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Abstract— Most fraud-detection systems (FDSs) monitor
streams of credit card transactions by means of classifiers
returning alerts for the riskiest payments. Fraud detection is
notably a challenging problem because of concept drift (i.e.
customers’ habits evolve) and class unbalance (i.e. genuine
transactions far outnumber frauds). Also, FDSs differ from
conventional classification because, in a first phase, only a small
set of supervised samples is provided by human investigators
who have time to assess only a reduced number of alerts. Labels
of the vast majority of transactions are made available only
several days later, when customers have possibly reported unau-
thorized transactions. The delay in obtaining accurate labels
and the interaction between alerts and supervised information
have to be carefully taken into consideration when learning in
a concept-drifting environment.

In this paper we address a realistic fraud-detection setting
and we show that investigator’s feedbacks and delayed labels
have to be handled separately. We design two FDSs on the
basis of an ensemble and a sliding-window approach and we
show that the winning strategy consists in training two separate
classifiers (on feedbacks and delayed labels, respectively), and
then aggregating the outcomes. Experiments on large dataset
of real-world transactions show that the alert precision, which
is the primary concern of investigators, can be substantially
improved by the proposed approach.

Index Terms— Fraud Detection, Concept Drift, Unbalanced
Data, Data Streams, Anomaly Detection.

I. INTRODUCTION

Everyday a huge and growing number of credit cards

payments takes place while being targeted by fraudulent ac-

tivities. Companies processing electronic transactions have to

promptly detect any fraudulent behavior in order to preserve

customers’ trust and the safety of their own business.

Most fraud-detection system (FDSs) employ machine-

learning algorithms to learn frauds’ patterns and detect

them as datastreams of transactions come [4]. In particular,

we focus here on FDSs which aim to detect frauds by

means of classifiers that label transactions as fraudulent or

genuine. Fraud detection is particularly challenging for two

reasons [5]: frauds represent a small fraction of all the

daily transactions [3] and their distribution evolves over time

because of seasonality and new attack strategies [29]. This
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situation is typically referred to as concept drift [19] and is

of extreme relevance for FDSs which have to be constantly

updated either by exploiting the most recent supervised

samples or by forgetting outdated information that might be

no more useful whereas not misleading.

In a real-world setting, it is impossible to check all

transactions. The cost of human labour seriously constrains

the number of alerts, returned by the FDS, that can be

validated by investigators. Investigators in fact check the

alerts by calling the cardholders, and then provide the FDS

with feedbacks indicating whether the alerts were related to

fraudulent or genuine transactions. These feedbacks, which

refer to a tiny fraction of the daily transactions amount, are

the only real-time information that can be provided to train

or update classifiers. The labels of the rest of transactions

can be assumed to be known several days later, once a

certain reaction-time for the customers have passed: all

the transactions that customers do not report as frauds are

considered genuine. In the paper we will distinguish between

immediate feedback samples (i.e. transactions annotated with

the investigator feedback) and delayed samples, whose labels

is obtained only after some time. This distinction is crucial

for the design of an accurate FDS, though most FDSs in

the literature [25], [36], [16], [4] assume an immediate and

accurate labeling after the processing of each transaction.

This oversimplifying assumption ignores the alert-feedback

interaction, which makes the few recent supervised couples

dependent from the performance of the FDS itself.

Another substantial difference between the real-world set-

tings and the ideal ones considered in literature is that the

primary concern of any FDS should be to return a small

number of very precise alerts, then reducing the number of

genuine transactions (false positives) that have be controlled

by investigators. In practice, the optimal FDS should be

the one maximizing the number of frauds detected within

the budget of alerts that can be reported. Notwithstanding,

classical performance metrics considered in the literature are

the area under the curve (AUC), the cost (namely, financial

losses arising from misclassification), and metrics based on

the confusion matrix [23] (e.g the F-measure), which are not

necessarily meaningful for the alert precision.

