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Synopsis: The present paper∗ presents in chapter 1 a model for the character-
ization of concrete creep and shrinkage in design of concrete structures (Model
B3), which is simpler, agrees better with the experimental data and is better
theoretically justified than the previous models. The model complies with the
general guidelines recently formulated by RILEM TC-107ß1. Justifications of
various aspects of the model and diverse refinements are given in Chapter 2, and
many simple explanations are appended in the commentary at the end of Chapter
1 (these parts do not to be read by those who merely want to apply the model).
The prediction model B3 is calibrated by a computerized data bank comprising
practically all the relevant test data obtained in various laboratories throughout
the world. The coefficients of variation of the deviations of the model from the
data are distinctly smaller than those for the latest CEB model (1990), and much
smaller than those for the previous model in ACI 209 (which was developed in
the mid-1960’s). The model is simpler than the previous models (BP and BP-
KX) developed at Northwestern University, yet it has comparable accuracy and
is more rational. The effect of concrete composition and design strength on the
model parameters is the main source of error of the model. A method to reduce
this error by updating one or two model parameters on the basis of short-time
creep tests is given. The updating of model parameters is particularly important
for high-strength concretes and other special concretes containing various admix-
tures, superplasticizers, water-reducing agents and pozzolanic materials. For the
updating of shrinkage prediction, a new method in which the shrinkage half-time
is calibrated by simultaneous measurements of water loss is presented. This ap-
proach circumvents the large sensitivity of the shrinkage extrapolation problem
to small changes in the material parameters. The new model allows a more real-
istic assessment of the creep and shrinkage effects in concrete structures, which
significantly affect the durability and long-time serviceability of civil engineering
infrastructure.

∗Submitted in 1995 as a report to ACI Committee 209, Creep and Shrinkage of Con-
crete, which voted a unanimous approval except for one opposing vote. The work was
initially supported by NSF grant MSS-9114426 to Northwestern University and a grant
from the ACBM Center at Northwestern University. The evaluation of the model was
partly supported by a grant from the Infrastructure Technology Institute (ITI) at North-
western University. Emilie Becq-Giraudon, a graduate research assistant, is thanked for
valuable assistance in some practical application studies supported by ITI.
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Chapter 1

Description of Model B3 and
Prediction Procedure

1.1 Introduction

During the last two decades, significant advances in the understanding of
creep and shrinkage of concrete have been achieved. They include: (1) vast
expansion of the experimental data base on concrete creep and shrinkage; (2)
compilation of a computerized data bank; (3) development of computerized
statistical procedures for data fitting and optimization; and (4) improved un-
derstanding of the physical processes involved in creep and shrinkage, such
as the aging, diffusion processes, thermally activated processes, microcrack-
ing and their mathematical modeling. These advances have made possible
the formulation of the present model, which represents an improvement com-
pared to the model in ACI 209. The new model (representing the third major
updateß2 of the modelsß3,4 developed at Northwestern University) is labeled
Model B3.

In Chapter 1 of this paper, the model is formulated succinctly, without
any explanations, justifications, extensions and refinements. These are rele-
gated to Chapter 2 and to the Commentary at the end of Chapter 1 of this
report, which does not have to be read by those who merely want to apply
the model and do not have time for curiosity about its justification. The
methods and typical examples of structural analysis for creep and shrinkage
will not be discussed in this report because they are adequately treated in
Chapters 3-5 of ACI 209 as well as some books.

A background at the level of standard undergraduate courses in mechanics
of materials, structural mechanics, engineering mathematics and concrete
technology is expected from the user.

The present model represents an improved alternative to Chapter 2 of
ACI 209. Chapters 3-5 of that report, dealing with the structural response,
remain applicable to the present report. The improvement means that the
coefficient of variation of the errors of the predictions of creep and shrinkage
strains are 23 % for creep (basic and with drying) and 34% for shrinkage for
the present model, while those for the model from Chapter 2 of ACI 209 are
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58% for basic creep, 45% for creep with drying and 55% for shrinkage. The
penalty is some reduction in simplicity of the model. The user should decide
what accuracy he needs depending on the sensitivity of the structure defined
in Section 1.2.1

1.2 Applicability Range

1.2.1 Levels of Creep Sensitivity of Structures and Type
of Analysis Required

Accurate and laborious analysis of creep and shrinkage is necessary only for
some special types of structures. That depends on the sensitivity of the struc-
ture. Although more precise studies are needed, the following approximate
classification of sensitivity levels of structures can be made on the basis of
general experienceC1,∗.

Level 1. Reinforced concrete beams, frames and slabs with spans under 65
ft (20 m) and heights of up to 100 ft (30 m), plain concrete footings, retaining
walls.

Level 2. Prestressed beams or slabs of spans up to 65 ft. (20 m), high-rise
building frames up to 325 ft (100 m) high.

Level 3. Medium-span box girder, cable-stayed or arch bridges with spans
of up to 260 ft (80 m), ordinary tanks, silos, pavements.

Level 4. Long-span prestressed box girder, cable-stayed or arch bridges;
large bridges built sequentially in stages by joining parts; large gravity, arch
or buttress dams; cooling towers; large roof shells; very tall buildings.

Level 5. Record span bridges, nuclear containments and vessels, large off-
shore structures, large cooling towers, record-span thin roof shells, record-
span slender arch bridges.

The foregoing grouping of structures is only approximate. If in doubt to
which level a given structure belongs one should undertake an accurate anal-
ysis of the creep and shrinkage effects in a given structure (such as maximum
deflection, change of maximum stress and crack width) and then judge the
severity of the effects compared to those of the applied loads.

The model presented in this report is necessary for levels 4 and 5. It is
also preferable but not necessary for level 3. For level 2 and as an acceptable
approximation also for level 3, simpler models are adequate including the
model in Chapter 2 of ACI 209.

A refined model such as that presented here ought to be always used
for structures analyzed by sophisticated computer methods, particularly the
finite element method (because it makes no sense to input inaccurate material
properties into a very accurate computer program). The error in maximum

∗Superscripts preceded by ‘C’ refer to the comments listed in the Commentary in
Section 1.7.8
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deflections or stresses caused by replacing an accurate analysis of creep and
shrinkage effects with a simple but crude estimation is often larger than the
gain from replacing old fashioned frame analysis by hand with a computer
analysis by finite elements.

