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Summary 
 
Credit scoring has been regarded as a core appraisal tool of different institutions during the 
last few decades, and has been widely investigated in different areas, such as finance and 
accounting. Different scoring techniques are being used in areas of classification and 
prediction, where statistical techniques have conventionally been used. Both sophisticated 
and traditional techniques, as well as performance evaluation criteria are investigated in the 
literature. The principal aim of this paper is to carry out a comprehensive review of 214 
articles/books/theses that involve credit scoring applications in various areas, in general, but 
primarily in finance and banking, in particular. This paper also aims to investigate how credit 
scoring has developed in importance, and to identify the key determinants in the construction 
of a scoring model, by means of a widespread review of different statistical techniques and 
performance evaluation criteria. Our review of literature revealed that there is no overall best 
statistical technique used in building scoring models and the best technique for all 
circumstances does not yet exist. Also, the applications of the scoring methodologies have 
been widely extended to include different areas, and this subsequently can help decision 
makers, particularly in banking, to predict their clients‟ behaviour. Finally, this paper also 
suggests a number of directions for future research.    
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1. Introduction  

The phenomenon of borrowing and lending has a long history associated with human 

behaviour (Thomas et al., 2002). Therefore, credit is perhaps a phenomenon as old as trade 

and commerce. Despite the very long history of credit back to around 2000 BC or earlier, the 

history of credit scoring is very short, beginning only about six decades ago. Information 

collected by banks and/or financial institutions of a credit applicant is used to develop a 

numerical score for each applicant (Thomas et al., 2002; Hand & Jacka, 1998; Lewis, 1992). 

Recently, credit scoring techniques have been expanded to include more applications in 

different fields. Moreover, the idea of reducing the probability of a customer defaulting, which 

predicts customer risk, is a new role for credit scoring, which can support and help maximize 

the expected profit from that customer for financial institutions, especially banks. By the start 

of the 21
st
 century, the use of credit scoring had expanded more and more, especially with the 

tremendous technologies created, introducing more advanced techniques and evaluation 

criteria, such as GINI and area under the ROC curve
1
. Besides, the high capabilities of 

computing technology make the use of credit scoring much easier than before.   

        Consequently the history of credit scoring is short, and the literature is very limited. 

Books that have been introduced are limited (see, for example, Lewis, 1992; Hand & Jacka, 

1998; Mays, 2001, 2004; Cramer, 2004; Siddiqi, 2006; Anderson, 2007); textbooks looking at 

classification problems are also limited (Hand, 1981, 1997), whilst, in recent years, a number 

of international journal articles have discussed different credit scoring techniques in different 

fields (see, for example, Desai et al., 1996; Leonard, 1996; Thomas, 1998; West, 2000; 

Baesens et al., 2003; Lee & Chen, 2005; Lensberg et al., 2006; Banasik & Crook, 2007; 

Huang et al., 2007; Paliwal & Kumar, 2009). 

 

1.1. Credit scoring definitions 

Credit evaluation is one of the most crucial processes in banks‟ credit management decisions. 

This process includes collecting, analysing and classifying different credit elements and 

variables to assess the credit decisions. The quality of bank loans is the key determinant of 

competition, survival and profitability. One of the most important kits, to classify a bank‟s 

customers, as a part of the credit evaluation process to reduce the current and the expected 

risk of a customer being bad credit, is credit scoring. Hand & Jacka, (1998, p. 106) stated that 

“the process (by financial institutions) of modelling creditworthiness is referred to as credit 

scoring”. It is also useful to provide further definitions of credit scoring. 

 

                                                 

1
 Both are tools to evaluate the predictive performance of different scoring models. The ROC curve is a graphical plot 

of the sensitivity versus 1-specifity for a dichotomous classifier (to discriminate between two classes); whilst, the GINI 
coefficient is a measure of the inequality of a distribution, and summarizes the predictive performance over all cut-off 
score values, more details are provided in section 2.5. 
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        Anderson (2007) suggested that to define credit scoring, the term should be broken 

down into two components, credit and scoring. Firstly, simply the word „credit‟ means “buy 

now, pay later”. It is derived from the Latin word „credo‟, which means „I believe‟ or „I trust in‟. 

Secondly, the word „scoring‟ refers to “the use of a numerical tool to rank order cases 

according to some real or perceived quality in order to discriminate between them, and 

ensure objective and consistent decisions”. Therefore, scores might be presented as 

“numbers” to represent a single quality, or “grades” which may be presented as “letters” or 

“labels” to represent one or more qualities (Anderson, 2007, pp. 3-5). Consequently, credit 

scoring can be simply defined as “the use of statistical models to transform relevant data into 

numerical measures that guide credit decisions. It is the industrialisation of trust; a logical 

future development of the subjective credit ratings (see for example, Beynon, 2005) first 

provided by nineteenth century credit bureaux, that has been driven by a need for objective , 

fast and consistent decisions, and made possible by advances in technology” (Anderson, 

2007, p. 6). Furthermore, “Credit scoring is the use of statistical models to determine the 

likelihood that a prospective borrower will default on a loan. Credit scoring models are widely 

used to evaluate business, real estate, and consumer loans” (Gup & Kolari, 2005, p. 508). 

Also, “Credit scoring is the set of decision models and their underlying techniques that aid 

lenders in the granting of consumer credit. These techniques decide who will get credit, how 

much credit they should get, and what operational strategies will enhance the profitability of 

the borrowers to the lenders” (Thomas et al., 2002, p. 1). 

        Credit scoring models (see, for example: Lewis, 1992; Bailey, 2001; Mays, 2001; 

Malhotra & Malhotra, 2003; Thomas et al., 2004; Sidique, 2006; Chuang & Lin, 2009; 

Sustersic et al, 2009) are some of the most successful applications of research modelling in 

finance and banking, as reflected in the number of scoring analysts in the industry, which is 

continually increasing. “However, credit scoring has been (vital) in allowing the phenomenal 

growth in consumer credit over the last five decades. Without (credit scoring techniques, as) 

an accurate and automatically operated risk assessment tool, lenders of consumer credit 

could not have expanded their loan (effectively)” (Thomas et al, 2002, p. xiii). 

 

1.2. Judgemental systems versus credit scoring systems 

The overall idea of credit evaluation is to compare the features or the characteristics of a 

customer with other earlier period customers, whose loans they have already paid back. If a 

customer‟s characteristics are adequately similar to those, who have been granted credit, and 

have consequently defaulted, the application will normally be rejected. If the customer‟s 

features are satisfactorily like those, who have not defaulted, the application will normally be 

granted. Generally, two techniques can be used: “Loan officer‟s subjective assessment and 

credit scoring” (Crook, 1996).  

        Sullivan (1981) and Bailey (2004) argue that in a judgemental technique evaluation, 

each credit application includes information contained within it, to be evaluated individually by 

a decision-maker “creditor”. The success of a judgemental process depends on the 
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experience and the common sense of the credit analyst. As a result, judgemental techniques 

are associated with subjectivity, inconsistency and individual preferences motivating 

decisions; and judgemental methods have some strengths, such as taking account of 

qualitative characteristics and having a good track record in evaluating past credit by utilising 

the wealth of the credit analyst‟s past experience (see, for example, Al Amari, 2002; citing 

Chandler & Coffman, 1979).  

        Otherwise, in a credit scoring model, analysts usually use their historical experience with 

debtors to derive a quantitative model for the segregation of acceptable and unacceptable 

credit applications. Using a credit scoring system, a credit application is largely a self-

operating process and consistently applied to all credit decisions. The scoring system is 

based on the addition or subtraction of a statistically extracted number of points relating to the 

applicant‟s score given to the predictor variables, such as time on a job or the number of 

credit sources used. As a result, it can be said that credit scoring enables advancers to 

assess the creditworthiness quickly. Moreover, credit scoring gives a chance to the advancers 

to improve customer services and the retention of sound customers. By using a statistically 

extracted cut-off credit score, an analyst can, of course, separate the acceptable from the 

unacceptable credit applicants. On the other hand, credit scoring has been criticized because 

of statistical problems with the data used to evolve the model, as well as assumptions of the 

particular statistical technique used to derive the point scores. Despite the criticism of credit 

scoring models, these models can be regarded as one of the most successful models used in 

the field of business and finance (Sullivan, 1981; Bailey, 2004). 

 

1.3. Benefits and criticism of credit scoring 

Comparisons between credit scoring techniques and personal judgemental techniques have 

not been adequately and critically studied, and only a few researchers have compared these 

two credit tools, such as Chandler & Coffman (1979) who were pioneers in comparing credit 

scoring with personal credit judgement; and Crook (1996) who summarized many of their 

arguments and discussed the benefits of credit scoring relative to judgemental techniques for 

both the lender and borrower.   

        Benefits of credit scoring: credit scoring requires less information to make a decision, 

because credit scoring models have been estimated to include only those variables, which 

are statistically and/or significantly correlated with repayment performance; whereas 

judgemental decisions, prima facie, have no statistical significance and thus no variable 

reduction methods are available (Crook, 1996). Credit scoring models attempt to correct the 

bias that would result from considering the repayment histories of only accepted applications 

and not all applications. They do this by assuming how rejected applications would have 

performed if they had been accepted. Judgemental methods are usually based on only the 

characteristics of those who were accepted, and who subsequently defaulted (Crook, 1996). 