In this work we show that, in a real-world fraud-detection

scenario, it is convenient to handle immediate feedbacks

separately from delayed supervised samples. The former, in

fact, are selected as the most risky transactions according to

the FDS itself, while the latter refer to all the occurred trans-

actions. Our claim is better illustrated in Section IV, where



we investigate two traditional learning approaches for FDSs,

namely, i) a sliding-window approach where a classifier is re-

trained everyday on the most recent supervised samples and

ii) an ensemble approach where, everyday, a new component

replaces the oldest one in the ensemble. We designed and

assessed two different solutions for each approach: in the

first, feedbacks and delayed supervised samples are pooled

together while in the second we train two distinct classifiers,

based on feedbacks and delayed samples respectively, and

then aggregate the outputs. Experiments shown in Section V

on two real-world credit card datasets indicate that handling

feedbacks separately from delayed training samples can

substantially improve the alert precision. We motivate this

result as the fact that this solution guarantees a prompter

reaction to concept drift: additional experiments on datasets

that have been manipulated to introduce concept drift in

specific days, confirm our intuition.

To the best of our knowledge, this is also the first work

addressing the problem of fraud detection when supervised

pairs are provided according to the alert-feedback interaction,

as formulated in Section III.

II. RELATED WORKS

FDSs are confronted with two major challenges: i) han-

dling non-stationary streams of transactions, namely a stream

where the statistical properties of both frauds and genuine

transactions change overtime; ii) handling the class unbal-

ance, since legitimate transactions generally far outnumber

the fraudulent ones. In what follows we provide an overview

of state-of-the-art FDSs with a specific focus on solutions

for evolving and unbalanced data streams.

In the fraud-detection literature both supervised [7], [10],

[4] and unsupervised [6], [34] solutions have been pro-

posed. Unsupervised methods do not rely on transactions

labels (i.e. genuine or fraudulent) and associate fraudulent

behaviours [6] to transactions that do not conform with

the majority. Unsupervised methods exploit clustering algo-

rithms [31], [36] to group customers into different profiles

and identify frauds as transactions departing from customer

profile (see also the recent survey by Phua [30]).

In this paper we will focus on supervised methods. Su-

pervised methods exploit labels that investigators assign to

transactions for training a classifier and, during operation,

detect frauds by classifying each transaction in the incoming

stream [5]. Fraud detection has been often considered as

an application scenario for several classification algorithms,

e.g. Neural networks [22], [1], [16], [7], Support Vector Ma-

chines [37], Decision Trees [13] and Random Forest [12]).

Learning on the stream of credit transactions is a chal-

lenging issue because transactions evolve and change over

time, e.g. customers’ behaviour change in holiday seasons

and new fraud activities may appear. This problem is known

as concept drift [19] and learning algorithms operating

in non-stationary environments typically rely only on the

supervised information that is up-to-date (thus relevant),

and remove any obsolete training sample [2]. Most often,

concept-drift adaptation is achieved by training a classifier

over a sliding window of the recent supervised samples

(e.g. STAGGER [32] and FLORA [38]) or by ensemble of

classifiers where recent supervised data are used to train

a new classifier while obsolete ones are discarded (e.g.

SEA [33] and DWM [26]).

Streams of credit card transactions present an additional

challenge: the classes are extremely unbalanced since frauds

are typically less than 1% of genuine transactions [13]. Class

unbalance is typically addressed by resampling methods [24],

which balance the training set by removing samples of the

majority class (undersampling) or by replicating the minority

class (oversampling). In practice, concept-drift adaptation in

an unbalanced environment is often achieved by combining

ensemble methods and resampling techniques. The class

unbalance problem is addressed in [20], [21] by propagat-

ing minority class training samples and undersampling the

majority class. Chen and He proposed REA [11] where they

recommend to propagate only examples from the minority

class that belong to the same concept using a k-nearest

neighbors algorithm. Learn++.NIE [15] creates multiple bal-

anced training sets from a batch using undersampling, then

it learns a classifier on each balanced subset and combines

all classifier’s predictions. Lichtenwalter and Chawla [28]

suggest to propagate not only positives, but also observations

from the negative class that are misclassified in the previous

batch to increase the boundary definition between the two

classes.

All the aforementioned learning frameworks demand a

training set of recent instances with their own ground-truth

class label. However, in a real-world FDS, this is often not

possible because only few recent supervised couples are pro-

vided according to the alert-feedback interaction described in

Section I. The only FDS explicitly handling concept drift in

the transaction streams is [35] which nevertheless, like other

FDS presented in the literature [6], [7], [10], ignores the

alert-feedback interaction.

