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We introduce an evolving network model of credit risk contagion in the credit risk transfer (CRT) market.	emodel considers the
spillover e
ects of infected investors, behaviors of investors and regulators, emotional disturbance of investors, market noise, and
CRT network structure on credit risk contagion. We use theoretical analysis and numerical simulation to describe the in�uence
and active mechanism of the same spillover e
ects in the CRT market. We also assess the reciprocal e
ects of market noises, risk
preference of investors, and supervisor strength of �nancial market regulators on credit risk contagion. 	is model contributes
to the explicit investigation of the connection between the factors of market behavior and network structure. It also provides a
theoretical framework for considering credit risk contagion in an evolving network context, which is greatly relevant for credit risk
management.

1. Introduction

Credit risk is the most important risk in the credit risk trans-
fer (CRT) market, and one of the key issues is dealing with
credit risk contagion [1–9]. Modeling credit risk contagion in
the CRT network is an important yet challenging problem;
credit risk modeling involves examining the role of counter-
party risks [2, 4, 6, 9]. If a key investor is in �nancial distress
or default, then any investor who is economically in�uenced
by this given investor will be a
ected, including the providers
and purchasers of credit derivatives and the banks with the
investor’s credit line. 	e direct correlation between �rms
caused by credit contagion leads to further complications in
modeling the overall risk level, either portfolio or economy
wide [3, 6, 9, 10].

In the CRT market, an intricate web of credit relations
links a wide variety of counterparties in a complex system.
If a key investor is in �nancial distress, then credit rating
declines, or defaults, which will lead to credit risk contagion.
Credit risk will also produce spillover e
ects of defaults for
other investorswith indirect correlations.	e spillover e
ects

of credit risk contagion mainly come from the similarities
in assets structure and in the e
ects of some behavior
deviations of investors, including credit risk holders and
�nancial market regulators. 	us, the behavioral factors
of investors and �nancial market regulators, particularly
investor sentiments, exert important spillover e
ects of credit
risk contagion. 	e market behavioral approach recognizes
that investors are not “rational” but “boundedly rational” and
that systematic biases in their beliefs cause them to trade on
nonfundamental information called “sentiment” [11]. Several
�nancial economists also recognize that the market exhibits
mood swings. 	e link between asset valuation and investor
sentiment will soon become the subject of considerable delib-
eration among �nancial economists.	eories departing from
rational asset pricing o�en posit the in�uence of investor
sentiment [12], which leads to price �uctuation, and risk
contagion generation. A number of theoretical studies o
er
models for establishing the relationship between investor
sentiment and asset prices [12–15]. In these models, investors
are categorized into two types, namely, rational arbitrageurs
who are sentiment-free and irrational traders who are prone
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to exogenous sentiment [16]. Baker and Stein [16] �nd that
total sentiment, particularly the global component of total
sentiment, is a contrarian predictor of country-level market
returns. Baker and Wurgler [15, 17] predict that extensive
waves of sentiment will exert greater e
ects on hard-to-
arbitrage and hard-to-value stocks, which exhibit high “sen-
timent beta” [18]. 	erefore, given that sentiment in�uences
valuation, taking a position opposite to the prevailing market
sentiment can be expensive and risky. Several theoretical
studies show that investor sentiment is the most relevant fac-
tor in the decision-making domain, which primarily a
ects
an investor’s personal investment decisions [19]. Baker and
Wurgler [17] pointed out that sentiment-based mispricing
is based on the uninformed demand of several investors,
noise traders, and a limit to arbitrage. Mispricing can be
persistent given that the length of period during which
overly optimistic and pessimistic noise traders will continue
exerting buying or selling pressures is unknown. Similarly,
numerous signi�cant studies in this area are available [20–
23]. Recently, theoretical studies have found that investor
sentiment is contagious across markets [24], thus providing
clues on how investor sentiment induces the spread of risk.
	e e
ects of the behaviors of credit risk investors have been a
concern of credit risk contagion [4, 8, 9, 25–27].	is concern
is also our motivation in considering the e
ect of the risk
sentiment of credit risk investors on the evolving network of
credit risk contagion. In addition, the behaviors of regulator
and the ability of investors for risk resistance can decrease the
in�uence of credit risk contagion [8, 9, 27, 28]. 	us, we also
introduce them to analyze the e
ect of these factors on credit
risk contagion. Our study enhances the understanding of the
e
ects of behaviors of investors and regulators on credit risk
contagion.

Given the signi�cant development of complex network
theory, a number of scholars have looked for evidence of con-
tagion risk in the �nancial systemwhich results fromcomplex
credit connections. 	e most well-known contribution to
contagion analysis through direct linkages in the �nancial
system is Allen and Gale [29]. 	is work demonstrates that
the spread of contagion depends crucially on the pattern of
interconnectedness among banks through a network struc-
ture involving four banks. Since the publication of this work,
numerous scholars have applied the complex network theory
to model the complex structure of the �nancial system and
to analyze risk contagion in the �nancial system, particularly
in banking systems. Several theoretical studies have found
that the network structure is crucial to credit risk contagion
[10, 30] (Chen et al., 2012), including random [31] (Chen et
al., 2012) and tiered structures [30, 32–36]. 	ese theoreti-
cal studies examine risk contagion in banking systems via
direct linkages among banks, whereas others analyze risk
contagion via indirect linkages [30, 37–41] (Jorion andZhang,
2009). 	e aforementioned studies show that the network
structure can signi�cantly a
ect credit risk contagion. In
our study, we consider the e
ect of the characteristics of
the CRT network structure and behaviors of investors and
regulators on credit risk contagion. Our objective is to under-
stand the spillover e
ects of infected investors, behaviors of
investors and regulators, emotional disturbance of investors,

market noise, and CRT network structure on credit risk
contagion.

	e rest of this paper is organized as follows. Section 2
presents some assumptions and notations for the following
investigation. Section 3 de�nes the contagious process and
feature of credit risk and builds an evolving network model
of credit risk contagion in the CRT market. Section 4 uses
stochastic dominance theory to theoretically study the e
ects
of risk spillover, participants’ behavioral factors, and the
CRT network structure factors. Section 5 uses numerical
simulations to deeply analyze and verify the e
ects of the
aforementioned factors on credit risk contagion. Finally,
Section 6 summarizes with some concluding remarks.