Credit scoring models consider the characteristics of good as well as bad payers, while, 

judgemental methods are generally biased towards awareness of bad payers only. Credit 
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scoring models are built on much larger samples than a loan analyst can remember. Credit 

scoring models can be seen to include explicitly only legally acceptable variables whereas it is 

not so easy to ensure that such variables are ignored by a loan analyst. Credit scoring models 

demonstrate the correlation between the variables included and repayment behaviour, 

whereas this correlation cannot be demonstrated in the case of judgemental methods 

because many of the characteristics which a loan analyst may use are not impartially 

measured. A credit scoring model includes a large number of a customer‟s characteristics 

simultaneously, including their interactions, while a loan analyst‟s mind cannot arguably do 

this, for the task is too challenging and complex. An additional essential benefit of credit 

scoring is that the same data can be analyzed easily and clearly by different credit analysts or 

statisticians and give the same weights. This is highly unlikely to be so in the case of 

judgemental methods (Chandler & Coffman, 1979; Crook, 1996). 

        Some other privileges of credit scoring has been summarised by Al Amari (2002), citing 

Chandler & Coffman (1979) as follows: more efficient processing time, and subsequent 

support for the decision-making process; minimization of credit process costs and effort; 

fewer errors made; provision of estimations to be compared in post audits; inclusion of 

variables supported through objective analysis to assess the credit risk; modelling based on 

real data; interrelation between variables are considered;  fewer customer-information needs 

for credit decisions; the cut off score (more details of cut-off scores are given in the next sub-

section) can be changed according to environmental factors affecting the banking sector; 

acceptance of only authorized factors considered by well known institutions, such as ECOA in 

the United States and Consumer Credit Act in the United Kingdom; and the choice of 

information supported as being related to customer credit risk.  

        Criticisms of credit scoring: credit scores use any characteristic of a customer in spite of 

whether a clear link with a likely repayment can be justified. Also, sometimes economic 

factors are not included. In addition, using credit scoring models, sometimes customers may 

have the characteristics, which make them more similar to bad than good payers, but may 

have these entirely by chance (a misclassification problem). Statistically a credit scoring 

model is “incomplete”, for it leaves out some variables, which taken with the others, might 

predict that the customer will repay. But unless a credit scoring model has every possible 

variable in it, normally it will misclassify some people. Another criticism of credit scoring 

models is the possibility of indirect discrimination (Crook, 1996). Furthermore, credit scoring 

models: are not standardized and differ from one market to another; are expensive to buy and 

subsequently to train credit analysts; and sometimes a credit scoring system may „reject (a) 

creditworthy applicant because he/she changes address or job‟ (Al Amari, 2002, p. 69; citing 

Chandler & Coffman, 1979). 

        Looking at how such credit scoring works, a customer for credit is evaluated in a credit 

scoring system by simply summing the points received on the various application features to 

have a total score. This score may be treated in a number of ways based on the system 

design. In a single cut-off method, the customer‟s total score is compared to a particular 
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single cut-off point score. If this score exceeds the cut-off, credit is awarded; otherwise the 

customer is denied. Advanced credit scoring systems are based on a two-stage process. For 

instance, the customer‟s total score may be compared to two cut-off points. If the score 

exceeds the higher cut-off, credit is automatically granted, while if it falls below the lower cut-

off, credit is automatically rejected. If the score is between the two cut-off points, the analyst 

re-evaluates the customer based on the actual requirements, or alternatively “credit history 

information is obtained, scored, and the points added to the total score obtained (from 

information on the application form)”. As a result of this approach, “if this new score is above 

a new higher cut-off, credit is (granted); if not, credit is denied” (Capon, 1982, p. 83). 

        Furthermore, credit scoring models are only as good as the original specification, and a 

further limitation is that the data are historical. Either the variables or weights, or both, are 

assumed to be constant over time, which makes the model less accurate, unless it is 

frequently updated. This problem can be reduced or even minimised if banks keep records of 

their type I and type II errors, and apply a new or up-dated model to address any necessary 

changes. A serious problem is that the model imposes a dichotomous outcome: either the 

borrower defaults or not. Indeed, a range of possible outcomes exists, from a delay in interest 

payments to non-payment of interest, to outright default on principal and interest. Often the 

borrower declares a problem with payments, and the loan terms can be renegotiated. These 

different outcomes can be included, but only two at a time (Heffernan, 2005). 

 

2. Review of literature  

2.1. How credit scoring has developed in importance  

It is believed that credit scoring, regardless of all the criticisms, can seriously help to answer 

some key questions. However, Al Amari (2002, p. 41) has argued that while a lot of credit 

scoring models have been used in the field, these key questions have not been yet answered 

conclusively: What is the optimal method to evaluate customers? What variables should a 

credit analyst include to assess their applications? What kind of information is needed to 

improve and facilitate the decision-making process? What is the best measure to predict the 

loan quality (whether a customer will default or not)? To what extent can a customer be 

classified as good or bad?  

        In addition to Al Amari‟s questions the following can usefully be added: What is the best 

statistical technique on the basis of the highest average correct classification rate or lowest 

misclassification cost or other evaluation criteria? Can alternative credit scoring models offer 

the credit decision-makers more efficient classification results than judgmental approaches? 

Does the predicted credit quality based on conventional techniques adequately compare with 

those based on more advanced approaches? Is it possible to identify the key factors using 

credit scoring that can strongly influence loan quality? The latter have clearly been neglected 

in the literature except for Abdou (2009a), who argues that sophisticated credit scoring 

techniques can fully address these additional questions.  
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        The role of effective management of different financial and credit risks is especially 

important for bankers, who have come to realise that banking operations affect and are 

affected by economic and social environmental risks that they face, and that consequently the 

banks might have an important role to play in helping to raise banking environmental 

requirements. Although the environment presents significant risks to banks, in particular 

environmental credit risk, it also perhaps presents profitable opportunities (Thompson, 1998; 

Casu, et al., 2006). The management of risk plays an important role in the banking sector 

worldwide. One of the key components of risk management is that associated with the 

personal credit decision. Indeed this is one of the most critical banking decisions, requiring a 

distinction between customers with good and bad credit. The behaviour of former and current 

customers can provide a useful historical data-set, which can be crucial in predicting new 

applicants‟ behaviour.  

        With the fast growth of the credit industry all over the world and portfolio management of 

huge loans, credit scoring is regarded as a one the most important techniques in banks, and 

has become a very critical tool during recent decades. Credit scoring models are widely used 

by financial institutions, especially banks, to assign credit to good applicants and to 

differentiate between good and bad credit. Using credit scoring can reduce the cost of the 

credit process and the expected risk associated with a bad loan, enhancing the credit 

decision, and saving time and effort (Lee et al, 2002; Ong et al, 2005). Decision-making 

involving accepting or rejecting a client‟s credit can be supported by judgemental techniques 

and/or credit scoring models. The judgemental techniques rely on the knowledge and both the 

past and present experiences of credit analysts whose evaluation of clients includes their 

ability to repay credit, guarantees and client‟s character (Sarlija, et al., 2004). Due to the rapid 

increase in fund-size invested through credit granted, and the need for quantifying credit risk, 

financial institutions including banks have started to apply credit scoring models.  

        A credit scoring system should be able to classify customers as good credit those who 

are expected to repay on time and as bad credit those who are expected to fail. Credit 

scoring, which helps to classify groups of customers correctly, can also assist banks in 

increasing sales of additional products. One of the main goals of credit scoring in financial 

credit institutions and banks is to help the development of the credit management process 

and to provide credit analysts and decision-makers with an efficient and effective credit tool to 

help to determine strengths, weaknesses opportunities and threats (SWOT); and to help to 

evaluate credit more precisely. A major problem for banks is how to determine the bad credit, 

because bad credit may cause serious problems in the future. This leads to loss in bank 

capital, lower bank revenues and subsequently increases bank losses, which can lead to 

insolvency or bankruptcy.   

        In developed countries, credit scoring is well established and the number of applications 

is increasing, because of excellent facilities and vast information being widely available, whilst 

in less developed or developing countries, less information and facilities are available. 

Advanced technologies, such as those used with credit scoring have helped credit analysts in 
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different financial institutions to evaluate and subsequently assess the vast number of credit 

applications. West (2000, p. 1132) has stated that credit scoring is widely used by the 

“financial industry”, mainly to improve the credit collection process and analysis, including a 

reduction in credit analysts‟ cost; faster credit decision-making; and monitoring of existing 

customers. Also, around 97% of banks are using credit scoring for credit card applications, 

and around 82% of banks (and it was not clear from the original source whether the author 

was referring to US banks only) are using credit scoring to decide correctly who should be 

approved for credit card applications. Furthermore, credit institutions and especially mortgage 

organizations are developing new credit scoring models to support credit decisions to avoid 

large losses. These losses were considerable. For example, West (2000:1132) reported that 

'in 1991 $1 billion of Chemical Bank's $6.7 billion in real estate loans were delinquent'. 

        Gathering information is a critical issue in building a credit scoring model. In general, 

through loan application forms, customer bank account(s), related sector(s), customer credit 

history, other financial institutions and banks, market sector analysis and through government 

institutions, banks may gain competitive advantages by building a robust credit scoring 

model(s). By collecting and isolating all relevant information, credit analysts or “banks” should 

be able to decide whether a particular variable should be included in the final model or not, 

and additionally whether a variable fits the real field requirements.  

