 0.0200 120 $165

Pado Integrating Materials and Manufacturing Innovation 2014, 3:20 Page 21 of 27

http://www.immijournal.com/content/3/1/20



After those improvements, there is only a .01 chance of inducing a wrinkle during the

debulking process (improved from .11) and a .99 chance of finding a wrinkle at that point

with a 20 sample size. With these improvements in place, the point probability network

results are shown in Figure 16. This figure shows that the probability of wrinkle is still

much higher than the 0.1% needed and that the major source of the high probability ap-

pears to be due to the steps making up bagging.

To help verify this conclusion, another global sensitivity analysis is performed with the

results shown in Table 8. This table shows that the top four nodes contributing to output

variance are now all related to bagging. Note that placing release film is part of the bagging

process. Since Table 8 verifies what was seen in Figure 16, it is clear that improving the nodes

related to inducing wrinkles during the bagging process would most benefit POF. This time,

it is assumed that engineers improve the bagging process steps such that there is a 0.01

chance of wrinkle and improve the QA tests such that there is a 0.99 chance of detection.

As shown in Figure 17, these changes improve the point model probability of wrinkle

to 0.05% which is better than the goal of 0.1%.

At this point, a Monte Carlo analysis must be run to take into account the uncer-

tainty in the model parameters, and a 95% confidence level must be calculated to add

the necessary amount of conservatism to the estimate. Figure 18 shows the results of

the Monte Carlo process. Note that the mode of the POF distribution at 1.2 × 10−4 is

close to the target value of 1 × 10−4, but the 95% confidence level is 4.93 × 10−4, which

is about a factor of five from the target level.

At this stage, it may be cost-effective to perform targeted testing to reduce epistemic

uncertainty by using the confidence level shifting (CLS) analysis technique. The first

Figure 15 p (wrinkle) with four wrinkle direct QA tests. Note that to reach a POF of 1 × 10−4. p (wrinkle)

must be lowered to 1 × 10−3 or a factor of 25 lower than this.

Table 6 Global sensitivity analysis of the manufacturing network that includes the four

wrinkle direct QA tests

Factor name Hat_max_load_FE Hat_max_load_TE Mode NumSamples

QA test finds debulking wrinkle if it exists 0.817142 0.88832 0.1000 2

Wrinkle introduced during debulking 0.13929 0.279974 0.1136 120

QA test finds bagging wrinkle 0.003301 0.096139 0.0400 120

QA test finds release film wrinkle 0.00201 0.087771 0.0200 120

Wrinkle introduced during bagging 0.000163 0.080021 0.2153 120

Wrinkle introduced during release film −0.003777 0.082574 0.2153 120

QA test finds final cloth overwrap wrinkle −0.005413 0.082446 0.0200 120

Wrinkle intro. during final cloth overwrap −0.005268 0.082371 0.0100 120

The italicized entries indicate the significant variables identified through the sensitivity analysis.
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step in the CLS process is to identify which nodes are causing the most variance on the

output POF using global sensitivity analysis. Table 2 from the main body of this paper

shows the results of this. With the steps and QA tests related to wrinkles balanced in

terms of performance by engineers, all eight nodes related to wrinkles are found to be

important. Figure 9 from this paper's CLS section shows that 95 successful unitized tar-

geted tests can be run to drive the 95% CL POF to 1 × 10−4.

Now that the manufacturing process has been modified and additional testing

performed to drive the 95% CL POF down to 1 × 10−4, the final step is to perform a sensi-

tivity analysis of the 95% confidence level POF to a change in mode, which is a good indi-

cation of influential distributions that must be justified by documentation. Table 9 shows

the results of this analysis. The table is sorted by node with those nodes that have the

most influence starting at the top. The top eight influential nodes turn out to be the eight

nodes that had 95 unitized tests performed to make their estimates more certain. Due to

the collection of this extra confirmatory data, these nodes can be considered credible. The

ninth node in the list - radial thickening (RT) during debulking (not shown in Figure 3)

has a sensitivity of 0.28 × 10−5 per 0.01 of mode change. This means that the given mode

(0.01) could be as high as .04, or four times higher than the given mode, before the 95%

CL POF reaches the target value. This value is thus judged to be credible.