2. Notations and Assumptions

	is study considers a network of credit risk contagion that
evolves through the spillover e
ects of infected investors
and behavioral interventions of investors and regulators.
To model the evolving mechanism of credit risk contagion
during credit risk transfer, we make the following assump-
tions. We assume that each node represents one individual
investor engaged in the dealing of credit derivatives in the
CRTmarket, and these investors are connected to each other.
	us, investors of the CRT market can use social network
for representation. We also assume that the number of
individuals � is limited in the evolving network, � =
1, 2, . . . , �. In order to simulate the actual situation of the
CRTmarket, we further assume that the number of the direct
connection edges of an investorwith other investors is not less
than 2, namely, the degree � ≥ 2 of nodes in the CRT network
of credit risk contagion.

In addition, we mark the main variables in this paper and
describe their economic and �nancial meanings. 	us, the
notation used in this paper has been summarized as follows:

(i) �� is the proportion of nodes infected with credit risk
by other nodes in the cluster with the degree of nodes
equal to �, and �� ∈ [0, 1].

(ii) � is the degree of the e
ect of market noises on
investors. It is used to depict the in�uencemechanism
of noise attribute on credit risk contagion when
market noise attribute is consistent with the emotion,
aspirations, or demand of the people. In addition, � ∈
[0, 1].

(iii) 	 is themalicious attack strength of some institutional
investors. 	 indicates that some institutional investors
maliciously trigger and strengthen the contagion
e
ects of credit risk by distorting market information
and making use of resource advantage. In addition,
	 ∈ [0, 1].

(iv) 
� is the inherent risk preference level of nodes with
the degree of nodes equal to �, and 
� ∈ [0, 1].

(v) �� is the resistance of nodes for credit risk contagion.
�� re�ects the risk resistance level and ability of
investors under the state of credit risk contagion, and
�� ∈ [0, 1].
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(vi) � is the supervisor strength of �nancial market regu-
lators, and � ∈ [0, 1].

(vii) 
 is the initial �tness of credit risk contagion in the
network. 
 is chosen from a �tness distribution �(
).
It mainly refers to the strength of the impact of credit
default behavior of one or a class of investors on
others. In other words, 
 indicates the contagious
capacity of credit risk in the CRT network, and 
 ∈
[0, 1].

(viii) �� is the emotional disturbance probability of nodes
equal to � for credit risk contagion, and 
 > �� ≥ 0,
where ���/�	 > 0, �2��/�	2 > 0.

(ix) � is the spillover e
ect of credit risk contagion of
infected nodes. � describes the degree of the e
ect of
credit risk of infected investors on other investors that
are not directly connected to the infected investors.
However, a similar investment assets structure exists
between the infected investors and the other investors
that are not directly connected to the infected

investors, where ��/��� > 0, �2�/���2 < 0, ��/�	 > 0,
�2�/�	2 > 0. And � ∈ [0, 1].

(x) � is the probability of infected nodes by credit risk to
restore the health status. � indicates the o�cial rescue
strength, and � ∈ [0, 1].

3. Definition of the Evolving Network Model
of Credit Risk Contagion

We begin by formally de�ning a dynamic evolving network
model in the CRT market that considers the spillover e
ects
of infected investors, behaviors, and emotional disturbance of
investors and regulators, market noise, and the CRT network
structure on credit risk contagion. Let �(�) represent the
probability distribution of nodes with the degree of nodes
equal to � in the dynamic evolving network.	en, the average
degree ⟨�⟩ of the dynamic evolving network is as follows:

⟨�⟩ = ∑
�
�� (�) , (1)

where 0 < � < �.
In the CRT network, the initial �tness 
 of credit risk

contagion mainly depends on the average degree ⟨�⟩ of the
CRT network, the probability distribution �(�) of nodes that
the degree of nodes is equal to �, and the proportion �� of
infected nodes with credit risk in the cluster with the degree
of nodes that is equal to �. 	us, the initial �tness 
 of credit
risk contagion in the dynamic evolving network is as follows:


 = ∑� ���� (�)
⟨�⟩ . (2)

In the actual �nancial market, investors are not rational
but boundedly rational and systematic biases in their beliefs
cause them to trade on nonfundamental information [11].
	is will lead to credit asset price �uctuation and induce
credit risk contagion generation. In fact, many theoretical
studies have found that investor behaviors are contagious

across markets [24, 42–44], thus providing clues on how
investor behavior induces the spread of risk. In the CRT
market, the interactions of credit behavior among investors
were more signi�cant [4, 9, 25–27]. Certainly, the regulators’
behaviors can restrain irrational behaviors of investors but
can also increase the irrational behavior of investors and
accelerate its contagion [9, 45–48]. Some literatures of behav-
ioral �nance and psychology also show that market noise can
also further strengthen the irrational behavior of investors
and accelerate its contagion (Aase et al., 2000; Barber and
Odean, 2000; Shleifer, 2000; Tumarkin and Whitelaw, 2001;
Barber et al., 2009; Gúegan, 2009) [8, 28]. In addition,
investors’ behaviors can also a
ect regulators’ behaviors and
decisions. 	us, in the social network, for investors with
degree of nodes equal to �, with the increase in the risk
preference level 
� of investors, the contagion e
ect of credit
risk will be intensi�ed in the CRTnetwork, and the emotional
disturbance probability of investors and the spillover e
ect
of credit risk contagion of infected nodes will also increase.
However, the regulators’ behaviors and the investors’ ability
of risk resistance can change the evolution trend. In other
words, with the increasing supervision strength of �nancial
market regulators and the investors’ ability of risk resistance,
the emotional disturbance probability of nodes and the
spillover e
ect of credit risk contagion of infected nodes can
also be reduced. 	us, we assume the �tness 
� of credit
risk contagion with the degree of nodes equal to �, the
e
ect degree 	� of the malicious attack of some institutional
investors on other investors with the degree of nodes equal
to �, and the spillover e
ect �� of credit risk contagion of
infected nodes with the degree of nodes equal to � could been
written as follows:


� = 
 + ��(1−��
2)(ln(�3+1)+��)/(1+�2)

	� = 	(ln(�3+1)+��)/(��2+�2)

�� = �(1−��2)[ln(�3+1)+��]/(1+�2),

(3)

where 
� depicts the contagion e
ect of infected investors
on healthy investors and represents the change in the aver-
age density of infected investors in the CRT network. 	�
depicts some institutional investors who maliciously trigger
or intensify the contagion e
ect of credit risk by distorting
market information and making use of resource advantage.
�� depicts the e
ect degree of the default behavior of infected
nodes with the degree equal to � on the other nodes that
are not directly connected to infected nodes.	eir parameter
values are independent of �.

In addition, for the infected nodes by credit risk, the
probability to restore the health status is opposite to the
mechanism above. 	us, we assume that the probability ��
of nodes infected with credit risk by other nodes to restore
the health status can be written as follows:

�� = �(��2+�2)/(ln(�3+1)+��), (4)

where �� depicts the evolution behaviors that infected
investors restored to health status by the e
ect of their
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own internal and external factors. Its parameter value is
independent of �.

In a recent series of literatures, the mean-�eld approach
as a basic tool of dealing with the Markov process has
been used to deal with the in�uence of di
erent things
[27, 28, 49–52]. It can convert a multidimensional problem
into a low dimensional problem and is also considered as
a very important theoretical analysis method in statistical
physics. Eboli [53] shows that the infection mechanism in
the �nancial system is similar to the physical phenomenon
of network �ow. Lopez [54] shows that this kind of problem
can been described using the mean-�eld method. Based on

the existing literatures, we adopt the mean-�eld approach to
describe the Markov process of credit risk contagion in the
CRT network. 	us, we represent the model of credit risk
contagion with the spillover e
ects of infected investors and
behavioral intervention of investors and regulators as follows:

���
�� = 	� (1 − ��) [�
� + ��] − ����. (5)

For the contagion systemof credit risk, represented by (5),
let ���/�� = 0, and we will get the equilibrium point of the
contagion system of credit risk as follows:

�� =
	(ln(�3+1)+��)/(��2+�2) [� (
 + ��(1−��

2)(ln(�3+1)+��)/(1+�2)) + �(1−��2)[ln(�3+1)+��]/(1+�2)]
	(ln(�3+1)+��)/(��2+�2) [�(1−��2)[ln(�3+1)+��]/(1+�2) + � (
 + ��(1−��

2)(ln(�3+1)+��)/(1+�2))] + �(��2+�2)/(ln(�3+1)+��)
. (6)

Equation (6) is the equilibrium probability of the con-
tagion system of credit risk, which describes the proportion
of infected investors with credit risk by other investors with
the degree of nodes equal to � in the CRT network. Equation
(6) describes the mechanism of the e
ect degree � of market
noises, the risk preference level 
� of investors, the risk
resistance ability �� of investors, the supervision strength � of
�nancial market regulators, the initial �tness 
 of credit

risk contagion, the emotional disturbance probability �� of
investor, the spillover e
ect � of credit risk contagion of
infected nodes, the probability � of infected nodes with credit
risk by other nodes restored to the health status, and the
degree � of nodes on the proportion �� of infected nodes
under the equilibrium status of the credit risk contagion
system. 	en, incorporating (6) into (2), we can get the
following equation.


∗ = 1
⟨�⟩∑�

�� (�) [� (
 + ��(1−��
2)(ln(�3+1)+��)/(1+�2)) + �(1−��2)[ln(�3+1)+��]/(1+�2)] 	(ln(�3+1)+��)/(��2+�2)

	(ln(�3+1)+��)/(��2+�2) [�(1−��2)[ln(�3+1)+��]/(1+�2) + � (
 + ��(1−��
2)(ln(�3+1)+��)/(1+�2))] + �(��2+�2)/(ln(�3+1)+��)

. (7)

	us, we derive the �tness 
∗ of credit risk contagion as
(7) under the equilibrium status of the credit risk contagion
system. Equation (7) describes the following factors under the
equilibrium status of credit risk contagion system, namely, the
e
ect mechanism of the e
ect degree � of market noises, the
risk preference level 
� of investors, the risk resistance ability
�� of investors, the supervision strength � of �nancial market
regulators, the �tness 
 of credit risk contagion, the emotional
disturbance probability �� of investor, the spillover e
ect � of
credit risk contagion of infected nodes, the probability � of
nodes infected with credit risk by other nodes restored to the
health status, the probability distribution �(�) of nodes that
the degree of nodes is equal to �, and the average degree ⟨�⟩
of the dynamic evolving network on the �tness 
∗ of credit
risk contagion in the CRT network.

4. Evolving Network Analysis of Credit
Risk Contagion with Market Participants’
Behavioral Factors and Network Structure
in the CRT Market

We provide a theoretical analysis of the evolving network of
credit risk contagion to study the e
ect of the e
ect degree

� of market noises, the risk preference level 
� of investors,
the resistance �� of investors for credit risk contagion,
the supervision strength � of �nancial market regulators,
the initial �tness 
 of credit risk contagion, the emotional
disturbance probability �� of investor, the spillover e
ect � of
credit risk contagion of infected nodes, the probability � of
nodes infected with credit risk by other nodes restored to the
health status, the probability distribution �(�) of nodes that
the degree of nodes is equal to �, and the average degree ⟨�⟩
of the dynamic evolving network on the evolution behaviors
of credit risk contagion in the CRT market.