  

2.2. Credit scoring applications  

As discussed earlier, the concept of credit scoring and related concepts of behavioural and 

profit scoring (see for example, Sarlija et al., 2009; Banasik and Crook, 2010; Fritz & 

Hosemann, 2000), are not that old, compared with credit and other business concepts. 

Nevertheless, applications of credit scoring have been widely used in different fields, including 

a comparison between different statistical techniques used in prediction purposes and 

classification problems. These applications can be classified into accounting and finance 

(Landajo et al, 2007; Pendharkar, 2005; Baestaens, 1999; Altman et al, 1994; Sinha and 

Richardson, 1996; Duliba, 1991; Long, 1973); marketing (Chiang et al, 2006; Thieme et al, 

2000; Kumar et al, 1995; Dasgupta et al, 1994); engineering and manufacturing (Dvir et al, 

2006; Feng & Wang, 2002; Smith & Mason, 1997); health and medicine (Behrman et al, 2007; 

Nguyen et al, 2002; Warner & Misra, 1996); and general applications (Nikolopoulos et al, 

2007; Usha, 2005; Walczak & Sincich, 1999; Hardgrave et al, 1994), as noted by Paliwal & 

Kumar (2009).  

        In the area of accounting and finance, credit scoring applications have been used for 

different purposes, particularly with the rapid growth in this area. The number of applications 

has increased during the last couple of decades, such as bankruptcy prediction (Tsai & Wu, 

2008; Etemadi et al, 2009; Min & Lee, 2008; Nanni & Lumini, 2009; Atiya, 2001) and 

bankruptcy classification (Min & Jeong, 2009; Lensberg et al, 2006; MaKee & Lensberg, 

2002; Ignizio & Soltys, 1996); scoring applications (Crook et al, 2007; Huang et al, 2007; 

Huang et al, 2006), classification problems (Ben-David & Frank, 2009; Laha, 2007; Trinkle & 
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Baldwin, 2007; Lensberg et al, 2006; Beynon, 2005; Ong et al, 2005; Zhang & Bhattacharyya, 

2004; Glen, 2001); financial distress (Hu, 2008; Mukkamala, et al., 2008; Hu & Ansell, 2007; 

Van Gestel et al, 2006) and financial decisions and financial returns (Yu et al, 2009; West et 

al, 2005; Xia et al, 2000). 

        Credit scoring applications in banking sectors have expanded during the last couple of 

decades (Banasik and Crook, 2010; Chen et al, 2009; Thanh Dinh & Kleimeier, 2007; Hand et 

al, 2005; Emel et al, 2003; Foglia et al, 1998), especially due to the large number of credit 

applications for different bank products, providing a wide range of new product channels 

which can be used by these banks. These applications and others have included different 

bank products, such as consumer loans, which are one of the most important and essential 

applications widely used in the field (Sustersic et al, 2009; Lee & Chen, 2005; Hsieh, 2004; 

Kim & Sohn, 2004; Malhotra & Malhotra, 2003; Orgler, 1971); credit card scoring applications, 

which are one of the earliest applications in the field (Quah & Sriganesh, 2008; Lee et al, 

2002; Banasik et al, 2001; Greene, 1998); small businesses, which are another important 

bank product nowadays (DeYoung et al, 2008; Carter & McNulty, 2005; Bensic et al, 2005; 

Frame et al, 2004; Frame et al, 2001; Tsaih et al, 2004; Stefanowski & Wilk, 2001; Kumar & 

Motwani, 1999; Falbo, 1991); and other bank products, such as mortgages, which have 

recently been massively used by different banks as well (Haughwout et al, 2008; Somers & 

Whittaker, 2007; Heuson et al, 2001; Cameron & Trivedi, 1996). 

        Consumer credit has become a huge industry, and the number of applications has 

increased during the last couple of decades. In the late 1980s, in the United States, over $700 

billion was the total amount of outstanding consumer credit. Also Eastern European countries 

and China have started to see the usefulness of consumer credit, because a key task of 

consumer credit is to make credit extensively available and to make it profitable as well 

(Lewis, 1992, pp. 1-2). The evaluation of new consumer loans is one of the most important 

applications of credit scoring models and has attracted attention in the last few decades 

(Crook et al, 2007; Baesens et al, 2005; Hsieh, 2004; Sarlija et al, 2004; Malhotra, & 

Malhotra, 2003; Steenackers & Goovaerts, 1989). Some other researchers have focused on 

existing consumer loans rather than new loan applications (Kim & Sohn, 2004; Orgler, 1971). 

Feelders (2000) proposed a reject inference method based on mixture modelling, which led to 

significant improvement of the classification rule. Also, Banasik and Crook (2010) have 

analysed the procedure of augmentation to deal with reject inference in the context of high 

rejection rates, and have concluded that there are no positive benefits.  

        For other scoring applications, such as corporate credit scoring models (see for example 

Altman, 2005; Paleologo, et al. 2010), the nature and the requirements of the scoring system 

might be different and need to include a number of stages, such as those suggested by 

Altman & Haldeman (1995). These steps include: applying primary client-data to credit 

scoring models; testing a credit scoring model and using a supplemental system. For the 

second step, the model requires “tests covering the following issues: definition of risk, model 

development, test of time, stability, public versus private company data, probability of failure, 
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credibility, model support and pilot testing” (Altman & Haldeman, 1995, p. 13). Furthermore, 

the third step can be important for the model: “smoothing out the wave, firm- capital market 

approach” (i.e. using systematic beta risk) and “firm-econometric approach” (Altman & 

Haldeman, 1995, pp. 19-22). For further explanation of these stages, the reader is referred to 

Altman & Haldeman, (1995). 

 

2.3. Key determinants of credit scoring  

The objective of credit scoring models is to assign loan customers to either good credit or bad 

credit (Lee et al, 2002), or predict the bad creditors (Lim & Sohn, 2007). Therefore, scoring 

problems are related to classification analysis (Anderson, 2003; Lee et al, 2002; Hand, 1981). 

Probably the earliest use of statistical scoring to distinguish between “good” and “bad” 

applicants was by Durand (1941), who analysed data from financial services, such as 

commercial and industrial banks, and finance and personal finance companies. With the wide 

use of credit scoring in the United States and United Kingdom, and following the Equal Credit 

Opportunity Act (ECOA) in the United States, credit scoring models become well-known and 

the credit scoring literature has expanded. Credit scoring was primarily dedicated to 

assessing individuals who were granted loans, both existing and new customers. Credit 

analysts, based on pre-determined scores, reviewed customers‟ credit history and 

creditworthiness to minimize the probability of delinquency and default (Al Amari, 2002).  

        The categorisation of good and bad credit is of fundamental importance, and is indeed 

the objective of a credit scoring model (Lim & Sohn, 2007; Lee et al, 2002). The need of an 

appropriate classification technique is thus evident. But what determines the categorisation of 

a new applicant? From the review of literature, characteristics such as gender, age, marital 

status, dependants, having a telephone, educational level, occupation, time at present 

address and having a credit card are widely used in building scoring models (Sustersic et al, 

2009; Hand et al. 2005; Lee and Chen 2005; Sarlija et al., 2004; Banasik et al. 2003; Chen & 

Huang, 2003; Lee et al., 2002; Orgler 1971; Steenackers and Goovarts 1989). Time at 

present job, loan amount, loan duration, house owner, monthly income, bank accounts, 

having a car, mortgage, purpose of loan, guarantees and others have been also used in 

building the scoring models (Ong et al. 2005; Lee and Chen, 2005; Greene 1998; Sarlija et 

al., 2004; Orgler 1971; Steenackers and Goovarts 1989). In some cases the list of variables 

has been extended to include spouse personal information, such as age, salary, bank 

account and others (Orgler 1971). Of course, more variables are less frequently used in 

building scoring models, such as television area code, weeks since the last county court 

judgement, worst account status, time in employments, time with bank and others (Bellotti 

and Crook, 2009; Banasik and Crook, 2007; Andreeva, 2006; Banasik et al. 2003).  

        Insights can be gained from parallel research, pertaining to small business and corporate 

loans, by identifying other variables, such as main activity of the business, age of business, 

business location, credit amount, and different financial ratios, for example, profitability, 

liquidity, bank loans and leverage have been used in scoring applications (Emel et al. 2003; 



 11 

Bensic et al, 2005; Zekic-Susac et al. 2004; Min and Lee, 2008; Min and Jeong, 2009; 

Lensberg et al. 2006; Cramer, 2004; Liang 2003). 

        In some cases the final selection of the characteristics was based on the statistical 

analysis used, i.e. stepwise logistic regression, regression or neural network (Lee and Chen, 

2005; Nakamura, 2005; Kay & Titterington, 1999; Lenard, et al., 1995; Steenackers and 

Goovarts 1989; Orgler 1971). However, to the best of our knowledge, none of the research 

reviewed in this paper has clearly established a theoretical reason why such variables have 

been chosen. In addition, in most cases, authors have stated that a particular set of data was 

provided by a particular institution. Therefore, the selection of the variables used in building 

scoring models depends on the data providers and the data availability as stated by those 

authors. It is the view in this paper that such variables are implicitly deemed influential.  