The age-adjusted effective modulus method (ACI 209) is recommended
for levels 3 and 4. The effective modulus method suffices for level 2. For level
1, creep and shrinkage analysis of the structure is not needed but a crude
empirically based estimate is desirable. Level 5 requires the most realistic and
accurate analysis possible, typically a step-by-step computer solution based
on a general constitutive law, coupled with the solution of the differential
equations for drying and heat conduction.

The creep and shrinkage deformations invariably exhibit large statistical
scatter. Therefore a statistical analysis with estimation of 95% confidence
limits is mandatory for level 5. It is highly recommended for level 4. For
lower levels it is desirable but not necessary, however, the confidence limits
for any response X (such as deflection or stress) should be considered, being
estimated X̄ × (1 ± 1.96ω) where X̄ = mean estimate of X and ω is taken
same as in Eq. (1.25).

Analysis of temperature effects and effects of cycling of loads and envi-
ronment ought to be detailed for level 5 and approximate for level 4. It is
not necessary though advisable for level 3 and can be ignored for levels 1 and
2 (except perhaps for the heat of hydration effects).

1.2.2 Parameter Ranges

The prediction of the material parameters of the present model from strength
and composition is restricted to Portland cement concrete with the following
parameter ranges:C2

0.35 ≤ w/c ≤ 0.85, 2.5 ≤ a/c ≤ 13.5 (1.1)

2500 psi ≤ f̄c ≤ 10, 000 psi, 10 lb/ft3 ≤ c ≤ 45 lbs/ft3 inch-pound system

17 MPa ≤ f̄c ≤ 70 MPa 160 kg/m3 ≤ c ≤ 720 kg/m3 SI
(1.2)

f̄c is the 28 day standard cylinder compression strength of concrete (in psi
(inch-pound system) or MPa (SI) units), w/c is the water-cement ratio by
weight, c is the cement content (in lb/ft3 (inch-pound system) or kg/m3 (SI)
units) and a/c is the aggregate-cement ratio by weight. The formulae are
valid for concretes cured for at least one dayC3.

1.3 Definitions, Basic Concepts and Overview

of Calculation Procedures

The present prediction model is restricted to the service stress rangeC4 (or
up to about 0.45f̄c, where f̄c = mean cylinder strength at 28 days). This
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means that, for constant stress applied at age t′,

ǫ(t) = J(t, t′)σ + ǫsh(t) + α∆T (t) (1.3)

in which J(t, t′) is the compliance function = strain (creep plus elastic) at
time t caused by a unit uniaxial constant stressC5,C6 applied at age t′, σ =
uniaxial stress , ǫ = strain (both σ and ǫ are positive if tensile), ǫsh =
shrinkage strain (negative if volume decreases) ∆T (t) = temperature change
from reference temperature at time t, and α = thermal expansion coefficient
(which may be approximately predicted according to ACI 209ß5).

The compliance function may further be decomposed as

J(t, t′) = q1 + C0(t, t
′) + Cd(t, t

′, t0) (1.4)

in which q1 = instantaneous strain due to unit stress, C0(t, t
′) = compliance

function for basic creep (creep at constant moisture content and no moisture
movement through the material), and Cd(t, t

′, t0) = additional compliance
function due to simultaneous dryingC7.

The creep coefficient, φ(t, t′), which represents the most convenient way
to introduce creep into structural analysis, should be calculated from the
compliance functionC8:

φ(t, t′) = E(t′)J(t, t′) − 1 (1.5)

where E(t′) = (static) modulus of elasticity at loading age t′.
The relative humidity in the pores of concrete is initially 100%. In the ab-

sence of moisture exchange (as in sealed concrete), a gradual decrease of pore
humidity, called self-desiccation, is caused by hydrationC9. Exposure to the
environment engenders a long-term drying process (described by the solution
of the diffusion equation), which causes shrinkage and additional creepC10.
In the absence of drying there is another kind of shrinkage, called auto-
geneous shrinkage, which is caused by the chemical reactions of hydration.
This shrinkage is usually small for normal concretes (not for high-strength
concretes) and can usually be neglectedC11.

In the following sections, first the expressions for the individual terms in
Eq. (1.3)–(1.4)will be presented. The formulae to predict the coefficients
of these equations, statistically derived from calibration with the data bank,
will be given next. Two examples of the calculation procedure will then be
given. Estimation of the statistical scatter of the predicted shrinkage and
creep values due to parameter uncertainties will be discussed next. Finally, a
method of improving the predictions of the model by extrapolation of short-
time test data will be presented.
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1.4 Calculations of Creep and Time Depen-

dent Strain Components

1.4.1 Basic Creep (Material Constitutive Property)

The basic creep compliance is more conveniently defined by its time rate than
its value:

Ċ0(t, t
′) =

n(q2t
−m + q3)

(t − t′) + (t − t′)1−n
+

q4

t
, m = 0.5, n = 0.1 (1.6)

in which Ċ0(t, t
′) = ∂C0(t, t

′)/∂t, t and t′ must be in days, m and n are
empirical parameters whose value can be taken the same for all normal con-
cretes and are indicated above; and q2, q3 and q4 are empirical constitutive
parameters which will be defined laterC12. The total basic creep compliance
is obtained by integrating Eq. (1.6)as follows:

C0(t, t
′) = q2Q(t, t′) + q3 ln[1 + (t − t′)n] + q4 ln

(

t

t′

)

(1.7)

in which Q(t, t′) is given in Table 1.1 and can also be calculated from an
approximate explicit formula given by Eq. (1.35) in the Appendix to Chapter
1C13. Function Q(t, t′), of course, can also be easily obtained by numerical
integration (see Section 1.8.1 in the Appendix).