4.1. In
uence Mechanism of Market Participants’ Behavioral

Factors on Credit Risk Contagion

�eorem 1. For the evolving network with degree equal
to %, under the equilibrium status of credit risk conta-
gion system, the evolving behavior of credit risk contagion
exists with the following properties. (1) If � = 0 and

	(ln(�3+1)+��)/(��2+�2)/�(��2+�2)/(ln(�3+1)+��) ≤ ⟨�⟩/⟨�2⟩, then
the credit risk contagion system exists only at the equi-
librium point 
∗, and 
∗ = 0. (2) If � = 0 and

	(ln(�3+1)+��)/(��2+�2)/�(��2+�2)/(ln(�3+1)+��) > ⟨�⟩/⟨�2⟩, then the
credit risk contagion system exists at two equilibrium points 
∗1
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and 
∗2 , and 
∗1 = 0, 
∗2 > 0. (3) If � > 0, then the credit risk
contagion system exists only at the equilibrium point 
∗, and

∗ > 0.

Proof. Let

' (
) = ∑
�

�� (�) [� (
 + ��(1−��
2)(ln(�3+1)+��)/(1+�2)) + �(1−��2)[ln(�3+1)+��]/(1+�2)] 	(ln(�3+1)+��)/(��2+�2)

⟨�⟩ [	(ln(�3+1)+��)/(��2+�2) [�(1−��2)[ln(�3+1)+��]/(1+�2) + � (
 + ��(1−��
2)(ln(�3+1)+��)/(1+�2))] + �(��2+�2)/(ln(�3+1)+��)]

. (8)

Let * = (1 − 
�2)(ln(�3 + 1) + ��)/(1 + �2), - = (ln(�3 +
1) + ��)/(
�2 + �2). And * > 0 and - > 0, then (8) can be
written as

' (
) = ∑
�

�� (�) [� (
 + ���) + ���] 	�	

⟨�⟩ [	�	 [��� + � (
 + ���)] + ��1/	]
. (9)

We can get '
(
) = ∑�(�2�(�)	�	��1/	/⟨�⟩[	�	[��� +
�(
 + ���)] + ��1/	]2) > 0; thus '(
) is an increas-
ing function of 
. And we can also get '

(
) =
−∑�(2�3�(�)	�2	��1/	/⟨�⟩[	�	[���+�(
+���)]+��1/	]3) <
0. 	us '(
) is a concave function of 
.

According to the above assumptions 
 > �� ≥ 0, we can
get '(0) = ∑�(��(�)���	�	/⟨�⟩(	�	��� + ��1/	)), '(1) =
∑�(��(�)[�(1 + ���) + ���]	�	/⟨�⟩[	�	[��� + �(1 + ���)] +
��1/	]) < ∑�(��(�)[�(1 + ���) + ���]	�	/⟨�⟩[��� + �(1 +
���)]	�	) = 1. 	us when � = 0, the credit risk contagion
system has at least one equilibrium point 
∗ = 0, but nomore
than two.

According to '
(
) = ∑�(�2�(�)	�	��1/	/⟨�⟩[	�	[��� +
�(
 + ���)] + ��1/	]2), we can get '
(
 = 0)|�=0 =
∑�(�2�(�)	�/⟨�⟩��) = (	�/��)(⟨�2⟩/⟨�⟩). 	us when � =
0 and 	(ln(�3+1)+��)/(��2+�2)/�(��2+�2)/(ln(�3+1)+��) ≤ ⟨�⟩/⟨�2⟩,
'
(
 = 0) ≤ 1, which means that the credit risk contagion
system exists only at the equilibrium point 
∗, and 
∗ = 0.

In the same way, when � = 0 and

	(ln(�3+1)+��)/(��2+�2)/�(��2+�2)/(ln(�3+1)+��) > ⟨�⟩/⟨�2⟩, '
(
 =
0) > 1. 	us the credit risk contagion system exists at two
equilibrium points 
∗1 and 
∗2 , and 
∗1 = 0, 
∗2 > 0.

According to the above, for� > 0, we can get'(
 = 0) > 0
and'(
 = 1) < 1.	us the credit risk contagion system exists
only at equilibrium point 
∗, and 
∗ > 0.

Corollary 2. With increasing market noises and risk prefer-
ences of investors, the contagion e�ect of credit risk and its
spillover e�ect will be intensi�ed, but the e�ectiveness of market
supervision and o
cial rescue will be crippled.

Proof. According to (3) and (4), we can get ���/�� > 0, �	�/
�� > 0, ���/�� > 0, ���/�� < 0. And ���/�
 > 0, �	�/
�
 > 0, ���/�
 > 0, ���/�
 < 0. 	us we can get ���/�� > 0,
���/�
 > 0, �'(
)/�� > 0, and �'(
)/�
 > 0. 	us
Corollary 2 is true.

Corollary 3. With increasing supervision strength of �nancial
market regulators, the contagion e�ect of credit risk and its
spillover e�ect, the e�ect degree of market noises, and the

malicious attack strength of institutional investors will be crip-
pled. However, the e�ectiveness of the market supervision and
o
cial rescue will be enhanced, such that the recovery probabil-
ity of investors who are from the infected status to health status
will be enhanced.

Proof. In the same way as Corollary 2, Corollary 3 can be
proven.

Conclusion 4. When the degree of the similar investment
asset structure among investors in the CRT market is lower,
namely, the spillover e
ect � = 0 of credit risk contagion, and
if the o�cial rescue strength and the supervision strength of
�nancialmarket regulators are higher, then the e
ect of credit
risk contagion can be quickly controlled, and credit risk will
not be contagious and di
usive. However, if the o�cial rescue
strength and the supervision strength of �nancial market reg-
ulators are lower, then the contagious and di
usion of credit
risk will emerge. When the degree of the similar investment
asset structure among investors in the CRT market is higher,
namely, the spillover e
ect� > 0 of credit risk contagion, then
the contagion e
ect of credit risk will emerge and be di�cult
to control.