        Classification models for credit scoring are used to categorize new applicants as either 

accepted or rejected with respect to these characteristics. These need to be contextualised to 

the particular environment, as new variables are appropriately included (see, for example, the 

inclusion of corporate guarantees and loans from other banks within the Egyptian 

environment in the investigation by Abdou and Pointon, 2009). The classification techniques 

themselves can also be categorised into conventional methods and advanced statistical 

techniques. The former include, for example, weight of evidence, multiple linear regression, 

discriminant analysis, probit analysis and logistic regression. The latter comprise various 

approaches and methods, such as, fuzzy algorithms, genetic algorithms, expert systems, and 

neural networks (Hand & Henley, 1997). On the one hand, the use of only two groups of 

customer credit, either “good” or “bad” is still one of the most important approaches to credit 

scoring applications (Kim & Sohn, 2004; Lee et al, 2002; Banasik et al, 2001; Boyes et al, 

1989; Orgler, 1971). On the other hand, the use of three groups of consumer credit may 

become one of the approaches for classification purposes in credit scoring models. Some 

have used “good” or “bad” or “refused” (Steenackers & Goovaerts, 1989), whilst others have 

used “good” or “poor” or “bad” (Sarlija et al, 2004). Lim & Sohn (2007) argue that the way 

existing models are used is quite worrying, especially at the time when the middle of the 

repayment term occurs, when it is important to be able to re-evaluate the creditability of 

borrowers with high default risks for the remaining term (see for example, Baestaens, 1999).  

        It is believed that there is no optimal number of variables that should be used in building 

scoring models. The selection of the variables varies from study to study based on the nature 

of the data, and also on what cultural or economic variables may affect the quality of the 

model and be appropriate to a particular market, whose variables differ from one country to 

another. In finance applications, a rank from only three variables (Pendharkar, 2005; Fletcher 

& Goss, 1993) to around twenty variables (Jo et al, 1997; Desai et al, 1996; Tam & Kiang, 

1992) has been used in building the scoring models. Meanwhile, others have used more 

variables in their analysis. For example, Salchenberger et al. (1992) applied twenty-nine 

variables, and forty-one variables have been used by Leshno & Spector (1996). In other 

fields‟ applications, such as health & medicine and engineering & manufacturing, the number 



 12 

of variables has been vastly increased to seventy-two variables, in a study by Delen et al. 

(2005), and to eighty-five variables, in a study by Dvir et al. (2006), respectively.    

        While most of the authors are agreed about the importance of credit scoring 

methodology and the utmost necessity of developing a system “model” with a strong 

predictive ability, there has been disagreement about what is the most appropriate cut-off 

score in evaluating customer credit. The determination of the cut-off point(s) is central to the 

usefulness and value of credit scoring models.  Depending on a pre-determined score point, a 

new customer can be classified as accepted or rejected, but to measure the score for this 

customer the cut-off point should be based on some technical factors. Different statistical 

techniques, such as discriminant analysis, logistic regression, neural networks and other 

statistical models have been widely used to evaluate consumer credit (Al Amari, 2002). 

Overall, there is no optimal cut-off score point. It varies from one environment to another and 

from one bank to another inside the same country. It is mainly based on the credit decision-

makers‟ attitudes to risk; in some cases a bank might be able to accept more clients, in this 

case the cut-off score point is expected to be lower than the one currently used, and vice 

versa.   

        Moreover, the determination of the sample size is another issue that has been 

discussed. It is believed that the larger the sample size, the better the scoring model‟s 

accuracy. These determinations mainly depend on the data availability, the nature of the 

market and to what extent this particular data-set will represent the community. In the field of 

finance, some studies have utilized a very small number of observations in their analysis, 

around three or four dozen (Dutta et al, 1994; Fletcher & Goss, 1993), whilst others have 

employed a larger number of observations in their applications, indeed thousands of 

observations (Bellotti & Crook, 2009; Hsieh, 2004; Banasik et al, 2003). In some 

personal/consumer loan applications, a number of studies have applied their analysis based 

on data-sets of less than one thousand one hundred observations (Sustersic et al, 2009; Lee 

& Chen, 2005; Kim & Sohn, 2004; Malhotra & Malhotra, 2003). Furthermore, sample selection 

bias has been highlighted in other studies, particularly pertaining to the analysis of only 

applicants that have been accepted (Banasik & Crook, 2007; Banasik & Crook, 2005; 

Verstraeten & Van Den Poel, 2005; Banasik et al, 2003; Greene, 1998).  

        The categorization of the sample or “validation method” has been widely used in 

financial credit scoring applications. While some researchers have applied a simple validation 

technique by dividing the sample into training and testing/applied sub-samples (Landajo et al, 

2007; Limsombunchai et al, 2005; Lee & Jung, 2000), other researchers have utilized a 

different validation technique by segregating the sample into training and validation and 

testing sub-samples (Spear & Leis, 1997; Salchenberger et al, 1992). Under the former 

validation technique, some studies have used a 50%-50% proportion between the two 

samples (Lenard et al, 1995; Yoon et al, 1993), whilst others have applied a 70%-30% or 

“2/3-1/3” proportion between different samples (Lee et al, 2002; Desai et al, 1996; Boritz & 

Kennedy, 1995; Dutta et al, 1994).  
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        In addition, researchers have applied a different number of folds, i.e. 4-fold cross 

validation (CV) and 5-fold CV into their analysis (Lee et al, 2005; Zhang et al, 1999). Also, a 

90%-10% validation procedure has been used in personal loans‟ (housing loans) financial 

applications (Lee & Chen, 2005). Other proportions, such as 80%-20%, have been used 

under other applications, such as marketing (Limsombunchai et al, 2005; Ainscough & 

Aronson, 1999), engineering and manufacturing (Heiat, 2002; Krishnaswamy & Krishnan, 

2002). Paliwal & Kumar (2009) gave a summary of validation methods used in different credit 

scoring applications. In their review, it has been noted that thirty studies have split their data-

set into training and testing data, five studies have split their data-set into three sub-samples 

(training, validation and testing), and seventeen studies have utilized n-fold cross validation. 

Other validation methods, such as bootstrapping, jack-knifing, and „leave-one-out cross 

validation‟ were less frequently used compared with formerly cited methods.  

        In summary, it would seem from this discussion that there is no optimal credit scoring 

model procedure, including specific variables or number of variables, particular cut-off point, 

exact sample size and meticulous validation, which can be applied to different banks in 

different environments. This was also the conclusion reached by other authors, e.g. Al Amari 

(2002), who came to a similar conclusion that there is no best scoring model holding explicit 

variables that can be used in different markets; and Altman & Haldeman (1995, p. 22), in 

which they suggested nine variables for a logical scoring model, but finally they emphasised 

that, over time, a successful credit scoring system should be “credible and accepted by both 

senior management and the field troops, including loan officers and credit analysts”. 

Therefore, a sound scoring model should reproduce the risk strategy and the credit culture of 

the institutions.  

 

2.4. Credit scoring statistical techniques 

A wide range of statistical techniques are used in building the scoring models. Most of these 

statistical, and some of these non-linear, models are applicable to build an efficient and 

effective credit scoring system that can be effectively used for predictive purposes. 

Techniques, such as weight of evidence measure, regression analysis, discriminant analysis, 

probit analysis, logistic regression, linear programming, Cox‟s proportional hazard model, 

support vector machines, decision trees, neural networks, k-nearest-neighbour, genetic 

algorithms and genetic programming, are all widely used techniques in building credit scoring 

models by credit analysts, researchers, lenders and computer software developers and 

providers.   

        Advanced statistical methods vs. traditional statistical methods: advanced statistical 

techniques, such neural networks and genetic programming provide an alternative to 

conventional statistical techniques, such as discriminant analysis, probit analysis and logistic 

regression. The point of using sophisticated techniques, such as neural nets, is their 

capability of modelling extremely complex functions, and, of course, this stands in contrast to 

traditional linear techniques, such as, linear regression and linear discriminant analysis. 
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Probabilistic neural nets usually trains presented cases faster than multi-layer feed-forward 

nets, and classifies them in the same way or better than multi-layer feed-forward nets, even 

through multi-layer feed-forward nets have been shown to be excellent classifiers (Palisade, 

2005; Irwin, et al., 1995). However, a range of sophisticated algorithms for neural nets training, 

making them an attractive alternative to the more conventional techniques, has become 

available (Masters, 1995; Palisade, 2005). Also, genetic programming is one of the most 

successful alternatives to traditional techniques recently used in the field. Genetic 

programming is utilized to automatically determine the sufficient discriminant functions and 

the applicable features simultaneously. Dissimilar neural networks may only suit large data-

sets, but genetic programming can positively; perform well even with small data-sets (Nath et 

al, 1997). It is useful to discuss some of the previously mentioned credit scoring modelling 

techniques as follows:  

        Linear regression methods have become an essential component of any data analysis 

concerned with describing the relationship between a response variable and one or more 

independent variables. Linear regression has been used in credit scoring applications, as the 

two class problem can be represented using a dummy variable. Using a Poisson regression 

model instead could be used to accommodate cases where the customer makes varying 

degrees of partial repayments. As such the proportionate repayments could be re-expressed 

as Poisson „counts‟. Factors, such as customers‟ historical payments, guarantees, default 

rates in a timely manner, can be analysed by credit analysts, with linear regression to set up a 

score for each factor, and then to compare it with the bank‟s cut-off score. If a new customer‟s 

score passes the bank‟s score, the credit will be granted. Orgler (1970) used regression 

analysis for commercial loans; this model was limited to the evaluation of existing loans and 

could be used for loan review and examination purposes. Later on, Orgler (1971) used a 

regression approach for evaluating outstanding consumer loans. He came to the conclusion 

that information not included on the application form had greater predictive ability than 

information included on the original application form, in assessing future loan quality. The use 

of regression analysis extended such applications to include further aspects (see, Lucas, 

1992; Henley, 1995; Hand & Henley, 1997; Hand & Jacka, 1998).  