Summary of using credibility tools to reach a credible target 95% CL POF

In summary, an example project consisting of manufacturing a three-hat-stiffened panel

was used as a case study for exercising the credibility tools detailed in this paper. The goal

of the example was to analyze a manufacturing process in terms of the factors that

Table 7 Point sensitivity analysis of the manufacturing network that includes the four

wrinkle direct QA tests

Node POFHat_max_load_sens Mode NumSamples

QA test finds bagging wrinkle 0.02038 0.040 120

Wrinkle introduced during release film 0.02029 0.020 120

QA test finds debulking wrinkle if t exists 0.01079 0.100 2

Wrinkle introduced during debulking 0.00949 0.114 120

Wrinkle introduced during bagging 0.00379 0.215 120

Wrinkle introduced during release film 0.00189 0.215 120

Wrinkle intro. during final cloth overwrap 0.00188 0.010 120

QA test finds final cloth overwrap wrinkle 0.00094 0.020 120

The italicized entries indicate the significant variables identified through the sensitivity analysis.

Figure 16 p (wrinkle) with improvements to the debulking process and QA tests. Note that now, the

major source of high p (wrinkle) appears to be due to the steps making up bagging.
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contribute to its unreliability, to ensure that the expert opinion using to furnish

the parameters of that model were credible, and then use a number of tools to de-

termine the optimal way to create a more reliable product that met a target reliabil-

ity number. Note that this was accomplished conceptually for illustrative purposes.

The examination started with noting the effect of any and all possible combinations

of manufacturing options on the point reliability of the part. It was found that quality

assurance tests had an extremely high impact on part reliability. After noting that

a post-manufacturing QA test was effective but that it resulted in many costly part

rejections, another analysis was undertaken which found four manufacturing steps that

induced wrinkles also contributed the most to variance in the output. QA tests were

directly applied within the model to address these four steps but it was found that they

were not effective enough to reach the target 95% CL POF. An iterative process was

then undertaken which involved identifying and then improving aspects of the manufac-

turing process until the process nearly reached the target POF. At this point, an effort to

reduce epistemic uncertainty in the model was undertaken using confidence level shifting

to identify target testing. This testing optimally reduced uncertainty in the model. Finally,

a sensitivity analysis of the 95% confidence level POF to a change in mode was performed

for each node of the model to indicate influential distributions that must be justified by

Figure 17 p (wrinkle) with improvements to both the debulking process and QA tests and the

bagging process and QA tests. These improvements show that the point model probability of wrinkle is

now .05% which exceeds the goal of 0.1%.

Table 8 Global sensitivity analysis of the manufacturing network that includes four

wrinkle direct QA tests and improved debulking steps

Factor name Hat_max_load_FE Hat_max_load_TE Mode NumSamples

QA test finds bagging wrinkle 0.488152 0.625328 0.0400 120

QA test finds release film wrinkle 0.298514 0.388214 0.0200 120

Wrinkle introduced during bagging 0.135016 0.145427 0.2153 120

Wrinkle introduced during release film 0.039348 0.123047 0.2153 120

Wrinkle introduced during debulking 0.00898 0.122452 0.0100 120

QA test finds debulking wrinkle if it exists 0.036094 0.115424 0.0100 20

Wrinkle intro. during final cloth overwrap 0.006912 0.096334 0.0100 120

QA test finds final cloth overwrap wrinkle 0.003504 0.095578 0.0200 120

Radius thickening intro. during final cloth
overwarp

0.003001 0.093529 0.0200 35

This table shows that the top four nodes (in italics) contributing to output variance are now all related to bagging. Note

that placing release film is part of the bagging process.
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documentation. At this point, it was found that with the targeted testing that had already

occurred that the model was credible.

Conclusions

This paper details an approach to obtaining credible model output when model parameters

are based on expert opinion. Although the model used as an example in this paper is a

Bayesian network model, the approach and techniques described in this paper are com-

pletely transferrable to any model using uncertain parameters. This paper details an ap-

proach to obtaining credible model output based on the idea of having a hypothetical

expert whose unconscious bias influences the model output and discovering and using

countermeasures to find and prevent these biases. Countermeasures include replacing point

probabilities with beta distributions to incorporate uncertainty and requiring 95% confi-

dence levels to add conservatism. Multiple types of sensitivity analyses are used to identify

parameters in the model that have the most influence over the model's output. This in-

cludes a derivative point probability-based sensitivity analysis that is a good indicator of

relevance when all parameters are at their most likely values, a sensitivity analysis of 95%

confidence level to a change in mode which is a good indication of influential distribu-

tions that must be justified by documentation and a variance-based global sensitivity ana-

lysis which is useful for identifying which model parameters contribute the most to

output variance and which model parameters have synergy with other model parameters.