4.2. In
uence Mechanism of Network Structure on Credit Risk
Contagion. In the above, we have analyzed and studied the
in�uence mechanism of investors’ behavior and �nancial
market regulators’ behavior on credit risk contagion in the
CRT market. We obtained meaningful conclusions for con-
trolling the contagion e
ects of credit risk. However, the dif-
ferent network structures will cause di
erent market behav-
iors. Let �(�) and �
(�) represent the degree distribution of
two di
erent CRT networks. According to network stochastic
dominance theory (e.g., [55–58]), if �(�) strict �rst order
stochastically dominates �
(�), it is equivalent to having
∑� �(�)�(�) > ∑� �
(�)�(�) for all monotone increasing
function �(�). If �(�) strict second order stochastically dom-
inates �
(�), then it is equivalent to having ∑� �(�)�(�) >
∑� �
(�)�(�) for all convex function �(�). In addition,
according to the network stochastic dominance theory, if
�(�) strict �rst order stochastically dominates �
(�), then
the network average degree of the degree distribution �(�)
is greater than the network average degree of the degree
distribution �
(�). If �(�) strict second order stochastically
dominates�
(�), then the heterogeneity of the network of the
degree distribution �(�) is higher than the heterogeneity of
the network of the degree distribution�
(�).	us, we assume
the contagion �tness 
∗ > 0 and the proportion �∗ > 0 of
infected investors are at the equilibrium point of the system
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of credit risk contagion in the CRT network, then we can
get the following theorems by using the network stochastic
dominance theory in this work.

�eorem 5. CRT networks A and B have degree distributions
equal to �(�) and �
(�), respectively. If �(�) strict �rst order

stochastically dominates �
(�), then 
∗� > 
∗	 in the same
conditions.

Proof. We assume 	eorem 5 is untenable, then 
∗� ≤ 
∗	 is
tenable.

Let

� (�) =
� [� (
 + ��(1−��

2)(ln(�3+1)+��)/(1+�2)) + �(1−��2)[ln(�3+1)+��]/(1+�2)] 	(ln(�3+1)+��)/(��2+�2)

⟨�⟩ [	(ln(�3+1)+��)/(��2+�2) [�(1−��2)[ln(�3+1)+��]/(1+�2) + � (
 + ��(1−��
2)(ln(�3+1)+��)/(1+�2))] + �(��2+�2)/(ln(�3+1)+��)]

. (10)

Namely,

� (�) = � (�
� + ��) 	�
⟨�⟩ [	� (�
� + ��) + ��]

. (11)

	en, we can obtain ��(�)/�� = ((�
� + ��)2	�2 +
	���(2�
� + ��))/⟨�⟩[	�(�
� + ��) + ��]2 > 0, and

�2�(�)/��2 = 2
�	���(	��� + ��)/⟨�⟩[	�(�
� + ��) + ��]3 >
0. 	us �(�) is a monotone increasing convex function for
all � ≥ 2. According to the network stochastic dominance
theory, ∑� �(�)�(�) > ∑� �
(�)�(�) when �(�) strict �rst
order stochastically dominates �
(�), namely, for all 
 > 0
having

'� (
) > '�� (
) . (12)

According to 	eorem 1, '�(
) ∈ [0, 1). We assume 
∗�
and 
∗	 are the equilibrium point of the system of credit risk
contagion in the CRT networks * and -, and 
∗� > 0, 
∗	 > 0,
thus for all 
 ∈ (
∗�, 1] having 
 ≥ '�(
). According to the

assumption 
∗	 ≥ 
∗� is tenable, we can get


∗	 ≥ '� (
∗	) . (13)

According to (12), we can get


∗	 ≥ '� (
∗	) > '
� (
∗	) . (14)

Namely,


∗	 > '
� (
∗	) . (15)

However, 
∗	 = '
�(
∗	) for 
∗	 > 0 is the equilibrium point

of the system of credit risk contagion in the CRT network -.
	us the assumption 
∗	 ≥ 
∗� is untenable; namely, 	eo-
rem 5 is tenable.

�eorem 6. CRT networks * and - have degree distributions
equal to �(�) and �
(�), respectively. If �(�) strict �rst order
stochastically dominates �
(�), then �∗� > �∗	 in the same
conditions.

Proof. According to (6), we can derive the proportion �� of
infected investors that the degree of investors is equal to � as
follows:

�� =
(�
� + ��) 	�

	� (�
� + ��) + ��
, (16)

where 
� = 
 + ��(1−��
2)(ln(�3+1)+��)/(1+�2), 	� =

	(ln(�3+1)+��)/(��2+�2), �� = �(1−��2)[ln(�3+1)+��]/(1+�2), and �� =
�(��2+�2)/(ln(�3+1)+��).

	en we can obtain ���/�� = 
�	���/[	�(�
� + ��) +
��]2 > 0. 	us �� is a monotone increasing function for all
� ≥ 2. Since �(�) strict �rst order stochastically dominates
�
(�), then we can derive

∑
�
�	�
∗� (�) > ∑

�
�	�
∗�
 (�) . (17)

In addition, due to ���/�
 = �	���/[	�(�
�+��)+��]2 >
0, thus �� is a monotone increasing function for all 
 > 0.
According to 	eorem 5, if �(�) strict �rst order stochasti-
cally dominates �
(�), then 
∗� > 
∗	. 	us for all � ≥ 2, we
can get

���
∗ > �	�

∗. (18)

Equation (18) is equivalent to having ∑� ���
∗ > ∑� �	�

∗

for all � ≥ 2. 	us we can get

∑
�
���
∗� (�) > ∑

�
�	�
∗� (�) . (19)

	us we can obtain

∑
�
���
∗� (�) > ∑

�
�	�
∗�
 (�) . (20)

Namely, ��∗ > �	∗. 	us	eorem 6 is tenable.

Conclusion 7. Under the same conditions of investor behavior
and market supervision, the greater the average degree of
CRT network is, the higher the contagion �tness of credit
risk and the proportion of infected investors in the CRT
network. In other words, the more dense the CRT network is,
the higher the similarities are in terms of investment asset
structure, the convergence e
ect of investor behaviors, and
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the complexity of market regulation. 	us, the more dense
the CRT network is, the greater the in�uence of the investors’
irrational behaviors, the lower the e�ciency of the market
regulation, and the more signi�cant the contagion e
ect of
credit risk. In addition, the greater the heterogeneity of the
CRTnetwork, the higher the contagion �tness of credit risk in
the CRT network.