        Discriminant analysis is a simple parametric statistical technique, developed to 

discriminate between two groups. Many researchers have agreed that the discriminant 

approach is still one of the most broadly established techniques to classify customers as good 

credit or bad credit. This technique has long been applied in the credit scoring applications 

under different fields. Therefore, credit scoring model based on a discriminant approach is 

basically used for statistical analysis to classify groups‟ variables into two or more categories. 

Discriminant analysis was first proposed by Fisher (1936) as a discrimination and 

classification technique. Possibly the earliest use of applying multiple discriminant analysis to 

credit scoring is the work by Durand (1941), who examined car loan applications. A well-

known application in corporate bankruptcy prediction is one by Altman (1968), who developed 

the first operational scoring model based on five financial ratios, taken from eight variables 
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from corporate financial statements. He produced a Z-Score, which is a linear combination of 

the financial ratios. Indeed, discriminant analysis is a valid technique used in building credit 

scoring models (Abdou & Pointon, 2009; Sarlija et al, 2004; Caouette et al, 1998; Hand et al, 

1998; Hand & Henley, 1997; Desai et al, 1996).  

        Several authors have expressed pointed criticism of using discriminant analysis in credit 

scoring. Eisenbeis (1978) noted a number of the statistical problems in applying discriminant 

analysis based on his earlier work in 1977.  Problems, such as using linear functions instead 

of quadratic functions, groups‟ definition, prior probabilities inappropriateness, classification 

error prediction and others, should be considered when applying discriminant analysis. 

Regardless of these problems, discriminant analysis is still one the most commonly used 

techniques used in credit scoring (Abdou et al. 2009; Greene, 1998).  

        Probit analysis is another conventional technique used in credit scoring applications for 

many years. Grablowsky & Talley (1981, p. 254) noted that probit analysis was first pioneered 

for the analysis of “toxicology problems” by Finney (1952), who used it to “determine the 

relationship between the probability that an insect will be killed and the strength of the dose of 

poison administrated”. However, early in the 1930s the term “Probit” was developed and 

stood for probability unit (Pindyck & Rubinfeld, 1997; Maddala, 2001). Probit analysis is a 

technique that finds coefficient values, such that this is the probability of a unit value of a 

dichotomous coefficient. Under a probit model, a linear combination of the independent 

variables is transformed into its cumulative probability value from a normal distribution.  

        Grablowsky & Talley (1981, p. 260) stated that, under probit analysis, normal 

distributions of the “threshold values” are assumed, while multivariate normal distributions and 

equal variances are assumed under discriminant analysis; and using a likelihood ratio test, 

estimates of coefficients under a probit function can be tested individually for significance 

because of their „uniqueness‟. But, this is not the case for discriminant coefficients, which 

cannot be individually tested, whilst this is possible in a regression as well as under a probit 

function, but the latter is much more difficult than that for a linear, logistic or Poisson 

regression model. Finally, they note that multicollinearity can cause, under probit analysis, 

incorrect signs for coefficients, although the probability values from the likelihood ratio tests 

are not affected.  Otherwise, this problem is not an issue under discriminant analysis.  

 

TABLE 1 HERE 
 

Table 1 reveals classification results of different scoring models investigated by Guillen & 

Artis (1992). The first column shows the total correct classification, the second column is the 

correct classification of good, the third column is the correct classification of bad, and the 

fourth column is the percentage of bad accepted into the good group. It can be observed from 

Table 1 that the probit model has the highest correct total classification rate of 71.9%. Yet, it 

has the worst rate for classifying bad cases accepted in a good group (i.e. type II error), which 

are serious misclassifications in practice because of the default implications. By contrast the 
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linear regression model has the lowest bad cases accepted in a good group even though its 

total correct classification rate is the worst amongst all models. It would be more meaningful 

to calculate both the type I and type II errors, applying a cost function to each on account of 

the different associated opportunity costs and produce an overall misclassification score, 

choosing the optimal model as the one with the lowest misclassification cost (see West, 2000; 

Abdou and Pointon, 2009; Abdou et al. 2009).  

        One of the other techniques used in credit scoring applications, is the weight of evidence 

measure. While a few numbers of studies have investigated the use of the weight of evidence 

measure in the field, results were comparable with those from other techniques (Abdou, 

2009b; Banasik et al, 2003; Bailey, 2001; Siddiqi, 2006). The use of probit analysis has also 

been investigated as well, and compared with other statistical scoring models (Abdou, 2009c; 

Guillen & Artis, 1992; Banasik et al, 2003; Greene, 1998); also classification results were very 

close to other techniques (Greene, 1998), and better than techniques, such as discriminant 

analysis, linear regression and the Poisson model (Guillen & Artis, 1992). Furthermore, probit 

analysis is used as a successful alternative to logistic regression.  

        Logistic regression, like discriminant analysis, is also one of the most widely used 

statistical techniques in the field. What distinguishes a logistic regression model from a linear 

regression model is that the outcome variable in logistic regression is dichotomous (a 0/1 

outcome). This difference between logistic and linear regression is reflected both in the choice 

of a parametric model and in the assumptions. Once this difference is accounted for, the 

methods employed in an analysis using logistic regression follow the same general principles 

used in linear regression (Hosmer & Lemeshow, 1989). The simple logistic regression model 

can easily be extended to two or more independent variables. Of course, the more variables, 

the harder it is to get multiple observations at all levels of all variables. Therefore, most 

logistic regressions with more than one independent variable are done using the maximum 

likelihood method (Freund & William, 1998). On theoretical grounds it might be supposed that 

logistic regression is a more proper statistical instrument than linear regression, given that the 

two classes “good” credit and “bad” credit have been described (Hand & Henley, 1997). 

Logistic regression has been extensively used in credit scoring applications (see for example: 

Abdou, et al., 2008; Crook et al, 2007;  Baesens et al, 2003; Lee & Jung, 2000; Desai et al, 

1996; Lenard et al, 1995).  

        In building the scoring models, statistical techniques such as discriminant analysis, 

regression analysis, probit analysis and logistic regression, have been evaluated (Sarlija et al, 

2004; Banasik et al, 2001; Greene, 1998; Leonard, 1992; Steenackers &Goovaerts, 1989; 

Boyes et al, 1989; Orgler, 1971). Other methods are: mathematical programming, non-

parametric smoothing methods, Markov chain models, expert systems, neural networks, 

genetic algorithms and others (Hand & Henley, 1997). Also, case studies have been the 

subject of investigation in the credit scoring literature (see, for example: Lee & Chen, 2005; 

Lee et al, 2002; Banasik et al, 2001; Leonard, 1995; Myers & Forgy, 1963). 
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        Decision trees are another classification techniques used in developing credit scoring 

models, also known as recursive partitioning (Hand & Henley, 1997) or Classification and 

Regression Trees (CART). Probably one of the first uses of a CART model was pioneered by 

Breiman et al. (1984). However, Rosenberg & Gleit (1994) stated that the first model based 

on a decision tree was initiated by Raiffa & Schlaifer (1961) at the Harvard Business School, 

and also stated that later on a credit scoring model derived from decision trees was 

developed by David Sparks in 1972 at the University of Richmond. A classification tree is a 

non-parametric method to analyse dependent and/or categorical variables as a function of 

continuous explanatory variables (Breiman et al. 1984; Arminger et al, 1997). In a 

classification tree, a dichotomous tree is built by splitting the records at each node based on a 

function of a single input. The system considers all possible splits to find the best one, and the 

winning sub-tree is selected based on its overall error rate or lowest cost of misclassification 

(Zekic-Susac et al, 2004). A comparison of discriminant analysis and recursive partitioning 

was investigated by Boyle et al. (1992). Other applications of decision trees in credit scoring 

were described by Baesens et al. (2003), Stefanowski & Wilk (2001), Thomas (2000), Fritz & 

Hosemann (2000), Hand & Jacka (1998), Henley & Hand (1996), and Coffman (1986). Also, 

Paleologo et al. (2010) evaluate credit requests from corporate clients, address the issue of 

unbalanced data sets, and use a subagging procedure within their decision tree paradigm 

which utilizes extreme values for missing data. 

 

TABLE 2 HERE 

 

Table 2 summarises a comparison between decision trees and other techniques, such as 

logistic regression and K-nearest neighbour (K-NN), in terms of average bad risk rate, by 

Henley & Hand (1996). The bad risk rates were clearly similar for the different scoring 

techniques. It is also clear that this study had a much higher proportion of bad rates than 

other studies.  

 

More sophisticated models, also known as artificial intelligence include, for example, expert 

systems, neural networks and genetic programming (see for example, Sustersic et al, 2009) 

are discussed below.  