It is worth to remark that this alert-feedback interaction

could remind an active-learning scenario where the learner

is allowed to query an oracle for requiring informative

supervised couples from a large set of unlabelled obser-

vations. Unfortunately in a FDS scenario, this solution is

not feasible since an exploration phase, where investigators

should check a large number of (possibly uninteresting)

transactions, would not be considered as acceptable.

III. PROBLEM FORMULATION

We formulate here the fraud detection problem as a binary

classification task where each transaction is associated to

a feature vector x and a label y. Features in x could be

the transaction amount, the shop id, the card id, the time-

stamp or the country, as well as features extracted from

the customer profile. Because of the time-varying nature of

the transactions’ stream, typically, FDSs train (or update)

a classifier Kt every day (t). The classifier Kt : R
n →

{+,−} associates to each feature vector x ∈ R
n, a label

Kt(x) ∈ {+,−}, where + denotes a fraud and − a genuine

transaction. Since frauds represent a negligible fractions of
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Fig. 1. The supervised samples available at day t include: i) feedbacks of
the first δ days and ii) delayed couples occurred before the δth day.

the total number of transactions, the positive class is also

called the minority class and the negative one the majority

class.

In general, FDSs operate on a continuous stream of trans-

actions because frauds have to be detected online, however,

the classifier is updated once a day, to gather a sufficient

amount of supervised transactions. Transactions arriving at

day t, namely Tt, are processed by the classifier Kt−1 trained

in the previous day (t− 1). The k riskiest transactions of Tt

are reported to the investigators, where k > 0 represents the

number of alerts the investigators are able to validate. The

reported alerts At are determined by ranking the transactions

of Tt according to the posterior probability PKt−1
(+|x),

which is the estimate, returned by Kt−1, of the probability

for x to be a fraud. The set of reported alerts at day t is

defined as

At = {x s.t. r(x) ≤ k} (1)

where r(x) ∈ {1, . . . ,#Tt} is the rank of the transaction x

according to PKt−1
(+|x), and #(·) denotes the cardinality

of a set. In other terms, the transaction with the highest

probability ranks first (r(x) = 1) and the one with the lowest

probability ranks last (r(x) = #Tt).

Investigators will then provide feedbacks Ft about the

alerts in At, defining a set of k supervised couples (x, y)

Ft = {(x, y), x ∈ At}, (2)

which represents the only immediate information that the

FDS receives. At day t, we also receive the labels of all

the transactions processed at day t − δ, providing a set of

delayed supervised couples Dt−δ = {(x, y), x ∈ Tt−δ}, see

Figure 1. Though these transactions have not been personally

checked by investigators, they are by default assumed to be

genuine after δ days, as far as customers do not report frauds.
1 As a result, the labels of all the transactions older than δ

days are provided at day t. The problem of receiving delayed

labels is also referred to as verification latency [27].

It is worth to remark that this is still a simplified descrip-

tion of the processes regulating companies analyzing credit

1Investigators typically assume that frauds missed by the FDS are
reported by customers themselves (e.g. after having checked their credit
card balance), within a maximum time-interval of δ days.
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Fig. 2. Everyday we have a new set of feedbacks
(Ft, Ft−1, . . . , Ft−(δ−1)) from the first δ days and a new set of

delayed transactions occurred on the δth day (Dt−δ). In this Figure we
assume δ = 7 and the colours refer to the notation in Figure 1.

cards transactions. For instance, it is typically not possible

to extract the alerts At by ranking the whole set Tt, since

transactions have to be immediately passed to investigators;

similarly, delayed supervised couples Dt−δ do not come all

at once, but are provided over time. Notwithstanding, we

deem that the most important aspects of the problem (i.e.

the alert-feedback interaction and the time-varying nature of

the stream) are already contained in our formulation and that

further details would unnecessarily make the problem setting

complex.

Feedbacks Ft can either refer to frauds (correct alerts)

or genuine transactions (false alerts): correct alerts are the

true positives (TP), while false alerts are the false positives

(FP). Similarly, Dt−δ contains both fraud (false negative)

and genuine transactions (true negatives), although the vast

majority of transactions belong to the genuine class. Figure 2

illustrates the two types of supervised pairs that are provided

everyday.