Table 1.1: Values of function Q(t, t′) for m = 0.5 and n = 0.1
                                                                         log t′′

log (t-t′′) 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

-2.0 0.4890 0.2750 0.1547 0.08677 0.04892 0.02751 0.01547 0.008699 0.004892

-1.5 0.5347 0.3009 0.1693 0.09519 0.05353 0.03010 0.01693 0.009519 0.005353

-1.0 0.5586 0.3284 0.1848 0.1040 0.05846 0.03288 0.01849 0.01040 0.005846

-0.5 0.6309 0.3571 0.2013 0.1133 0.06372 0.03583 0.02015 0.01133 0.006372

0.0 0.6754 0.3860 0.2185 0.1231 0.06929 0.03897 0.02192 0.01233 0.006931

0.5 0.7108 0.4125 0.2357 0.1334 0.07516 0.04229 0.02379 0.01338 0.007524

1.0 0.7352 0.4335 0.2514 0.1436 0.08123 0.04578 0.02576 0.01449 0.008149

1.5 0.7505 0.4480 0.2638 0.1529 0.08727 0.04397 0.02782 0.01566 0.008806

2.0 0.7597 0.4570 0.2724 0.1602 0.09276 0.05239 0.02994 0.01687 0.009494

2.5 0.7652 0.4624 0.2777 0.1652 0.09708 0.05616 0.03284 0.01812 0.01021

3.0 0.7684 0.4656 0.2808 0.1683 0.1000 0.05869 0.03393 0.01935 0.01094

3.5 0.7703 0.4675 0.2827 0.1702 0.1018 0.06041 0.03541 0.02045 0.01166

4.0 0.7714 0.4686 0.2838 0.1713 0.1029 0.06147 0.03641 0.02131 0.01230

4.5 0.7720 0.4692 0.2844 0.1719 0.1036 0.06210 0.03702 0.02190 0.01280

5.0 0.7724 0.4696 0.2848 0.1723 0.1038 0.06247 0.03739 0.02225 0.01314

The terms in Eq. (1.7) containing q2, q3 and q4 represent the aging vis-
coelastic compliance, non-aging viscoelastic compliance, and flow compliance,
respectively, as deduced from the solidification theoryß6.
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1.4.2 Average Shrinkage and Creep of Cross Section
at Drying

Shrinkage

Mean shrinkage strain in the cross section:

ǫsh(t, t0) = −ǫsh∞ kh S(t) (1.8)

Time dependence:

S(t) = tanh

√

t − t0
τsh

(1.9)
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Humidity dependence:

kh =











1 − h3 for h ≤ 0.98
−0.2 for h = 1 (swelling in water)

linear interpolation for 0.98 ≤ h ≤ 1
(1.10)

Size dependence:
τsh = kt(ksD)2 (1.11)

where v/s = volume to surface ratio of the concrete member, D = 2v/s =
effective cross-section thickness which coincides with the actual thickness in
the case of a slab, kt is a factor defined by Eq. (1.20) and ks is the cross-
section shape factor:

ks =



























1.00 for an infinite slab
1.15 for an infinite cylinder
1.25 for an infinite square prism
1.30 for a sphere
1.55 for a cube

(1.12)

The analyst needs to estimate which of these shapes best approximates the
real shape of the member or structure. High accuracy in this respect is not
needed and ks ≈ 1 can be assumed for simplified analysis.

Time-dependence of ultimate shrinkage:

ǫsh∞ = ǫs∞
E(607)

E(t0 + τsh)
; E(t) = E(28)

(

t

4 + 0.85t

)1/2

(1.13)

where ǫs∞ is a constant (given by Eq. 1.19). This means that ǫs∞ = ǫsh∞ for
t0 = 7 days and τsh = 600 daysC14.

Additional Creep Due to Drying (Drying Creep)

Cd(t, t
′, t0) = q5 [exp {−8H(t)} − exp {−8H(t′0)}]

1/2
, t′0 = max(t′, t0)

(1.14)
if t ≥ t′0, otherwise Cd(t, t

′, t0) = 0; t′0 is the time at which drying and loading
first act simultaneously; and

H(t) = 1 − (1 − h)S(t) (1.15)

Fig. 1.1 shows the typical curves of basic creep, shrinkage and drying creep
according to the present model.

1.4.3 Prediction of Model Parameters

Some formulae that follow are valid only in certain dimensions. Those are
given both in inch-pound system units (psi, in.) and in SI (metric) units
(MPa, m). The units of each dimensional quantity are also specified in the
list of notations (Appendix to Chapter 1)C15.
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Figure 1.1: Typical creep and shrinkage curves given by Model B3
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1.4.4 Estimation from Concrete Strength and Compo-
sition

Basic Creep

q1 = 0.6 × 106/E28, E28 = 57000
√

f̄c inch-pound system

q1 = 0.6 × 106/E28, E28 = 4734
√

f̄c SI
(1.16)

q2 = 451.1c0.5f̄ −0.9
c , q4 = 0.14(a/c)−0.7 inch-pound system

q2 = 185.4c0.5f̄ −0.9
c , q4 = 20.3(a/c)−0.7 SI

(1.17)

q3 = 0.29(w/c)4q2 (1.18)

Shrinkage

ǫs∞ = −α1α2

[

26w2.1f̄ −0.28
c + 270

]

(in 10−6) inch-pound system

ǫs∞ = −α1α2

[

1.9 × 10−2w2.1f̄ −0.28
c + 270

]

(in 10−6) SI

(1.19)
and

kt = 190.8t−0.08
0 f̄ −1/4

c days/in2 inch-pound system

kt = 8.5t−0.08
0 f̄ −1/4

c days/cm2 SI
(1.20)

where

α1 =











1.0 for type I cement;
0.85 for type II cement;
1.1 for type III cement.

(1.21)

and

α2 =











0.75 for steam-curing;
1.2 for sealed or normal curing in air with initial protection against drying;
1.0 for curing in water or at 100% relative humidity.

(1.22)
Creep at Drying (same in both inch-pound system and SI units)

q5 = 7.57 × 105f̄ −1
c | ǫsh∞ |−0.6 (1.23)

1.4.5 Example of Calculation of Model B3

The user may check the correctness of his implementation of Model B3 by a
comparison with the following example. This example is based on the test
data from Ref. 7. Calculations are made with four digit accuracy so that the
user may dependably check his program, even though such accuracy is not
justified by tests.†

Given concrete properties: 1) Type I cement concrete; 2) age of concrete
t = 112 days; 3) age at loading t′ = 28 days; 4) age when drying begins t0 =

†This example was prepared by A. Al-Manaseer and T. Monawar, Department of Civil
Engineering and Construction, Bradley University.
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28 days; 5) relative humidity h = 100%; 6) cylinder compression strength
f̄c = 4000 psi; 7) volume to surface ratio v/s = 0.75; 8) cement content
c = 13.69 lb/ft3; 9) water-cement ratio w/c = 0.60; 10) water content of
concrete w = 8.23 lb/ft3; 11) aggregate-cement ratio a/c = 7.0; 12) applied
stress (40 % of f̄c) σ = 1600 psi.