�eorem 8. CRT networks A and B have degree dis-
tributions equal to �(�) and �
(�), respectively. If �(�)
strict second order stochastically dominates �
(�), then
3 (0 < 3 < 1) is obtained as follows. (1) When ⟨�⟩/
⟨�2⟩ < 	(ln(�3+1)+��)/(��2+�2)/�(��2+�2)/(ln(�3+1)+��) < 3, and
�(1−��2)[ln(�3+1)+��]/(1+�2) → 0, then �∗� > �∗	 for all � ≥
2. (2) When ⟨�⟩/⟨�2⟩ < 3 < 	(ln(�3+1)+��)/(��2+�2)/
�(��2+�2)/(ln(�3+1)+��), then �∗� < �∗	 for all � ≥ 2.

Proof. According to (16), we can get

(	��� + ��) ��� (�) = 
�	��� (�) + 	���� (�)
− 
�	����� (�) .

(21)

In (16) and (21), we know the variables 	�, ��, ��, and

� are not functions of �; that is, these parameter values are
independent of �. 	us, we can further derive

(	��� + ��)∑
�
��� (�)

= 
�	�∑
�
�� (�) + 	��� − 
�	�∑

�
���� (�) .

(22)

Putting (1) and (2) into (22), we can obtain

� = ⟨�⟩ 	� (
� − 

�) + 	���
(	��� + ��)

. (23)

	us we can obtain ��/�
 as follows:

��
�
 =

⟨�⟩ 	� (1 − 2
 − ��(1−��
2)(ln(�3+1)+��)/(1+�2))

(	��� + ��)
. (24)

	us � is an increasing function of 
 for all 
 < (1 −
��(1−��

2)(ln(�3+1)+��)/(1+�2))/2. And � is a decreasing function of


 for all 
 > (1 − ��(1−��
2)(ln(�3+1)+��)/(1+�2))/2.

According to (10) ��(�)/�� = ((�
� + ��)2	�2 +
	���(2�
� + ��))/⟨�⟩[	�(�
� + ��) + ��]2 > 0, and �2�(�)/
��2 = 2
�	���(	��� + ��)/⟨�⟩[	�(�
� + ��) + ��]3 > 0. 	us
�(�) is a monotone increasing convex function for all � ≥ 2.
According to the network stochastic dominance theory, if
�(�) strict second order stochastically dominates �
(�), then
it is equivalent to having ∑� �(�)�(�) > ∑� �
(�)�(�) for all
convex function �(�). According to 	eorem 5, we can get

∗� > 
∗	.

According to	eorem 1, we know that with 3 (0 < 3 < 1),
when ⟨�⟩/⟨�2⟩ < 	(ln(�3+1)+��)/(��2+�2)/�(��2+�2)/(ln(�3+1)+��) <
3, we can get 
 < (1 − ��(1−��

2)(ln(�3+1)+��)/(1+�2))/2. And when

⟨�⟩/⟨�2⟩ < 3 < 	(ln(�3+1)+��)/(��2+�2)/�(��2+�2)/(ln(�3+1)+��),
we can get 
 > (1 − ��(1−��

2)(ln(�3+1)+��)/(1+�2))/2. With

3 (0 < 3 < 1), when ⟨�⟩/⟨�2⟩ < 	(ln(�3+1)+��)/(��2+�2)/
�(��2+�2)/(ln(�3+1)+��) < 3, � is an increasing function of


. When ⟨�⟩/⟨�2⟩ < 3 < 	(ln(�3+1)+��)/(��2+�2)/
�(��2+�2)/(ln(�3+1)+��), � is a decreasing function of 
. 	us we
can get that 	eorem 8 is tenable.

Conclusion 9. In the case of 	(ln(�3+1)+��)/(��2+�2)/
�(��2+�2)/(ln(�3+1)+��) > ⟨�⟩/⟨�2⟩, the e
ects of network
heterogeneity on the contagion scale of credit risk depend
on the interaction of the e
ect degree � of market noises,
the risk preference level 
� of investors, the resistance �� of
investors for credit risk contagion, the supervision strength �
of �nancial market regulators, the spillover e
ect � of credit
risk contagion of infected nodes, and the probability � of
nodes infected with credit risk by other nodes restored to the
health status. First, decreasing the similarity of investment
asset structure, the contagion scale of credit risk will be
reduced. However, network heterogeneity promotes the
contagion level and scale of credit risk, whereas network
homogeneity can decrease the contagion level and scale
of credit risk. Second, the malicious attack and market
noises can promote the contagion level and scale of credit
risk.

5. Simulation Analysis of the Evolving
Network Model of Credit Risk Contagion

Given the absence of a large amount of time series data
for empirical tests, numerical simulation analysis is the
most e
ective testing method. Such analysis is conducted
by considering the di
erent values of the parameters in
the evolving network model of credit risk contagion. 	e
following are assumed: the number of investors � = 10000
in the CRT market. We choose the WS small world network
and the BA network to conduct numerical simulation, where
the probability 5 = 0.01 of the long distance connection of
investors in the WS small world network and the degree

distributions in the BA network are �(�) = 262/�3. 	us we
can �nd the e
ects of the e
ect degree � of market noises,
the risk preference level 
� of investors, the resistance �� of
investors for credit risk contagion, the supervision strength
� of �nancial market regulators, the initial �tness 
 of credit
risk contagion, the probability �� of a randomly chosen old
node being deleted from the network that degree of nodes is
equal to �, the spillover e
ect � of credit risk contagion of
infected investors, the probability � of infected investors with
credit risk by other nodes restored to the health status, the
degree � of investors, the average degree ⟨�⟩ of the dynamic
evolving network, and the network structure of credit risk
contagion on credit risk contagion in the CRT market.
Furthermore, with investor behavior and the �nancialmarket
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 = 0.2, � = 0.3,
�� = 0.1