The goal of a FDS is to return accurate alerts: when too

many FPs are reported, investigators might decide to ignore

forthcoming alerts. Thus, what actually matters is to achieve

the highest precision in At. This precision can be measured

by the quantity

pk(t) =
#{(x, y) ∈ Ft s.t. y = +}

k
(3)

where pk(t) is the proportion of frauds in the top k transac-

tions with the highest likelihood of being frauds ([4]).

IV. LEARNING STRATEGY

The fraud-detection scenario described in Section III sug-

gests that learning from feedbacks Ft is a different problem

than learning from delayed samples in Dt−δ . The first differ-

ence is evident: Ft provides recent, up-to-date, information

while Dt−δ might be already obsolete once it comes. The

second difference concerns the percentage of frauds in Ft and

Dt−δ . While it is clear that the class distribution in Dt−δ is

always skewed towards the genuine class (see Figure 2), the

number of frauds in Ft actually depends on the performance

of classifier Kt−1: values of pk(t) ∼ 50% provide feedbacks

Ft where frauds and genuine transactions are balanced, while



high precision values might even result in Ft skewed towards

frauds. The third, and probably the most subtle, difference is

that supervised couples in Ft are not independently drawn,

but are instead selected by Kt−1 among those transaction

that are more likely to be frauds. As such, a classifier

trained on Ft learns how to label transactions that are most

likely to be fraudulent, and might be in principle not precise

on the vast majority of genuine transactions. Therefore,

beside the fact that Ft and Dt−δ might require different

resampling methods, Ft and Dt−δ are also representative of

two different classification problems and, as such, they have

to be separately handled. In the following, two traditional

fraud-detection approaches are presented (Section IV-A), and

further developed to handle separately feedbacks and delayed

supervised couples (Section IV-B). Experiments in Section

V show that this is a valuable strategy, which substantially

improves the alert precision.

A. Conventional Classification Approaches in FDS

During operation, feedbacks Ft and delayed super-

vised samples Dt−δ can be exploited for training or

updating the classifier Kt. In particular, we train the

FDS considering the feedbacks from the last δ days

(i.e. {Ft, Ft−1, . . . , Ft−(δ−1)}) and the delayed supervised

pairs from the last α days before the feedbacks, i.e.

{Dt−δ, . . . , Dt−(δ+α−1)} (see Figure 2). 2

In the following we present two conventional solutions for

concept-drift adaptation [34], [20] built upon a classification

algorithm proving an estimate of the probability P (+|x).

• Wt: a sliding window classifier that is daily updated

over the supervised samples received in the last δ +
α days, i.e. {Ft, . . . , Ft−(δ−1), Dt−δ, . . . , Dt−(δ+α−1)}
(see Figure 3).

• Et: an ensemble of classifiers {M1,M2, . . . ,Mα,F },

where Mi is trained on Dt−(δ+i−1) and Ft is trained on

all the feedbacks of the last δ days {Ft, . . . , Ft−(δ−1)}.

The estimate of posterior probability PEt
(+|x) is esti-

mated by averaging the posterior probabilities of the

individual classifiers, PMi
(+|x), i = 1, . . . , α and

PFt
(+|x). Note that we use a single classifier to learn

from the set of feedbacks since their size is typically

small. Everyday, Ft is re-trained considering the new

feedbacks, while a new classifier is trained on the

new delayed supervised couples provided (Dt−δ) and

included in the ensemble. At the same time, the most

obsolete classifier is removed from the ensemble.

These solutions implement two basic approaches for han-

dling concept drift that can be further improved by adopting

dynamic sliding windows or adaptive ensemble sizes [17].