Compliance function: J(t, t′) = q1+C0(t, t
′)+Cd(t, t

′, t0) (Eq. 1.4)

q1 = 0.6 × 106/E28 (Eq. 1.16)

E28 = 57000(f̄c)
0.5 = 57000 × (4000)0.5 = 3, 605, 000 psi (Eq. 1.16)

q1 = 0.6 × 106/3, 605, 000 = 0.1664

C0(t, t
′) = q2Q(t, t′) + q3 ln[1 + (t − t′)n] + q4 ln(t/t′) (Eq. 1.7)

q2 = 451.1c0.5(f̄c)
−0.9 = 451.1×13.690.5×4000−0.9 = 0.9564 (Eq. 1.17)

q3 = 0.29(w/c)4q2 = 0.29 × 0.64 × 0.9564 = 0.0359 (Eq. 1.18)

r(t′) = 1.7(t′)0.12 + 8 = 1.7 × 280.12 + 8 = 10.5358 (Eq. 1.36)

By interpolation from Table 1.1C16: Q(t, t′) = 0.1681

C0(t, t
′) = 0.9564×0.1681+0.0359×ln[1+(112−28)0.1]+0.0359 ln(112/28) =

0.2443

Cd(t, t
′, t0) = q5[exp{−8H(t)} − exp{−8H(t′)}]1/2 (Eq. 1.14)

α1 = 1.0, α2 = 1.0 (Eq. 1.21–1.22)

ǫs∞ = α1α2[26w2.1(f̄c)
−0.28+270] = 1.0×1.0×[26×8.232.1×4000−0.28+270] =

483.1749 ≈ ǫsh∞ (Eq. 1.19)

q5 = 7.57 × 105(f̄c)
−1ABS(ǫs∞)−0.6 = 4.6406 (Eq. 1.23)

ks = 1.00 (Eq. 1.12)

kt = 190.8t−0.08
0 f̄−1/4

c = 18.3777 (Eq. 1.20)

τsh = kt(ksD)2 = 41.3498 (Eq. 1.11)

S(t) = tanh[(t − t0)/τsh]
0.5 = 0.8907 (Eq. 1.9)

S(t′) = tanh[(t′ − t0)/τsh]
0.5 = 0.0

H(t) = 1 − (1 − h)S(t) = 1 − (1 − 1) × 0.8907 = 1 (Eq. 1.15)

H(t′) = 1 − (1 − h)S(t′) = 1 − (1 − 1) × 0.0 = 1

Cd(t, t
′, t0) = 4.6406 × [exp(0.0) − exp(0.0)]1/2 = 0.0

J(t, t′) = q1 + C0(t, t
′) + Cd(t, t

′, t0)

J(t, t′) = 0.1664 + 0.2443 + 0.0 = 0.4107
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Creep strain = J(t, t′)σ = 0.4107 × 1600 = 658 × 10−06

Shrinkage strain = ǫsh(t, t0) = ǫsh∞khS(t) (Eq. 1.8)

kh = −0.2 (h = 1) (Eq. 1.10)

Shrinkage strain = ǫsh(t, t0) = 483.1749×−0.2× 0.8907 = −86.073× 10−06

(swelling)

Figure 1.2: Flow chart showing the calculation procedure for Model B3
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1.5 Parameter Uncertainties and Statistical

Range of Predicted Creep and Shrinkage

Values

The parameters of any creep model must be considered as statistical vari-
ables. The preceding formulae predicting the creep and shrinkage parameters
from the concrete composition and strength give the mean value of J(t, t′)
and ǫsh. To take into account the statistical uncertainties, the parameters
q1, q2, q3, q4, q5, ǫsh∞ ought to be replaced by the values

ψ1q1, ψ1q2, ψ1q3, ψ1q4, ψ1q5, ψ2ǫsh∞ (1.24)

in which ψ1 and ψ2 are uncertainty factors for creep and shrinkage, which
may be assumed to follow roughly the normal (Gaussian) distribution with
mean value 1. According to the statistical analysis of the data in the RILEM
data bank, the following coefficients of variation of these uncertainty factors
should be considered in designC17:

ω(ψ1) = 23% for creep, with or without drying (1.25)

ω(ψ2) = 34% for shrinkage

This means that, if the statistical distribution is approximated as Gaussian
(normal), the 95% confidence limits for ψ1 are 1 ± 1.96 × 0.23 = 1 ± 0.45,
and for ψ2 are 1 ± 1.96 × 0.34 = 1 ± 0.67.

Some other input parameters of the model are also statistical variables. At
least, one should consider in design the statistical variations of environmental
humidity h and of strength f̄c. This can be done by replacing them with ψ3h
and ψ4f̄c where ψ3 and ψ4 are uncertainty factors having a normal distri-
bution with mean 1. In the absence of other information and sophisticated
statistical analysis, the following coefficients of variation may be considered
for these uncertainty factorsß8:

ω(ψ3) ≈ 20% for h replaced by ψ3h (1.26)

ω(ψ4) ≈ 15% for f̄c replaced by ψ4f̄c

Factor ψ3 is statistically independent of ψ1, ψ2, and ψ4. As an approximation,
all the factors may be assumed mutually statistically independentC18,C19.

If the structure is exposed to a climate that is permanently hot or has
prolonged high temperature extremes, it is advisable to take into account
the temperature effect according to the Appendix to Chapter 1. If this is
not done, it is recommended to increase the aforementioned coefficients of
variation ω by 10% of ω16.

1.6 Improved Estimation: Updating Based

on Short-Time Tests

A method to improve the prediction based on short-time testsß2 will now
be describedC20. Its use is mandatory for highly creep sensitive structures
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characterized as level 5 in Section 1.2.1. It is advisable for level 4, and is
useful for level 3. It is not needed for levels 1 and 2.