Finally, this paper uses a new technique named ‘confidence level shifting’ to cost and time

optimally reduce epistemic uncertainty in the model. This is useful when uncertainty in

model parameters is inflating the 95% confidence level of a reported target output (such

as probability of failure or probability of a defect) and needs to be brought down as cost

effectively as possible.

Figure 18 Effect of engineered process improvements on Monte Carlo results. Note that these

improvements are in addition to the four direct QA tests that have already been applied.
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Table 9 Results of sensitivity calculations of 95% CL to a change in mode

Nodes numSamples Old_mode New_mode Delta_mode 95POF New95POF Delta_POF Sen

Wrinkle introduced during debulking 215 0.0055 0.0155 0.0100 9.26 × 10−5 1.21 × 10−4 2.81 × 10−5 2.81 × 10−3

QA test finds debulking wrinkle if it exists 115 0.0055 0.0155 0.0100 9.26 × 10−5 1.14 × 10−4 2.11 × 10−5 2.11 × 10 − 3

QA test finds bagging wrinkle 215 0.0055 0.0155 0.0100 9.26 × 10−5 1.11 × 10−4 1.85 × 10−5 1.85 × 10−3

QA test finds final cloth overwrap wrinkle 215 0.0032 0.0132 0.0100 9.26 × 10−5 1.11 × 10−4 1.81 × 10−5 1.81 × 10−3

Wrinkle introduced during bagging 215 0.0055 0.0155 0.0100 9.26 × 10−5 1.10 × 10−4 1.75 × 10−5 1.75 × 10−3

QA test finds release film wrinkle 215 0.0055 0.0155 0.0100 9.26 × 10−5 1.10 × 10−4 1.75 × 10−5 1.75 × 10−3

Wrinkle introduced during release film 215 0.0055 0.0155 0.0100 9.26 × 10−5 1.09 × 10−4 1.60 × 10−5 1.60 × 10−3

Wrinkle intro. during final cloth overwrap 215 0.0055 0.0155 0.0100 9.26 × 10−5 1.06 × 10−4 1.37 × 10−5 1.37 × 10−3

Radius thickening intro. during debulking 30 0.0100 0.0200 0.0100 9.26 × 10−5 9.55 × 10−5 2.88 × 10−6 2.88 × 10−4

QA test finds release film up. radius thickening 10 0.0100 0.0200 0.0100 9.26 × 10−5 9.51 × 10−5 2.50 × 10−6 2.50 × 10−4

QA test finds bagging radius thickening 20 0.0050 0.0150 0.0100 9.26 × 10−5 9.45 × 10−5 1.93 × 10−6 1.93 × 10−4

The top eight nodes are italicized. The sensitivity of the mode of for an average one of these nodes is roughly 2 × 10−3 or 2 × 10−5 for every .01 change in mode. This effectively means that if the expert started with a

mode of .008 and reduced it down to 0.001, a magnitude change in 95% CL POF would have occurred.
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Abbreviations

Δ: delta, change in value; A: beta distribution parameter expressing the number of flawed examples; B: beta

distribution parameter expressing the number of flawless examples; BN: Bayesian networks; CL: confidence level;

CLS: confidence level shifting; CMTI: Certification Methodology to Transition Innovation; DARPA/DSO: Defense

Advanced Research Projects Agency Defense Science Office; GSA: global sensitivity analysis; K: expert confidence in
estimate in terms of equivalent prior sample size; Mode: the most likely probability of a flaw; NRT: negative result test;

OM: Open Manufacturing; P: proportion of flaws in the beta distribution; Pi: probability of node i inducing or failing to

detect a defect; POF: probability of failure; QA: quality assurance; RT: radial thickening; S95%CLi: sensitivity of the 95% CL

of model output due to change in mode of node i; SDi: derivative-based sensitivity measure; Si: effect due to variable i;
STi: total effect due to variable i; Xi: model parameter; Y: model output.
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