        Expert systems are one of the new technologies recently applied into credit scoring 

applications, which depend on human experts‟ knowledge, interpretation and way of thinking 

to solve complex problems (Rosenberg & Gleit 1994). Research on expert systems, in this 

context, is so limited and unfortunately does not provide much detail. Hand & Henley (1997) 

noted that one of the expert systems‟ privileges is the ability to explain outcomes and, of 

course, this can provide reasons for denying a credit applicant. Rosenberg & Gleit (1994, p. 

601) briefly discussed what Nelson & Illingworth (1990) stated about the main three 

components of such an expert system, which is relying on knowledge, which includes “facts 

and rules”, whose combination requires a conclusion, by an engine, and “an interface” to 
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enable users to understand and, therefore, explain decisions and recommendations, and then 

it updates this information.  

        Recently, some other applications using expert systems have been published. They 

include the work by Ben-David & Frank (2009), who made a comparison between machine 

learning models and a credit scoring expert system, whose results revealed that while some 

of the machine learning models‟ accuracies are better than those expert system model, most 

of them are not; Kumra et al. (2006) applied an expert system approach to a commercial loan, 

and found that the expert system can introduce many characteristics of the “underwriting 

process” that different approaches do not (for other earlier applications, see Lovie, 1987; 

Leonard, 1993).  

        Neural networks are mathematical techniques motivated by the operations of the 

human brain as influential in problem solving techniques. Gately (1996, p. 147) defined neural 

networks as “an artificial intelligence problem solving computer program that learns through a 

training process of trial and error”. Therefore, neural networks‟ building requires a training 

process, and the linear or non-linear variables in the training procedure help distinguish 

variables for a better decision-making outcome. In the credit scoring area, neural networks 

can be distinguished from other statistical techniques. Al Amari (2002, p. 63) gave an 

example to differentiate between regression models and neural networks models. In his 

discussion, he stated that to build an applicant score using regression models, the “inverse 

matrix” should be used, whilst in neural networks the “applicants‟ profile” is used to perceive 

those applicants‟ relative scores. Also, using neural networks, if the outcomes are 

unacceptable, the estimated scores will be changed by the nets until they become acceptable 

or until having each applicant‟s optimal score. 

        Recently neural nets have emerged as a practical technology, with successful 

applications in many fields in financial institutions in general, and banks in particular. 

Applications, such as credit card fraud, bankruptcy prediction, bank failure prediction, 

mortgage application, option pricing and others were suggested by Gately (1996) as financial 

areas where neural networks can be successfully used. They address many problems, such 

as pattern recognition, and make use of feed-forward nets‟ architecture, such as the multi-

layer feed-forward nets and probabilistic neural networks, representing the majority of these 

applications (Bishop, 1995; Masters, 1995). A few credit scoring models using probabilistic 

neural nets have been investigated (Masters, 1995; Zekic-Susac et al, 2004).  

 

TABLE 3 HERE 
 

Correspondingly, of course, many scoring models applying multi-layer feed-forward nets have 

been used (Dimla & Lister, 2000; West, 2000; Reed & Marks, 1999; Desai et al, 1996; Bishop, 

1995; Trippi & Turban, 1993). The neural network models have the highest ACC rates in 

these studies when compared with discriminant analysis and logistic regression, or other 

techniques, although results are often very close. Table 3 summarises a comparison between 
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two types of neural networks and two conventional techniques, in terms of ACC rates by 

Abdou & Pointon (2009). The ACC rates were clearly better under neural network models 

compared with conventional models under different sub-samples.  

        Hybrid models, as well as neural networks and advanced statistical techniques have 

been used in building scoring models (Trinkle & Baldwin, 2007; Blochlinger & Leippold, 2006; 

Seow & Thomas, 2006; Lee & Chen 2005; Yim & Mitchell, 2005; Kim & Sohn 2004; Lee et al, 

2002; Stefanowski & Wilk, 2001). Meanwhile, comparisons between traditional and advanced 

statistical techniques have been investigated too (Abdou & Pointon, 2009; Abdou et al. 2009; 

Lee & Chen 2005; Ong et al, 2005; Zekic-Susac et al, 2004; Malhotra & Malhotra, 2003; Lee 

et al, 2002; Fritz & Hosemann, 2000). Comparisons have also been extended to include feed-

forward nets and back-propagation nets (Malhotra & Malhotra, 2003; Arminger et al, 1997). 

Statistical association measures showed that the neural network models are better 

representations of data than logistic regression and CART (Zekic-Susac et al, 2004), while 

discriminant analysis, in general, has a better classification ability but worse prediction ability, 

whereas logistic regression has a relatively better prediction capability (Liang, 2003). 

Generally, the neural network models have the highest average correct classification rate 

when compared with other traditional techniques, such as discriminant analysis and logistic 

regression, taking into account the fact that results were very close (see, for example, Abdou, 

et al., 2008; Crook et al, 2007; Zekic-Susac et al, 2004; Haykin, 1994).  

 

TABLE 4 HERE 
         

West (2000, p. 1150) has developed five different neural networks‟ architectures, using 

German and Australian credit scoring data-sets. Based on West‟s credit scoring error 

analysis‟ results, it has been suggested that both “the mixture-of-experts (MOE) and radial 

basis function (RBF) neural networks should be considered for scoring applications”, whilst 

multilayer perceptron (MLP) may not be the utmost precise neural net model. Also, logistic 

regression is considered as the most accurate model between conventional models, as 

shown in Table 4.  

        Genetic programming is one of the most recent techniques that has been applied in the 

field of credit scoring. It began as a subset of genetic algorithmic techniques, and can be 

considered as an extension of genetic algorithms (Koza, 1992; Golgberg, 1989). Genetic 

algorithms transform a data-set according to fitness value, by applying genetic operations. 

Under genetic algorithms, the solution is in the form of a “string” (Kaza, 1992). In genetic 

programming a set of competing programs are randomly generated by processes of mutation 

and crossover, which mirror the Darwinian theory of evolution, and the resultant programs are 

evaluated against each other. Generally, genetic programming generates competing 

programs in the LISP (or similar) language as a solution output (Nunez-Letamendia, 2002; 

Koza, 1994). The use of genetic programming applications is a rapidly growing area (Chen & 

Huang, 2003; Teller & Veloso, 2000), and the number of applications has increased during 
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the last couple of decades, such as bankruptcy prediction (Etemadi et al. 2009; MaKee & 

Lensberg, 2002), scoring applications (Huang et al. 2007; Huang et al. 2006), classification 

problems (Lensberg et al. 2006; Ong et al. 2005; Zhang & Bhattacharyya, 2004) and financial 

returns (Xia et al. 2000). 

 

TABLE 5 HERE 
 

Table 5 sums up predictive classification results of two genetic programming models (best 

genetic programme, GPp, and best genetic team, GPt) and two conventional techniques 

(weight of evidence and probit analysis), investigated by Abdou (2009c). It is clear that for the 

testing sample the classification results for genetic models were better than those for the 

weight of evidence model, whilst the results were comparable with probit analysis. 

Nevertheless the extra small percentage point superiority of genetic programming may, for a 

large bank, be very valuable in terms of after-tax profit. For the overall sample, it is evident 

that genetic programming results were better than those for the conventional techniques 

(85.82% for GPt which exceeds 81.93% for probit analysis). 

        Crook et al. (2007) summarize the predictive accuracy of different classifiers using credit 

scoring application data. Table 6 shows some of those studies‟ published results. It can be 

concluded from the results in Table 6 that there is no best credit scoring technique for all 

data-sets, it mainly depends on the details of the problem, the data structure and size, the 

variables used, the market for the application, and the cut-off point. Generally, the overall 

performance of advanced statistical techniques, such as neural nets and genetic 

programming, is better than other statistical techniques. Nevertheless, there is a role for 

conventional techniques, such as linear discriminant analysis and logistic regression in some 

studies. As noted by Crook et al. (2007), the figures in Table 6 can only be compared down a 

column, not between different studies. The reason is that these studies differ in how the cut-

off was set, figures are not weighted according to the relative cost, and few studies have used 

statistical “inferential” tests to investigate if differences were significant.  

 

TABLE 6 HERE 
 

Most studies that have made a comparison between different techniques found that 

sophisticated statistical techniques such as neural networks, genetic programming and fuzzy 

algorithms are better than the traditional ones based on the average correct classification rate 

criterion. This sometimes depends on the original group that is used to compute the correct 

classification, depending on “bad” or “good and bad” together (Hoffmann et al. 2007; 

Blochlinger & Leippold, 2006; Desai et al. 1996). However, the more simple classification 

techniques, such as linear discriminant analysis and logistic regression, also have a very 

good performance in this context, which is in the majority of cases not statistically different 

from other techniques (Baesens et al, 2003). It should be stressed that other statistical 
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techniques, such as support vector machines (see for example Deschaine & Francone, 

2008), smoothing non-parametric methods, time varying models, mathematical programming, 

K-nearest neighbour, fuzzy rules, kernel learning method, Markov models and linear 

programming, have been discussed in the literature (see for example: Bellotti & Crook, 2009; 

Elliott & Filinkov, 2008; Crook et al., 2007; Hoffmann et al., 2007; Huang et al., 2007; 

Baesens et al., 2003; Yang, 2007; Hand & Henley, 1997).  