Updating Creep Predictions
The procedure will be explained by considering as an example, the data
for basic creep by L’Hermite et al.ß9, for which the present formulae for
the effect of composition and strength do not give a good prediction, as is
apparent from Fig. 1.3 (for information on these data see Ref. 3 and 4).
We now pretend we know only the first 5 data points for the first 28 days of
creep duration, which are shown by the solid circles. We consider that the
compliance function is updated by only two update parameters p1 and p2,
introduced as follows:

1.00 10.00 100.00 1000.00
t-t' in days

0.20

0.40

0.60

0.80

J
(t

,t
')
 i
n
 1

0
 -6

 /p
s
i

Used in Regression

Not Used in Regression

Prediction by formula

Improved prediction

Basic creep data by L'Hermite et al. 1965t' = 7 days

Figure 1.3: Example of improving the prediction of creep by the use of short-time
test data

J(t, t′) = p1 + p2F (t, t′) (1.27)

in which
F (t, t′) = C0(t, t

′) + Cd(t, t
′, t0) (1.28)

Function F (t, t′) is evaluated according to the model, using the formulae for
the effect of composition parameters and strength (Eq. 1.16–1.23). If the
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data agreed with the form of Model B3 exactly, the plot of J(t, t′) versus
F (t, t′) would have to be a single straight line for all t, t′ and t0. The vertical
deviations of the data points from this straight line represent errors that may
be regarded as random and are to be minimized by least-square regressionC21.
So we consider the plot of the known (measured) short-time values Y =
J(t, t′) (up to 28 days of creep duration) versus the corresponding values of
X = F (t, t′), calculated from Model B3, and pass through these points the
regression line Y = AX + B. The slope A and the Y -intercept B of this line
give the values of p1 and p2 that are optimum in the sense of the least-square
method; A = p2 and B = p1. According to the well-known normal equations
of least-square linear regression,

p2 =
n

∑

(FiJi) − (
∑

Fi)(
∑

Ji)

n
∑

(F 2
i ) − (

∑

Fi)2
, p1 = J̄ − p2F̄ (1.29)

where J̄ = mean of all the measured Ji values, and F̄ = mean of all the
corresponding Fi values. Using the values p1 = B and p2 = A, the updated
J(t, t′) for the concrete tested may be obtained using Eq. 1.27. This updating
is equivalent to replacing the values q1, q2, q3, q4, q5 calculated from Eq. 1.16 ,
1.17, 1.23 by the values q∗1 = p1q1, q∗2 = p2q2, q∗3 = p2q3, q∗4 = p2q4, q∗5 = p2q5.
For the real structure, the ages at loading other than the t′-value used for
the test specimens may be needed and the effective thickness, environmental
humidity, etc., may be different. To obtain the values of J(t, t′) for the real
structure one simply evaluates J(t, t′) from Eq. (1.4) and (1.6)–(1.15), using
parameters q∗1, q

∗
2, q

∗
3, q

∗
4, q

∗
5 instead of q1, q2, q3, q4, q5 in Eq. 1.4, 1.6–1.15.

As seen in Fig. 1.3, the improvement of long-time prediction achieved
by short-time measurements is in this example very significant. The well-
known formulae of linear regressionß10 also yield the coefficients of variation
of p1 and p2, which in turn provide the coefficient of variation of J(t, t′) for
any given t and t′. (However these formulae might not suffice since the un-
certainty of long-time predictions obtained by updating from the short-time
data should properly be handled by the Bayesian statistical approachß11,12.)

Updating Shrinkage Predictions
The shrinkage predictions cannot be successfully updated solely on the

basis of short-time shrinkage tests alone because of a certain special prob-
lem with the shrinkage testsC22. This problem can be circumvented if the
shrinkage specimens are weighed to determine their relative water loss w (as
a percentage of the weight of the concrete), and if also the final relative water
loss is estimated by heating the specimens at the end of the shrinkage test
in an oven to about 105◦C. The water loss should preferably be measured
directly on the shrinkage specimens. Anyway, if the water loss is measured
on companion specimens, they must be identical and have the same environ-
mental exposure all the time. The following procedure, developed in Ref. 2,
is recommended (for a justification, see Sec. 2.3.2–2.3.3 of Chapter 2):
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1) Calculate

∆w∞(h) ≈ 0.75



1 −
(

h

0.98

)3


 ∆w∞(0) (for 0.25 ≤ h ≤ 0.96)

(1.30)
where ∆w∞(h) is the estimate of the final relative water loss for drying
at given environmental relative humidity h (and room temperature),
and ∆w∞(0) is the final water loss that would occur at environmental
relative humidity 0, which is taken the same as the average final water
loss measured upon heating the specimens to about 105◦C.

2) Calculate the auxiliary values

ψj =

[

tanh−1

(

∆wj

∆w∞(h)

)]2

(j = 1, 2, . . . m) (1.31)

where ∆wj are the measured values of relative water loss at times
tj (j = 1, 2, . . . m), which should be spaced approximately uniformly
in the scale of log(t − t0).

3) Instead of Eq. (1.11), obtain the improved estimate, τ̄sh, of shrinkage
half-time from the equation:

τ̄sh = 1.25τw, τw =

∑

j(tj − t0)ψj
∑

j ψ2
j

(1.32)

4) Denote ǫ′shi
= ǫ′sh(ti, t0) = measured short-time values of shrinkage at

times ti (i = 1, 2, . . . n), which should be spaced at approximately con-
stant intervals in the scale of log(t− t0) and should preferably coincide
with times tj of water loss measurements. Also denote ǭsh = ǭsh(t, t0) =
shrinkage values calculated from Model B3 using τ̄sh instead of Eq.
(1.11). Calculate the values ǭshi

= ǭsh(ti, t0) predicted for the times ti
from Model B3 on the basis of τ̄sh instead of Eq. (1.11). Then calculate
the scaling parameter:

p6 =

∑

i ǫ
′
shi

ǭshi
∑

i ǭ
2
shi

(1.33)

5) The updated values of shrinkage prediction for any time t then are

ǫ∗sh(t, t0) = p6 ǭsh(t, t0) (1.34)