B. Separating delayed Supervised Samples from Feedbacks

Our intuition is that feedbacks and delayed transactions

have to be treated separately because, beside requiring

different tools for handling class unbalance, they refer to

2There is no point of storing feedbacks from Ft−δ (or before), as these
supervised couples are provided in Dt−δ (or before).
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Fig. 3. Supervised information used by different classifiers in the ensemble
and sliding window approach. The Figure assume that feedbacks are
provided for the first 7 days (δ = 7) and delayed samples of two days
before the feedbacks are available (α = 2).

different classification problems. Therefore, at day t we

train a specific classifier Ft on the feedbacks of the last

δ days {Ft, . . . , Ft−(δ−1)} and denote by PFt
(+|x) its

posterior probability. We then train a second classifier on the

delayed samples by means either of a sliding-window or an

ensemble mechanism (see Figure 3): Let us denote by WD
t

the classifier trained on a sliding window of delayed samples

{Dt−δ, . . . , Dt−(δ+α−1)} and by PWD

t

(+|x) its posterior

probabilities, while ED
t denotes the ensemble of α classifiers

{M1,M2, . . . ,Mα} where each individual classifier Mi

is trained on Dt−δ−i, i = 1, . . . , α. Then, the posterior

probability PED

t

(+|x) is obtained by averaging the posterior

probabilities of the individual classifiers.

Each of these two classifiers has to be aggregated with Ft

to exploit information provided by feedbacks. However, to

raise alerts, we are not interested in aggregation methods at

the label level but rather at the posterior probability level.

For the sake of simplicity we adopt the most straightforward

combination approach based on averaging the posterior prob-

abilities of the two classifiers (Ft and one among WD
t and

ED
t ). Let us denote by AE

t the aggregation of Ft and ED
t

where PAE

t

(+|x) is defined as:

PAE

t

(+|x) =
PFt

(+|x) + PED

t

(+|x)

2
(4)

Similar definition holds for the aggregation of Ft and WD
t

(AW
t ). Note that Ft and WD

t jointly use the training set of

Wt and, similarly, the two classifiers Ft and ED
t jointly use

the same training samples of Et (see Figure 3).

However, in Wt feedbacks represent a small portion of the

supervised samples used for training, hence they have little

influence on PWt
(+|x), while in the aggregation AW

t their

contribution becomes more prominent. Similarly, Ft repre-

sents one of the classifiers of the ensemble Et, hence it has

in principle the same influence as all the other α classifiers



trained on delayed samples to determine PEt
(+|x).3.

Experiments in Section V show that handling feedbacks

separately from delayed supervised samples provides much

more precise alerts, and that FDSs relying on classifiers

trained exclusively on feedbacks and delayed supervised

samples (like AW
t and AE

t ) substantially outperform FDSs

trained on feedbacks and delayed supervised samples pooled

together (like Wt and Et). In what follows, as practical exam-

ple of the separation of feedbacks from delayed supervised

couples, we detail the specific solutions based on Random

Forests that were used in our experiments.

C. Two Specific FDSs based on Random Forest

As a base algorithm the FDSs presented in the previous

section we used a Random Forest [9] with 100 trees. In

particular, for WD
t , Wt and for all Mi, i = 1, . . . , α, we

used a Balanced Random Forest (BRF) where each tree

is trained on a balanced bootstrap sample, obtained by

randomly undersampling the majority class while preserving

all the minority class samples in the corresponding training

set. Each tree of BRF receives a different random sample

of the genuine transactions and the same samples from

the fraud class in the traininig set, yielding a balanced

training set. This undersampling strategy allows one to learn

trees with balanced distribution and to exploit many subsets

of the majority class. At the same time, this resampling

method reduces training sizes and improve detection speed.

A drawback of undersampling is that we are potentially

removing relevant training samples form the dataset, however

this problem is mitigated by the fact that we learn 100

different trees. Using undersampling allows us to rebalance

the batches without propagating minority class observations

along the streams as in [20]. Propagating frauds between

batches should be avoided whenever possible, since it re-

quires access to previous batches that we might not be able

to store when data arrives in streams. In contrast, for Ft

that is trained on feedbacks we adopted a standard Random

Forest (RF) where no resampling is performed.

V. EXPERIMENTS

We considered two datasets of credit card transactions of

European cardholders: the first one (referred to as 2013) is

composed of daily transactions from the 5th of September

2013 to the 18th of January 2014, the second one (referred

to as 2014) contains transactions from the 5th of August to

the 9th of September 2014. In the 2013 dataset there is an

average of 160k transactions per day and about 304 frauds

per day, while in the 2014 dataset there is on average 173k

transactions and 380 frauds everyday. Table I reports few

additional details about these datasets and shows that they

are also heavily unbalanced.