WS small world network for ⟨k⟩ = 5

BA network for ⟨k⟩ = 5

WS small world network for ⟨k⟩ = 10

BA network for ⟨k⟩ = 10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1


∗

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10



(d) � = 0.3, �� = 0.6, � = 0.4, �� = 0.5, � = 0.6, � = 0.12, � = 0.3,
�� = 0.1

Figure 1: 	e evolution function of the equilibrium point 
∗ of credit risk contagion system as function in the initial �tness 
 of credit risk
contagion, the emotional disturbance probability �� of investor, the spillover e
ect � of credit risk contagion of infected investor, and the
malicious attack strength 	 of some institutional investors under the di
erent network structure.

regulators’ behaviors, we analyze the evolving properties of
the proportion of infected investors �, the global �tness 

of credit risk of the contagion network, and the individual
�tness 
� of infected investors that the degree of nodes is
equal to �. In the numerical simulations, we initialize the
contagion network with 60 = 10 nodes being infected with
credit risk.

In Figure 1, the equilibriumpoint 
∗ of the credit risk con-
tagion system is a concave function of the initial �tness 
 of
credit risk contagion, the emotional disturbance probability
�� of investor, the spillover e
ect � of credit risk contagion of
infected investor, and the malicious attack strength 	 of some
institutional investors. 	e malicious attack strength 	 of
some institutional investors is more signi�cant. 	e reason is
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that the malicious attack of some institutional investors cause
market information confusion. It brings about irrational
behavior among the majority of small- and medium-sized
investors. It also shows that the disturbance e
ect of private
information ismore signi�cant on credit risk contagion in the
semi-strong validmarket. Second, Figure 1 also shows that the
contagion rate has a signi�cant positive correlation with net-
work density and has a signi�cant negative correlation with
the network heterogeneity. 	e reason is that the more dense
the credit network is, the more signi�cant the interaction
between counterparties is. However, network heterogeneity
hampers the interaction between investors. 	us the higher
the network heterogeneity is, the more unfavorable it is
to the credit risk contagion in the CRT market. In the
same case of network density, the e
ect of the network
heterogeneity is the most signi�cant on credit risk contagion
by inducing in the spillover e
ect of credit risk contagion
of infected investor. 	is also con�rms Conclusions 4 and
7.

In fact, credit risk contagion is a complex process in the
CRTmarket.	e process is mixed with complex interactions
of the behaviors of counterparties and �nancial market
regulators, and market noises. 	is adds to the probability
of the uncertainty, unpredictability, and uncontrollability of
credit risk contagion. Figure 2 shows the following factors
under the di
erent network structure, namely, the interaction
mechanism of the e
ect degree � of market noises, the
risk preference level 
� of investors, and the supervision
strength � of �nancial market regulators on the equilibrium
point 
∗ of the credit risk contagion system. First, Figure 1
shows the di
erential e
ect of the network heterogeneity.
	e lower the network heterogeneity, the more signi�cant
the reciprocal e
ects of the e
ect degree � of market noises,
the risk preference level 
� of investors, and the supervision
strength � of �nancial market regulators on credit risk
contagion. Second, market noises and the risk preference of
investors have a strengthening e
ect, and the supervision
behaviors of �nancial market regulators exert weakening
e
ects. Figures 2(a) and 2(b) show the mutual reinforcing

e
ects between market noises and the risk preference of
investors. Namely, with increasing market noises, the e
ects
of the risk preference of investors on the infectious rate of
credit risk will be promoted. With increasing risk preference
of investors, the e
ects of the market noises on the infectious
rate of credit risk will be also promoted. In Figures 2(c),
2(d), 2(e), and 2(f), we found the supervision behaviors
of �nancial market regulators will reduce the e
ect of
the market noises and the risk preference of investors on
credit risk contagion. With increasing supervision strength
� of �nancial market regulators, the e
ects of the market
noises and the risk preference of investors on the infectious
rate of credit risk will be reduced. 	us, the behaviors
of counterparties and the market noises can promote the
contagious rate of credit risk and have the mutual reinforcing
e
ects on the contagious speed of credit risk in the CRT
market. However, the supervision behaviors of �nancial
market regulators will weaken the e
ects of the external
disturbance factors and reduce the contagious speed of credit

risk in the CRT market. 	is con�rms Corollaries 2 and
3.

Figures 3 and 4 depict the e
ect mechanism of the
initial contagious �tness of credit risk, the spillover e
ect
of credit risk contagion of infected investor, the emotional
disturbance probability of investor, the malicious attack
strength of institutional investors, and the o�cial rescue
strength on the contagious scale of the credit risk in the
CRT market under the di
erent network structures. First,
Figures 3 and 4 show that the contagious scale of credit risk
has a signi�cant positive correlation with network density.
	e sparser the CRT network, the weaker the e
ect of
the CRT network heterogeneity on the contagious scale of
credit risk. However, with increasing average degree of the
CRT network, the e
ect of the CRT network heterogeneity
on the contagious scale of credit risk will be signi�cantly
promoted. When the average degree of the CRT network is
greater than a certain threshold, the higher the CRT network
heterogeneity, the greater the contagious scale of credit risk.
Second, Figure 4(b) shows that the o�cial market rescue will
restrain the contagious scale of credit risk. With increasing
o�cial rescue strength, the contagious scale of credit risk
will be reduced. On the contrary, with increasing network
density, the e�ciency of the o�cial market rescue will be
reduced. When the average degree of the CRT network is
greater than a certain threshold, the higher the CRT network
heterogeneity, the lower the e�ciency of the o�cial market
rescue.