The last equation is equivalent to Eq. (1.8) with (1.9) for the shrinkage of
the test specimen if khǫsh∞ is replaced by ǫ∗sh∞ = p6ǫsh∞ and τsh is replaced
by τ̄sh. To obtain the updated values of ǫsh(t, t0) for the real structure for
which t0, D and h may be different, Eq. (1.19)–(1.20) for ǫs∞ and kt are
disregarded. Using the updated value τ̄sh (instead of the original predicted
value τsh) for the short-time test specimen, Eq. (1.11) is solved for kt. This
yields the updated value, k∗

t , replacing kt, i.e., k∗
t = τ̄sh(ksD)−2. Next Eq.
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(1.13) is used with the updated value ǫ∗sh∞ (instead of the original value ǫsh∞)
for the test specimen to solve for the updated value ǫ∗s∞ that should replace
ǫs∞, i.e., ǫs∞ = ǫ∗sh∞E(t0 + τ̄sh)/E(607). With the updated values, k∗

t and
ǫ∗s∞, and the values of t0, D, and h for the structure, Eq. (1.8)–(1.13) are
used to obtain the updated values of ǫsh(t, t0) for the structure.

The updated τ̄sh should also be used in the calculation of the drying creep
term from Eq. (1.14), which modifies the function F (t, t′, t0) in Eq. (1.28).
This improves the previously indicated procedure.

Example of Shrinkage Updating
To illustrate the shrinkage updating procedure, consider the recent shrink-

age and water-loss data obtained by Grangerß14 (Fig. 1.4). They measured
shrinkage on cylinders with a 16 cm diameter and 100 cm length over a gauge
length of 50 cm. The relative weight loss was measured on cylinders with a 16
cm diameter and 15 cm length. The tests were carried out in an environment
of 50% relative humidity. The ends of both the shrinkage and the weight-loss
specimens were sealed to ensure radial drying. The concrete (Civaux BHP)
had a cylindrical compressive strength of 64.3 MPa. The composition of con-
crete (quantities in kg/m3) was cement (266), water (161), silica fume (40.3),
fine aggregate (782), coarse aggregate (1133), filler (57), and additives (9.98).

We now pretend that we know only the first nine points of data (up to
drying duration of 64 days) which are shown as the solid black points in Fig.
1.4. To estimate the final relative water loss, ∆w∞(0), at h ≈ 0, we assume
that the water used up in the hydration reaction is about 20 %, by weight, of
the cementitious materials. ∆w∞(50) is calculated using Eq. (1.30). Using
this value of ∆w∞(50) and the first nine points of the weight-loss data, we
determine τ̄sh = 1.25τw from Eq. (1.31)–(1.32). This value of τ̄sh and the
drying shrinkage data up to 57 days duration are used in Eq. (1.33)–(1.34)
to determine the updated values of shrinkage prediction. Curves, a and b
in Fig. 1.4, showing the prediction by formula and the updated prediction,
confirm that a significant improvement is achieved.

Fig. 1.4 also shows curve c obtained by trying to match the short-time
data solely by vertical scaling of curve a, which is what one would have to
do if the water-loss data were unavailable. Although this curve also matches
the short-time data quite well, the long-time prediction would in this case
become even worse than with curve a before updating. Clearly, updating of
τsh by water-loss data is essential for achieving improved predictions.

Now consider, for example, that the designer needs the value of ǫsh(t, t0)
for D = 25 cm, t0 = 10 days, and h = 65%. Table 1.2 shows the calculations
described in the preceding paragraphs for updating the shrinkage predictions
on the basis of the short-time tests and for obtaining, the update parameters
for the real structure. Note that the updated material parameters k∗

t and
ǫ∗s∞ are the same for both the specimen and the structure. These update
material parameters are used in Eq. (1.8)–(1.13) along with the given values
of D, t0, and h for the real structure to obtain the updated shrinkage values
for the real structure.
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1.7 Appendix to Chapter 1

1.7.1 Approximate Formula for Q(t, t′) and Numerical
Integration

Instead of Table 1.1, the values of this function can also be obtained from the
following approximate formula (derived by Bažant and Prasannan, 1989ß6)
which has an error of less than 1% for n = 0.1 and m = 0.5;

Q(t, t′) = Qf (t
′)



1 +

(

Qf (t
′)

Z(t, t′)

)r(t′)




−1/r(t′)

(1.35)

in which

r(t′) = 1.7(t′)0.12+8, Z(t, t′) = (t′)−m ln[1+(t−t′)n], Qf (t
′) = [0.086(t′)2/9+1.21(t′)4/9]−1

(1.36)

19



Table 1.2: Example of Shrinkage Updating Calculations

Parameter Value
Shrinkage Specimen D = 2V/S =8cm, t0 =28 days, h = 50%

τsh (Eq. 1.11) 195.8
ǫsh∞ (Eq. 1.13) 605.2
τw (Eq. 1.32) 414.5

τ̄sh = 1.25 × τw 518.1
ǭsh∞ 601.5

p6 (Eq. 1.33) 0.86
ǫ∗sh∞ = p6ǭsh∞ 517.0

k∗
t = τ̄sh(ksD)−2 39.5

ǫ∗s∞ = ǫ∗sh∞E(t0 + τ̄sh)/E(607) 516.7
Real Structure, (D = 25cm = 10in., t0 = 10 days, h = 65%)

τsh = k∗
t (ksD)2 5221.5

ǫsh∞ = ǫ∗s∞E(607)/E(t0 + τsh) 514.9
ǫsh(1010, 10) (Eq. 1.8) 153.7

Those who wish to implement numerical integration of Eq. (1.6) on their
computer should note that lim Ċ(t, t′) = ∞ for t → t′. Consequently the
integral over the first time interval ∆t = t1 − t′ should be evaluated analyti-
callyß6. Use ∆t ≤ 10−4t′ and Q(t1, t

′) = (t′)−m ln[1 + (∆t)n].