In the first experiments we process both datasets to as-

sess the importance of separating feedbacks from delayed

supervised samples. Though we expect these streams to be

3In the specific case of the ensemble and of posterior probabilities com-
puted by averaging (4), the aggregation of Ft and ED

t
(AE

t
) corresponds

to assigning a larger weight to Ft in Et.

TABLE I

DATASETS

Id Start day End day # Days # Instances # Features % Fraud

2013 2013-09-05 2014-01-18 136 21,830,330 51 0.19%
2014 2014-08-05 2014-10-09 44 7,619,452 51 0.22%

affected by concept drift (CD), since they span a quite long

time range, we do not have any ground truth to investigate

the reaction to concept drift of the proposed FDS. To

this purpose, we design the second experiment where we

juxtapose batches of transactions acquired in different times

of the year to artificially introduce CD in a specific day in

the transaction stream.

In both experiments we test FDSs built on random forests

presented in Section IV-C. We considered both the sliding

window and ensemble approaches and compared the accu-

racy of pooling feedbacks and delayed supervised samples

together (Wt and Et) against learning separate classifiers (Ft,

WD
t and ED

t ) that are then aggregated (AW
t and AE

t ). Let

us recall that alerts are raised by each tested classifier. This

means that also the feedbacks returned to the classifiers might

be different. This has to be considered when comparing

different classifiers, for instance, when comparing Wt and

WD
t , the supervised information provided is not the same

because, in the first case alerts are raised by Wt while in the

second by WD
t .

We assume that after δ = 7 days all the transactions labels

are provided (delayed supervised information) and that we

have a budget of k = 100 alerts that can be checked by

the investigators: thus, Ft is trained on a window of 700
feedbacks. We set α = 16 so that WD

t is trained on a window

of 16 days and ED
t (resp. Et) is an ensemble of 16 (resp. 17)

classifiers. 4

Each experiments is repeated 10 times to reduce the

results’ variability due to bootstrapping of the training sets

in the random forests. The FDS performance is assessed by

means of the average pk over all the batches (the higher

the better) and use a paired t-test to assess whether the

performance gaps between each pair of tested classifiers

is significant or not. We compute the paired t-test on the

ranks resulting from the Friedman test [18] as recommended

by Demsar [14]. In practice, for each batch, we rank the

strategies from the least to the best performing and then

compare each strategy against the others by means of a paired

t-test based on the ranks. Then we sum the ranks over all

batches. More formally, let rs,j ∈ {1, . . . , S} be the rank

of strategy s on day j and S be the number of strategies

to compare. The strategy with the highest accuracy in j has

rs,j = S and the one with the lowest has rs,j = 1. The

paired t-test compares ranks of strategy a against b by means

of ra,j − rb,j , j ∈ {1, . . . , J}, where J is the total number

of batches. Then the sum of ranks for strategy s is defined

as
∑J

j=1 rj,s. The higher the sum, the higher is the number

4We ran several experiments with α = 1, 8, 16, 24 and found α = 16 as
a good trade-off between performance, computational load, and the number
of days that can be used for testing in each stream.



of times that one strategy is superior to the others.

A. Experiments on 2013 and 2014 Datasets

In order to evaluate the benefit of learning on feed-

backs and delayed samples separately, we first compare

the performance of classifier Wt against Ft, WD
t and the

aggregation AW
t . Table II shows the average pk over all the

batches for the two datasets separately. In both 2013 and

TABLE II

AVERAGE pk BETWEEN ALL THE BATCHES

Dataset 2013 Dataset 2014

classifier mean sd mean sd
F 0.609 0.250 0.596 0.249

WD 0.540 0.227 0.549 0.253
W 0.563 0.233 0.559 0.256

AW 0.697 0.212 0.657 0.236

2014 datasets, AW
t outperforms the other FDSs in terms of

pk. The barplots of Figure 5 show the sum of ranks for

each classifier and the results of the paired t-tests. Figure

5 indicates that in both datasets (Figures 5(a) and 5(b))

AW
t is significantly better than all the other classifiers. Ft

achieves higher average pk and higher sum of ranks than WD
t

and Wt: this confirms that feedbacks are very important to

increase pk. Figure 4(a) displays the value of pk for AW
t

and Wt in each day, averaged in a neighborhood of 15 days.