Figure 5 depicts the e
ects of the risk preference of
investors, the e
ect degree of market noises, the supervisor
strength of �nancialmarket regulators, and the risk resistance
ability of investors on credit risk contagion. Figure 5(a) shows
that when the risk preference of investors is in�nitesimally
small, credit risk contagion will be controlled, and the
contagious scale of credit risk will be also in�nitesimally
small. With increasing risk preference level 
� of investors,
credit risk contagion presents the concavity evolution of
monotone increasing. However, when the risk preference
of investors is greater than a certain threshold, credit risk
contagion presents the convexity evolution of monotone
increasing. Figure 5(b) shows that when the market noise
is smaller than a certain threshold, credit risk contagion
presents the concavity evolution of monotone increasing
along with the increasing of the e
ect degree of market
noises. In contrast, when the market noise is greater than
the threshold, credit risk contagion presents the convexity
evolution of monotone increasing along with the increasing
of the e
ect degree of market noises. In addition, Figures
5(a) and 5(b) also depict, with increasing network density,
the contagion e
ect of credit risk which is ampli�ed and
the e
ects of the CRT network heterogeneity which will
be signi�cantly promoted. When the average degree of the
CRT network is greater than a certain threshold, the higher
the CRT network heterogeneity, the more signi�cant the
e
ects of the risk preference of investors and the market
noises on credit risk contagion. Figures 5(c) and 5(d) depict
the inhibiting e
ect of the supervisor strength of �nancial
market regulators and the risk resistance ability of investors
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(b) BA network for ⟨�⟩ = 5

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1

k


0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1


∗

(c) WS small world network for ⟨�⟩ = 5
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(e) WS small world network for ⟨�⟩ = 5
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(f) BA network for ⟨�⟩ = 5

Figure 2: 	e in�uencing mechanism of the interaction among the e
ect degree � of market noises, the risk preference level 
� of investors,
and the supervision strength � of �nancial market regulators on the equilibrium point 
∗ of the credit risk contagion system under the
di
erent network structure. (a) and (b) for � = 0.4, � = 0.5, 
 = 0.6, � = 0.3, 	 = 0.2, � = 0.3, �� = 0.1; (c) and (d) for � = 0.3, � = 0.5, 
 = 0.6,
� = 0.3, 	 = 0.2, � = 0.3, �� = 0.1; (e) and (f) for 
� = 0.6, � = 0.5, 
 = 0.6, � = 0.3, 	 = 0.2, � = 0.3, �� = 0.1.
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Figure 3: 	e evolution function of the contagious scale � of credit risk as function in the initial �tness 
 of credit risk contagion, the
spillover e
ect � of credit risk contagion of infected investor, and the emotional disturbance probability �� of investor under the di
erent
network structure. (a) for � = 0.3, 
� = 0.6, � = 0.4, � = 0.5, � = 0.12, 	 = 0.2, � = 0.3, �� = 0.1; (b) for � = 0.3, 
� = 0.6, � = 0.4, � = 0.5,

 = 0.6, 	 = 0.2, � = 0.3, �� = 0.1; (c) for � = 0.3, 
� = 0.6, � = 0.4, � = 0.5, 
 = 0.6, � = 0.12, 	 = 0.2, � = 0.3.

on credit risk contagion. With increasing network density,
the inhibiting e
ect of the supervision of �nancial market
regulators and the risk resistance ability of investors on credit
risk contagion will be reduced. When the average degree
of the CRT network is greater than a certain threshold, the
higher the CRT network heterogeneity, the lower the control

e�ciency of the supervision of �nancial market regulators
and the risk resistance ability of investors on credit risk
contagion.

Figure 6 depicts the reciprocal e
ect of the market
noises, the risk preference of investors, and the supervi-
sor strength of �nancial market regulators on credit risk
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Figure 4: 	e evolution function of the contagious scale � of credit risk as function in the malicious attack strength 	 of some institutional
investors and the o�cial rescue strength � under the di
erent network structure. (a) for � = 0.3, 
� = 0.6, � = 0.4, � = 0.5, 
 = 0.6, � = 0.12,
� = 0.3, �� = 0.1; (b) for � = 0.3, 
� = 0.6, � = 0.4, � = 0.5, 
 = 0.6, � = 0.12, 	 = 0.2, �� = 0.1.

contagion. First, Figure 6 shows that the higher the CRT
network heterogeneity, the more signi�cant the reciprocal
e
ect of themarket noises and the risk preference of investors
on credit risk contagion. Second, the reciprocal e
ect of
the market noises and the risk preference of investors will
promote the contagious scale of credit risk in the CRT
market. However, the supervisor strength of �nancial mar-
ket regulators will reduce the e
ect of the market noises
and the risk preference of investors on credit risk conta-
gion.

6. Conclusion

In this paper, we design an evolving network model of credit
risk contagion that considers the spillover e
ects of infected
investors, behaviors and emotional disturbance of investors
and regulators, market noise, and the CRT network structure
on credit risk contagion. We use theoretical analysis and
numerical simulation to investigate the e
ect mechanism of
the spillover e
ects and behavioral intervention on credit
risk contagion in the CRTmarket. We �nd the strengthening
e
ects of the spillover e
ects of infected investors, the
emotional disturbance of investors and the malicious attack
behaviors of some institutional investors, the restraining
e
ects of the o�cial market rescue and the risk resistance
ability of investors for credit risk contagion, and the density
e
ects and heterogeneous e
ects of the CRT network on
credit risk contagion. In addition, we also investigate the

reciprocal e
ects of the market noises, the risk preference
of investors, and the supervisor strength of �nancial market
regulators on credit risk contagion. We further �nd the
interactive facilitation e
ect of the market noises and the
risk preference of investors on credit risk contagion, and
the restraining e
ects of the supervisor strength of �nancial
market regulators on credit risk contagion. Certainly, we
acknowledge several limitations in the modeling method
and process, and the testing method and way. Due to
these limitations, the investigation results in the paper are
considered exploratory and suggestive rather than conclusive.
	erefore, future studies can further deepen and expand the
results presented in this paper.
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Figure 6: 	e in�uencing mechanism of the interaction among the e
ect degree � of market noises, the risk preference level 
� of investors,
and the supervision strength � of �nancial market regulators on the contagious scale � of credit risk under the di
erent network structure.
(a) and (b) for � = 0.4, � = 0.5, 
 = 0.6, � = 0.3, 	 = 0.2, � = 0.3, �� = 0.1; (c) and (d) for � = 0.3, � = 0.5, 
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