1.7.2 Extension to Basic Creep at Constant Elevated
Temperature

Eq. (1.6) for the rate of basic creep compliance function is generalized as
follows:

Ċ0(t, t
′, T ) = RT

[(

q2
λ0

tT
+ q3

)

nξn−1

λ0(1 + ξn)
+

q4

tT

]

(1.37)

where ξ = tT − t′e at current time t and T = absolute temperature. In the
foregoing equation, the age at loading and the stress duration are replaced
by the following equivalent age and equivalent stress duration:

t′e =
∫ t′

0
βT (t′′)dt′′, tT − t′e =

∫ t

t′
β′

T (t′)dt′ (1.38)

The temperature dependent coefficients are defined by equationsC23:

βT = exp
[

Uh

R

(

1

T0

− 1

T

)]

β′
T = exp

[

Uc

R

(

1

T0

− 1

T

)]

RT = exp

[

U ′
c

R

(

1

T0

− 1

T

)

]

(1.39)
T0 = reference absolute temperature (for all the data fits, T0 = 293◦ K);
Uh = activation energy of cement hydration; Uc, U

′
c = activation energies of

creep describing the acceleration of creep rate and magnification of creep due
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to temperature increase; and R = gas constant. Integration of Eq. (1.37)
yields the basic creep compliance function:

C0(t, t
′, T ) = RT

{

q2Q(tT , t′e) + q3 ln[1 + (tT − t′e)
n] + q4 ln

(

tT
t′e

)}

(1.40)

Fitting of the available test data indicates the following parameter values:

Uc/R = 110w−0.27f̄ 0.54
c (inch-pound system) = 3418w−0.27f̄ 0.54

c (SI)
Uh/R = 5000◦K, U ′

c = 0.18Uc

(1.41)

1.7.3 Further Refinements for Highly Sensitive Struc-
tures

In the case of structures that are highly sensitive to creep (levels 5 and 4),
such as nuclear reactor structures and large span bridges or shells, several
other influences on creep and shrinkage should be taken into account in order
to reduce the uncertainty of prediction. However extreme caution is neces-
sary for such structures and updating of the model parameters by testing is
required.

Creep at Elevated Temperature with Drying

The formulation given in Ref. 4 (part IV, Eq. 9-17) consists of relatively
simple explicit expressions. However, it must be warned that explicit formu-
lae can never be very accurate for drying concrete when temperature varies.
Only integration of the differential equations of the problem can fulfill such
expectations.

Cyclic Environment and Cyclic Loading

These influences can be approximately described by simple explicit expres-
sions given in Ref. 4 (part V, Eq. 1-10).

1.7.4 Uncertainties Due to Time-Variation of Stress
and Method of Structural Analysis

The stresses in concrete structures often vary significantly in time. The
cause can be the load changes. But even at constant applied loads signifi-
cant changes of stress can be caused by the stress relaxation due to imposed
displacements, by sequential construction with joining of previously discon-
nected load-carrying members, and by changes of restraints of the structure.
Significant stress variation can also be caused by differences in shrinkage
and creep of joined structural parts of different age, of parts made of differ-
ent materials (different concretes or concrete and steel), of parts of different
thickness or different hygrothermal conditions, etcß15-18.
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In such cases the effect of stress variation is calculated according to the
principle of superposition. This causes additional errors of two kinds: (1)
an error of the principle of superposition per se, and (2) an error in the
approximate method of analysis compared to the exact solution according
to the principle of superpositionß15. Estimation of these errors is a complex
question that needs to be researched more deeply but the following simplified
approach is better than ignoring these errors altogether.

Let ωX be the coefficient of variation of some response such as the deflec-
tion or the maximum stress in the structure. Let λL = max(∆P/Pmax, ∆σ/σmax)
where ∆P = Pmax−Pmin and ∆σ = σmax−σmin where Pmax, Pmin, σmax, σmin

are rough estimates of the maximum and minimum values of load P and stress
σ during the lifetime of the structure. For a constant load, λL = 0. Then one
should replace ωX by ωX + ∆ωX where the increase ∆ωX of the coefficient
of variation may be taken approximately as follows:

∆ωX = 0.05λL for class I methods (1.42)

= 0.07λL for class II methods

= 0.25λL for class III methods

Coefficient λL takes into account errors of the first kind and the classes of
methods take into account the errors of the second kind. The class I meth-
ods are the computer methods of structural creep and shrinkage analysis that
solve the problem accurately according to the principle of superposition (us-
ing either integral equations or the Maxwell or Kelvin chain approximations,
solved in small time steps). The class II methods are the simplified methods
of good accuracy, such as the age-adjusted effective modulus method. The
class III methods are crude simplified methods such as the effective modulus
method, the rate-of-creep (Dischinger) method and the rate-of-flow method.

Approximate knowledge of the coefficient of variation provides a rational
basis to the designer for deciding how sophisticated a method should be used.
Simple but crude methods for predicting creep and shrinkage of concrete can
be used but the important point is that their coefficients of variation should
be considered. If the designer regards the coefficient of variation (or the
95% confidence limits) of the deflection or stress obtained for the effective
modulus method as acceptable (not uneconomic), he can use that method and
need not bother using a more complicated method of structural analysis. The
coefficient of variation depends on the type of structure and type of response.
For example, the deflection of a small-span nonprestressed reinforced concrete
beam is a problem relatively insensitive to creep, and a very simple estimation
based on the effective modulus method is adequate, as documented by a small
coefficient of variation and small mean values of deflections. On the other
hand, the deflection of a large-span prestressed box girder bridge is a creep-
sensitive problem, which is manifested by a high coefficient of variation of
the deflection or maximum stress. For such problems it pays to use the most
sophisticated method.
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1.7.5 Free Shrinkage and Thermal Strain as a Consti-
tutive Property

Some sensitive structures are analyzed by layered beam finite element pro-
grams or by two and three dimensional finite element programs. In such
programs, the material properties used in each finite element must be the con-
stitutive properties, independent of the cross-section dimensions and shape
as well as the environmental conditions (which represent the boundary condi-
tions for partial differential equationsß19). At drying, the constitutive prop-
erties cannot be measured directly, but they have been identified by fitting
with a finite element program the overall deformation measurements on test
specimensß20-23). For this kind of analysis, only Eq. (1.3), (1.4) and (1.6)
[or (1.11)] are retained, while Eq. (1.8)–(1.15) and (1.37)–(1.41) must be
deleted and replaced by the following constitutive relationß20 for the strain
that must be added to the basic creep strain (with elastic deformation):

ǫ̇sij
= ǫ0

s

E(t0)

E(t)
[δij + sh(rσij + r′σvδij)](ḣl + aT Ṫl) (1.43)

Subscripts i, j refer to Cartesian coordinates xi (i, j = 1, 2, 3); superimposed
dots denote time rates (i.e., ∂/∂t); δij = Kronecker delta; σij = stress tensor;
σv = volumetric (or mean) stress; ǫ0

s = final shrinkage (at material points),
which has a similar but not exactly the same value as ǫsh∞ for the cross-
section average; ḣl and Ṫl = rates of local relative humidity and temperature
in the pores of concrete (which must be obtained by solving the diffusion

equations); sh = sign of (ḣl + aT Ṫl), which is 1 or −1; and aT = coefficient
relating the stress-induced thermal strain and shrinkage. When Eq. (1.43)
is used, the cracking or fracture must also be included in the analysis.