During December there is a substantial performance drop,

that can be seen as a Concept Drift (CD) due to a change

in cardholder behaviour before Christmas. However, AW
t

dominates Wt along the whole 2013 dataset, which confirms

that a classifier AW
t that learns on feedbacks and delayed

transactions separately outperforms a classifier Wt trained

on all the supervised information pooled together (feedbacks

and delayed transactions).

Figures 5(c), 5(d) and Tables III confirm this claim also

when the FDSs implements an ensemble of classifiers. 5 In

particular, Figure 4(b) displays the smoothed average pk of

classifiers AE
t and Et. For the whole dataset AE

t has better

pk than Et.

TABLE III

AVERAGE pk BETWEEN ALL THE BATCHES

Dataset 2013 Dataset 2014

classifier mean sd mean sd
F 0.603 0.258 0.596 0.271

ED 0.459 0.237 0.443 0.242
E 0.555 0.239 0.516 0.252

AE 0.683 0.220 0.634 0.239

B. Experiments on artificial dataset with CD

In this section we artificially introduce an abrupt CD in

specific days by juxtaposing transactions acquired in different

times of the year. Table IV reports the three datasets that have

been generated by concatenating batches of the dataset 2013

5Please note that classifier Ft returns different results between Table II
and Table III because of the stochastic nature of RF.

W
A
W

(a) Sliding window strategies

A
E

E

(b) Ensemble strategies

Fig. 4. Average pk per day (the higher the better) for classifiers on
dataset 2013 smoothed using moving average of 15 days. In the sliding
window approach classifier AW

t
has higher pk than Wt, and in the ensemble

approach AE
t

is superior than Et.

with batches from 2014. The number of days after concept

drift is set such that the FDS has the time to forget the

information from the previous concept.

TABLE IV

DATASETS WITH ARTIFICIALLY INTRODUCED CD

Id Start 2013 End 2013 Start 2014 End 2014

CD1 2013-09-05 2013-09-30 2014-08-05 2014-08-31
CD2 2013-10-01 2013-10-31 2014-09-01 2014-09-30
CD3 2013-11-01 2013-11-30 2014-08-05 2014-08-31

Table V(a) shows the values of pk averaged over all

the batches in the month before the change for the sliding

window approach, while Table V(b) shows pk in the month

after the CD. AW
t reports the highest pk before and after

CD. Similar results are obtained with the ensemble approach

TABLE V

AVERAGE pk IN THE MONTH BEFORE AND AFTER CD FOR THE SLIDING

WINDOW APPROACH

(a) Before CD

CD1 CD2 CD3

classifier mean sd mean sd mean sd
F 0.411 0.142 0.754 0.270 0.690 0.252

WD 0.291 0.129 0.757 0.265 0.622 0.228
W 0.332 0.215 0.758 0.261 0.640 0.227

AW 0.598 0.192 0.788 0.261 0.768 0.221

(b) After CD

CD1 CD2 CD3

classifier mean sd mean sd mean sd
F 0.635 0.279 0.511 0.224 0.599 0.271

WD 0.536 0.335 0.374 0.218 0.515 0.331
W 0.570 0.309 0.391 0.213 0.546 0.319

AW 0.714 0.250 0.594 0.210 0.675 0.244

(Tables VI(a), VI(b)). In all these experiments, AE
t is also

faster than standard classifiers Et and Wt to react in the

presence of a CD (see Figure 6). The large variation of pk
over the time reflect the non-stationarity of the data stream.

Expect for dataset CD1, we have on average lower pk after

concept drift.