 

2.5. Credit scoring performance evaluation criteria 

Performance evaluation criteria, such as the confusion matrix or the Average Correct 

Classification (ACC) rate, the estimated misclassification cost, mean square error (MSE), root 

mean square error (RMSE), mean absolute error (MAE), the receiver operating 

characteristics (ROC) curve, GINI coefficient, and other criteria are all used in credit scoring 

applications under different fields. The following is a discussion of some of these performance 

criteria.   

        Confusion matrix (average correct classification rate criterion) is one of the most 

widely used criteria in the area of accounting and finance (for credit scoring applications) in 

particular, and other fields, such as marketing and health in general. The average correct 

classification rate measures the proportion of the correctly classified cases as good credit and 

as bad credit in a particular data-set. The average correct classification rate is a significant 

criterion in evaluating the classification capability of the proposed scoring models. The idea of 

correct classification rates comes from a matrix, which is occasionally called “a confusion 

matrix” (Zheng et al., 2004), otherwise called a classification matrix (Abdou, 2009c). A 

classification matrix presents the combinations of the number of actual and predicted 

observations in a data-set. In Yang et al. (2004) study, the confusion matrix was compared 

with another two criteria: Mahalanobis Distance and Kolmogorov-Smirnov Statistics with 

reference to ROC curve. In other studies this matrix has been compared with MSE and RMSE 

(Kumar et al. 1995; Fletcher & Goss, 1993). Commonly the mainstream of credit scoring 

applications either in accounting and finance or other fields have used the average correct 

classification rate as a performance evaluation measure (Paliwal & Kumar, 2009). 

        It is believed that the average correct classification rate is an important criterion to be 

used, especially for new applications of credit scoring, because it highlights the accuracy of 

the predictions. Yet, the ACC rate criterion does not accommodate differential costs to a 

bank, arising from different types of error. Specifically, it ignores different misclassification 

costs for the actual good predicted bad and the actual bad predicted good observations. In 

the real field it is believed that the cost associated with Type II errors is normally much higher 

than that associated with Type I errors (Baesens et al, 2003), as explained in the next section.    

        The estimated misclassification cost criterion simply measures the relative costs of 

accepting customer applications for loans that become bad versus rejecting loan applications 

that would be good. It is based on the confusion matrix; this criterion gives an evaluation of 

the effectiveness of the scoring models‟ performance, which can cause a serious problem to 
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the banks in the case of the absence of these estimations, especially with the actual bad 

predicted good observations. The estimated misclassification cost criterion, is a crucial 

criterion to evaluate the overall credit scoring effectiveness, and to find the minimum expected 

misclassification cost for the suggested scoring models.  

        A few credit scoring applications have used the estimated misclassification cost criterion 

in the field of finance (Abdou, 2009b; Abdou & Pointon, 2009; West, 2000; Lee & Chen, 2005) 

and in other fields (Hill & Remus, 1994). The reason, as noted by Lee & Chen (2005), is that 

the trustworthy or consistent estimates of the misclassification costs are a complicated and 

real challenging job to be provided, and, therefore, valid prediction might not be available. Lee 

& Chen (2005, p. 749) stated that “it is generally believed that the costs associated with (both) 

Type I error (good credit misclassified as bad credit) and Type II error (bad credit 

misclassified as good credit) are significantly different” and “the misclassification costs 

associated with Type II errors are much higher than (the misclassification cost) associated 

with Type I errors”. West (2000) noted that Dr Hofmann, who compiled his German credit 

data, reported that the ratio of misclassification costs, associated with Type II and Type I, is 

5:1, which has been used by Abdou (2009b) as well. The use of this relative cost ratio has 

been extended, in terms of sensitivity analysis, to higher cost ratios (i.e. 7:1, 10:1 etc) as 

noted by Abdou (2009c) and Abdou & Pointon (2009).  

        The Receiver Operating Characteristics (ROC) curve, or sometimes called “Lorentz 

diagram”, is a two-dimensional graph, which represents the proportion of bad cases classified 

as bad (called „sensitivity‟ which is plotted on the vertical axis) versus the proportion of good 

cases classified as bad (called „1 – specificity‟ which is plotted on the horizontal axis) at all 

cut-off score values. In fact, sensitivity is equal to 1 minus the Type II error rate, and 

specificity is equal to 1 minus the Type I error rate, as shown in Figure 1 (Crook et al. 2007; 

Yu et al. 2009; Yang et al. 2004; Baesens et al. 2003). The ROC curve illustrates the 

achieved overall performance with reference to all cut-off score points. The ROC curve 

illustrates the behaviour of classifiers with no regard to misclassification costs or different 

class distributions; therefore, it effectively separates classification performance from these 

features (Yang et al. 2004; Baesens et al. 2003; Thomas et al. 2002). The ROC curve 

identifies appropriate cut-off score points, whose scores can maximize the Kolmogorov-

Smirnov statistic, but it visualizes the details from the Kolmogorov-Smirnov statistic if the 

ROC is illustrated (Blochlinger & Leippold, 2006; Hand & Jacka, 1998).  

 

FIGURE 1 HERE 
 

Blochlinger & Leippold, (2006, p. 853) stated that “The maximum distance between the ROC 

curve and the diagonal equals a constant times the Kolmogorov-Smirnov statistic, but only if 

the ROC is concave. If the ROC curve is not concave, there is no such general 

correspondence”.  The ROC curve was originally used in psychology, health and medicine, 

and manufacturing, as a technique to measure the performance of the “signal recovery 
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techniques” and “diagnostic systems”. Recently the ROC curve has been widely used in 

medicine and health applications (Song et al. 2005; Ottenbacher et al. 2004; Shang et al. 

2000). Other fields, such as an engineering application, have witnessed the use of the ROC 

curve (Yesilnacar & Topal, 2005). Also, the use of the ROC curve in finance and banking 

applications has been observed (Banasik & Crook, 2007; Blochlinger & Leippold, 2006; 

Baesens et al. 2003).   

        It should be emphasised that there are other performance evaluation criteria, such as the 

GINI coefficient, which “gives one number that summarizes the performance of the scorecard 

over all cut-off scores” (Thomas et al. 2002, p. 116), MSE, RMSE, MAE, and Goodness of Fit 

test (calibration). Table 7 summarizes some of the performance evaluation criteria 

investigated by Paliwal & Kumar (2009). It is clear from their review article that the most 

frequent performance criterion is the confusion matrix; and 18 out of their 36 cited studies are 

accounting and finance applications, whilst the remainder are in other fields. In terms of error 

rates, 25 studies used either mean squared error (MSE), root mean squared error (RMSE), 

mean absolute error (MAE) or mean error,, and only 7 used the ROC curve.,  

 

TABLE 7 HERE 
 

Thus, there is no study, to the best of our knowledge, which has identified the optimal 

evaluation criterion. The best, in our opinion, would be determined by an array of factors, inter 

alia: the methodology used in the analysis, the nature of the data, the market where these 

data are collected, and the availability of the technology facilitating the analysis of very large 

data-sets.  

        At the practical level the choice of technology will depend on specific circumstances, for 

example, on whether it is a matter of intentional fraud or a matter of financial failure. Each of 

these requires slightly different mechanisms for detection. For the former, technologies such 

as artificial intelligence techniques (neural networks, data mining, genetic algorithms, fuzzy 

systems etc.) are good in detecting variations in customers‟ behaviors. For the latter, close 

monitoring (such as period analysis) of customers‟ financial portfolio, and a systematic 

breakdown of customers‟ assets and liabilities may be needed. Of course, the big challenge 

here is that customers‟ financial fortunes may be subjected to sudden changes such as bad 

investments (e.g. investors of Lehman Brothers) or plunge in value of financial assets (e.g. 

U.S. housing woes).   

        In this era of shortening economic cycle, values of financial assets may swing wildly at 

times and this make credit scoring of customers very challenging as it is almost always done 

behind the curve? The issue here is: can we make credit scoring be able to catch up with the 

dynamism of rapidly changing customers‟ profiles? Obviously this can only be done using a 

combination of approaches, as follows: (i) sharing of customers‟ financial profiles between 

lenders via credit bureau. This may be subjected to restrictions on banking secrecy 

requirements (ii) dynamically track spending patterns of customers. With increasing retailers 
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adopting on-line real-time system connected to the banking networks, this is a promising 

direction in catching unexpected customers‟ behaviors – frequently link to deteriorating credit 

profiles (iii) collateralized credit for customers with detected weak financial profiles. However, 

this has to be done discreetly as it may jeopardize customer relationship. At the end of the 

day, the lenders will have to strike a balance between being cautious and business 

expansion. Prudence is a delicate balancing act. 

 

3. Conclusion 

In this paper, we have carried out a comprehensive review of 214 studies in credit scoring, 

various performance evaluation criteria and different statistical techniques, which are used 

particularly in finance and banking. It has been settled in the literature that using scoring in 

credit evaluation rules out personal judgement. Credit scoring systems are numerical 

systems, and the decision will be taken, depending on the applicant‟s total score, whilst in 

personal judgement this issue is neglected, the decision here depends on decision-makers‟ 

personal experience and other cultural issues, which vary from market to market. It should be 

emphasised that there is no ideal credit scoring modelling procedure, which would guide the 

user in the choice of specific variables, cut-off score, validation method and sample size.  It is 

not entirely clear how those factors may have had an influence on the alleged superiority of 

one technique over another, with ramifications or predictive ability in different circumstances. 