C. Discussion

In this section we analyze the accuracy improvements

achieved by classifiers AW
t and AE

t proposed in Section IV-

B. First of all, we notice that the classifier learned on recent

feedbacks is more accurate that the one learned on delayed

samples. This is made explicit by Tables II and III showing
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Fig. 5. Comparison of classification strategies using sum of ranks in all batches and paired t-test based upon on the ranks of each batch (classifiers having
the same letter on their bar are not significantly different with a confidence level of 0.95). In both datasets (2013 and 2014), classifiers AW

t
and AE

t
are

significantly better that the others.
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dataset CD1

A
W

W

(b) Sliding window strategies on
dataset CD2
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(c) Sliding window strategies on
dataset CD3
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Fig. 6. Average pk per day (the higher the better) for classifiers on datasets with artificial concept drift (CD1, CD2 and CD3) smoothed using moving
average of 15 days. In all datasets AW

t
has higher pk than Wt. For the ensemble approach we show only dataset CD3, where AE

t
dominates Et for the

whole dataset (similar results are obtained on CD1 and CD2, but they are not included for compactness). The vertical bar denotes the date of the concept
drift.

TABLE VI

AVERAGE pk IN THE MONTH BEFORE AND AFTER CD FOR THE

ENSEMBLE APPROACH

(a) Before CD

CD1 CD2 CD3

classifier mean sd mean sd mean sd
F 0.585 0.183 0.731 0.267 0.706 0.245

ED 0.555 0.318 0.563 0.217 0.562 0.223
E 0.618 0.313 0.696 0.276 0.648 0.245

AE 0.666 0.222 0.772 0.272 0.751 0.221

(b) After CD

CD1 CD2 CD3

classifier mean sd mean sd mean sd
F 0.696 0.270 0.477 0.235 0.610 0.270

ED 0.551 0.298 0.286 0.182 0.486 0.265
E 0.654 0.266 0.373 0.235 0.581 0.268

AE 0.740 0.232 0.575 0.227 0.659 0.245

that Ft often outperforms WD
t (and ED

t ), and Wt (and Et).
We deem that Ft outperforms WD

t (resp. ED
t ) since WD

t

(resp. ED
t ) are trained on less recent supervised couples.

As far as the improvement with respect to Wt (and Et) is

concerned, our interpretation is that this is due to the fact

that Wt (and Et) are trained on the entire supervised dataset,

then weakening the specific contribution of feedbacks.

Our results instead show that aggregation prevents the

large amount of delayed supervised samples to dominate the

small set of immediate feedbacks. This boils down to assign

larger weights to the most recent than to the old samples,

which is a golden rule when learning in non-stationary en-

vironments. The aggregation AW
t is indeed an effective way

to attribute higher importance to the information included in

the feedbacks. At the same time AE
t is a way to balance the

contribution of Ft and the remaining α models of Et.
Another motivation of the accuracy improvement is that

classifiers trained on feedbacks and delayed samples address

two different classification tasks (Section IV). For this reason

too, it is not convenient to pool the two types of supervised

samples together.

Finally, the aggregation presented in equation 4 provides

equal weights to the two posterior probabilities PFt
and PWD

t

(PED

t

). However, more sophisticated and eventually adaptive

aggregation schemes (e.g. non-linear or stacking [8]) could

be used to react to concept drift. In fact, in a rapidly drifting

environment, the relative weight of PFt
should eventually

increase, because WD
t (or ED

t ) might be obsolete and prone

to false alarms.

VI. CONCLUSION

In this paper we formalise a framework that reproduces

the working conditions of real-world FDSs. In a real-

world fraud-detection scenario, the only recent supervised-

information is provided on the basis of the alerts generated

by the FDS and feedbacks provided by investigators. All the

other supervised samples are provided with a much larger

delay.

Our intuition is that the alert-feedback interaction has

to be explicitly considered to improve alert precision and



that feedbacks and delayed samples have to be separately

handled when training a realistic FDS. To this purpose, we

have considered two general approaches for fraud detection:

a sliding window and an ensemble of classifiers. We have

then compared FDSs that separately learn on feedbacks and

delayed samples against FDSs that pool all the the available

supervised information together. Experiments run on real-

world streams of transactions show that the former strategy

provides much more precise alerts than the latter, and that it

also adapts more promptly in concept-drifting environments.

Future work will focus on investigating adaptive mecha-

nisms to aggregate the classifier trained on feedbacks and the

one trained on delayed samples, to further improve the alert

precision in non-stationary streams.
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