Our review clearly points out the key role of statistical scoring techniques in their use as a 

critical tool for prediction and classification problems. This review of the literature leads to the 

conclusion that there is no overall best statistical technique/method used for building credit 

scoring models, and the best technique for all data sets does not exist yet.  As Hand & Henley 

(1997, p.535) conclude: what is best depends on the details of the problem, the structure of 

the data, the features of the application, the extent to which it is possible to segregate the 

classes by using those features, and the classification‟s objective(s).  

        Furthermore, a comparison between different statistical approaches demonstrates that 

advanced/sophisticated techniques, such neural networks and genetic programming perform 

better than more conventional techniques, such as discriminant analysis and logistic 

regression, in terms of their higher predictive ability. However, the results of some studies 

revealed that the predictive capabilities of both approaches were sufficiently similar to make it 

difficult to distinguish between them. These statistical techniques help credit decision-makers 

to predict banks‟ current and/or new customers as either good credit or bad credit, based on 

their attributes and “credit” information, and these performance evaluation criteria have also 

helped them to choose the best model based on their aims and objectives, constrained by 

their currently used evaluation system, specific inputs and target outcomes. However, 

misclassification costing is not a test of predictive capabilities, but an evaluation of the 

implications for the bank‟s costs. Misclassification costs are particularly important especially 

for type II errors, which misclassify bad loans as good. In reality it is difficult for researchers, 

although it is easier for the bankers, to establish more accurate costs.  By contrast, type I 
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errors refer only to the opportunity cost of lost interest, whereas for type II misclassifications 

the bank loses some or all of not only the interest but also the repayment of principal. More 

recently, ROC and GINI, which are more advanced than other performance evaluation 

criteria, have been used. Although the GINI gives a measure of performance as a single 

score, the ROC provides useful information of the relative propensity of the two main 

misclassifications at different cut-off points. The banks should take their own evaluations of 

differential misclassification costs and use the ROC information to choose a cut-off point 

which minimizes the total misclassification costs. Credit scoring techniques are an 

astonishingly useful tool, which should help banks control an array of risks. It can be 

concluded that credit scoring developments and applications continue to be hugely expanded 

in various fields particularly in finance and banking. Also, the use of hybrid methods, such as 

the hybrid neural discriminant techniques offers one promising avenue for better classification 

and predictive capabilities.   

        This paper addresses a number of directions for future research. Firstly, having reviewed 

such a vast amount of literature on credit scoring, it seems surprising to observe that the 

ranking of the importance of variables used in building the scoring models are almost totally 

neglected in published research papers on credit scoring. This has important ramifications for 

the policies of the banks and for the banking system as a whole. Future research might 

usefully be employed in investigating this further. One of the reasons why the banks may not 

publish their own list of important variables may be because of their market image or ethical 

implications of their policies. Secondly, researchers in one discipline tend to ignore research 

in other disciplines partly because of salience and time pressures. However, research into 

personal bankruptcies from a social science perspective may throw light upon credit scoring. 

Future research should address the identification of drivers of default from a behavioural 

perspective, and the reasons for, inter alia, trends in self-bankruptcy determination, house 

repossession, rising education costs, and healthcare cost issues. Thirdly, not only does 

technology have implications for new modelling procedures, but the changing technological 

environment affects consumer spending patterns and the types of loans that they may wish to 

acquire, and consequently the types of loans that may be subject to default. Fourthly, 

researchers need to be innovative in establishing potentially important variables, as social 

and economic conditions change, in their credit scoring modelling procedures. Fifthly, 

research should focus more upon the timing of default within the period of the loan, and 

distinguish also between slow payers, intermittent payers and defaulters. Sixthly, and finally, 

in future research there needs to be incorporated into the modelling procedures time series 

aspects, so that trends in variable impact can be predicted. This is especially important for 

loans of longer duration, whose default is likely to be associated with differing attributes from 

those of short loans in a rapidly changing economic and social environment.  
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TABLES 

Table 1: Classification results for different scoring models (%) 

Model Total correct 
classification  

Correct 
classification 
of good 

Correct 
classification 
of bad 

The 
percentage 
of bad 
accepted 
into the good 
group 

Discriminant analysis 65.4 62.2 78.0 8.1 
Linear regression model 55.1 47.0 87.5 6.2 
Probit model 71.9 76.4 54.1 13.1 
Poisson model 62.4 57.7 81.8 7.3 
Negative binomial  II model  63.3 58.9 80.6 7.6 
Two step procedure  64.9 61.1 79.8 7.6 

Source: Guillen & Artis (1992, p. 9), adapted.  

 

Table 2: Comparison of the bad risk rates using different scoring techniques 

Scoring technique Bad risk rate (%) 

K-NN (any D) 43.09 
K-NN (D = 0) 43.25 
Logistic regression 43.30 
Linear regression 43.36 
Decision tree  43.77 

Notation: K-NN = k-nearest-neighbour. It is a standard technique in pattern recognition and non-
parametric/non-linear statistics, to credit scoring problems. Source: Henley & Hand (1996, p. 91). 

 

Table 3: Comparison of the ACC rates using different scoring techniques 

Scoring technique ACC rate (%) 

 Sample1 Sample2
 

Sample3
 

Multiple Discriminant Analysis 78.05 78.84 79.40 
Logistic Regression 82.33 81.46 82.09 
Probabilistic Neural Network 85.90 87.32 87.64 
Multi-layer Feed-forward Neural Network 84.07 84.47 87.48 

Sample1 denote 67/33% for the training/testing sets; Sample2 denote 80/20% for the training/testing 
sets; Sample3 denote 90/10% training/testing sets. Source: Abdou & Pointon (2009, p. 401), modified. 

 

Table 4: Statistically significant differences, and credit scoring errors: comparing models and credit 
data 

 German credit  Australian credit  

Superior models MOE MOE 
 RBF RBF 
 MLP MLP 
 Logistic reg. Logistic reg. 
  LDA 
  K nearest neighbor 
   
Inferior models LVQ LVQ 
 FAR FAR 
 LDA Kernel density 
 K nearest neighbor CART 
 Kernel density  
 CART  

Notation: MOE = Mixture of Experts; RBF = Radial Basis Function; MLP = Multi-Layer Perceptron; LVQ 
= Learning Vector Quantization; FAR = Fuzzy Adaptive Resonance, all of which are neural networks 
models; and LDA = Linear Discriminant Analysis. Source: West (2000, p. 1145). 
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Table 5: Comparing classification results for different scoring models 

Scoring Model Correctly classified results 

 Testing Overall  

Weight of Evidence Model 52.16 54.99 
Probit Analysis 82.69 81.93 
Genetic Programming – Best Programme (GPp) 82.93 83.28 
Genetic Programming – Best Team (GPt) 83.89 85.82 
Source: Abdou (2009c, pp. 11411-11412), modified. 

 
 
Table 6: A comparison of percentage correctly classified from published research 

 Boyle et 
al. 
(1992) 

Desai et 
al. 
(1997) 

West 
(2000)

1
 

Lee et 
al. 
(2002) 

Malhotra 
& 
Malhotra 
(2003)  

Baesens 
(2003)

3
 

Ong et 
al. 
(2005)

4
 

 
Linear 
regression or 
LDA 

 
77.5 

 
66.5 

 
79.3 

 
71.4 

 
69.3 

 
79.3 

 
80.8 

Logistic 
regression 

 67.3 81.8 73.5  79.3  

Decision tree 75.0  77.0   77.0 78.4 
Math 
programming 

74.7     79.0  

Neural nets  66.4 82.6 73.7 
(77.0)

2
 

72.0 79.4 81.7 

Genetic 
programming 

  
 

 
 

 
 

 
 

 
 

82.8 

K-nearest 
neighbours 

  76.7   78.2  

Support 
vector 
machines 

     79.7  

1
Figures are an average across two data-sets. 

2
Hybrid LDA and NN. 

3
Figures are an average of eight 

data-sets. 
4
Figures are an average over two data-sets. Source: Crook et al. (2007, p. 1457). 

 

 

Table 7: Frequently used performance evaluation criteria 

Error measure No. of papers 

Confusion matrix 36 
MSE/RMSE 16 
MAE 7 
Mean error 2 
R

2
/Adj R

2
 2 

Sensitivity, specificity analysis using ROC curve 7 
Goodness of fit test (Calibration) 3 
Discrimination (C-statistic/AUC) 5 

Notation: MSE = Mean Square Error; RMSE = Root Mean Square Error; MAE = Mean Absolute Error; 
ROC curve = Receiver Operating Characteristics curve; AUC = Area Under the ROC Curve, all of which 
are performance evaluation criteria. Source: Paliwal & Kumar (2009, p. 14), adapted.  
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FIGURES 

Figure 1: The Receiver Operating Characteristics (ROC) curve 

 
 
 
 
 
 
 
 
 
 
 

 

 
 

 

Proportion of 
bads classified as 
bad 

The proportion of bad cases classified as bad (vertical axis) against the proportion of 
good cases classified as bad (horizontal axis) at all cut-off score values can be 
represented by the ROC curve. If the proportion of bad cases classified as bad equal 
to the proportion of good cases classified as bad, in this case there is no separation 
at all and the distribution are identical, the ROC curve will lie over the slanting 
straight line; therefore the proportion of the area below the ROC curve which is 
above the slanting line can be used as a measure of the separation yielded by a 
scoring model. Source: Crook et al. (2007, p. 1450), adapted. 
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