The constitutive relation (1.43) is much simpler than Eq. (1.8)–(1.15)
and (1.19)–(1.23) which it replaces. However, at present there are not enough
data to predict the values of ǫ0

s, r, r
′ and aT from the composition and strength

of the concrete. They must be identified by fitting the given data for drying
creep, shrinkage and thermal expansion.

1.7.6 Simplified Approximate Method of Structural Anal-
ysis for Creep and Shrinkage

Theoretically exact solutions according to the principle of superposition lead
to integral or differential equations. Although computer methods for such
equations are accurate and effective, for most practical problems it suffices
to use a much simpler approximate method—the age-adjusted effective mod-
ulus method, which converts the problem to elastic structural analysis. This
method was recommended in ACI 209 and its basic applications were de-
scribed in Chapters 3-5 of that report. These descriptions remain valid except
the table listing the values of the aging coefficient, χ, (Table 5.1.1) because
χ depends on the creep model, which is different in this report. A list of
values of the aging coefficient χ for the present model for one set of typical
values of constitutive parameters q1, q2, q3, q4 is given in Table 1.3. The
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Table 1.3: Values of the Aging coefficient, χ for a set of typical values of
material parameters.

q1 = 0.2, q2 = 0.4, q3 = 0.02, q4 = 0.07 (×10−6/psi)
t − t′ (days)

t′ 10 100 1000 10000
1 0.462 0.445 0.490 0.547
10 0.706 0.588 0.593 0.634
100 0.877 0.709 0.625 0.643
1000 0.942 0.887 0.706 0.640

aging coefficient can be easily calculated using the relation:

χ(t, t′) =
E(t′)

E(t′) − R(t, t′)
− 1

φ(t, t′)
(1.44)

where R(t, t′) is the relaxation function, and φ(t, t′) is the creep coefficient.
For the relaxation function, R(t, t′) the following approximation can be usedß24:

R(t, t′) =
0.992

J(t, t′)
− 0.115

J0

[

J(t′ + ξ, t′)

J(t, t − ξ)
− 1

]

; J0 = J(ξ + t′, ξ + t′ − 1)

(1.45)
where ξ = (t − t′)/2. For the compliance function considered in Ref. 24,
J0 = J(t, t − 1), as recommended in ACI 209-R92. However the expression
for J0 in Eq. (1.45) was found to give more accurate results for the present
compliance function.

For more detailed information on the age-adjusted effective modulus method
see Ref. 25 and 26.

1.7.7 Notation

a/c = aggregate-cement ratio, by weight;
c = cement content of concrete in lb/ft3 (in kg/m3 for the SI version, 1

lb/ft3= 16.03 kg/m3);
C0(t, t

′) = compliance function for basic creep only;
Cd(t, t

′, t0) = compliance function for additional creep due to drying;
D = 2v/s = effective cross section thickness in inches ( in mm for the SI

version, 1 inch = 25.4mm);
f̄c = mean 28-day standard cylinder compression strength in psi (in MPa for

the SI version, 1 psi = 6895 Pa) (if only design strength f ′
c is known,

then f̄c = f ′
c + 1200 psi);

F (t, t′) = function used in creep updating;
h = relative humidity of the environment (expressed as a decimal number,

not as percentage) 0 ≤ h ≤ 1;
H = spatial average of pore relative humidity within the cross section, 0 ≤

H ≤ 1;
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J(t, t′) = compliance function = strain (creep plus elastic) at time t caused
by a unit uniaxial constant stress applied at age t′ (always given in
10−6/psi, the SI version of the formulae give J(t, t′) in 10−6/MPa, 1
psi = 6895 Pa);

kt = parameter used in calculation of τsh;
kh = humidity correction factor for final shrinkage;
p1, p2 = parameters used in creep updating;
p6 = parameter used in shrinkage updating;
q1, q2, q3, q4, q5 = empirical material constitutive parameters given by formu-

lae based on concrete strength and composition;
R(t, t′) relaxation function;
S(t) = time function for shrinkage;
t = time, representing the age of concrete, in days;
t′ = age at loading, in days;
t0 = age when drying begins, in days (only t0 ≤ t′ is considered);
v/s = volume-to-surface ratio in inches;
w/c = water-cement ratio, by weight;
w = (w/c)c = water content of concrete mix in lb/ft3 (in kg/m3 for the SI

version;
χ(t, t′) aging coefficient;
∆w(h) = relative water (weight) loss at relative humidity h;
ǫsh, ǫsh∞ = shrinkage strain and ultimate (final) shrinkage strain; ǫsh∞ ≥ 0

but ǫsh is considered negative (except for swelling, for which the sign
is positive); always given in 10−6;

ǭsh, ǫ
′
sh = shrinkage values given by the formula and measured shrinkage

values used in the updating procedure;
φ(t, t′) creep coefficient;
τsh = shrinkage half-time in days;
τ̄sh = updated value of τsh;
θ = relative water content;
All symbols marked with an asterisk represent the corresponding parameters

updated using short-time tests.

1.7.8 Commentary and Explanations
C1 A more precise classification of the level of sensitivity of a structure could

be made on the basis of the coefficients of variation of responses such
as deflection or stress or even better on the basis of sensitivity analysis.
But such an approach might be cumbersome for practice and would
anyway require further research.

C2 The numbers 0.85 for w/c ratio and 10 lbs/ft3 or 45 lbs/ft.3 for cement
content are of course outside the range of good concretes in today’s
practice.

C3 Formulae predicting model parameters from the composition of concrete
have not been developed for special concretes containing various ad-
mixtures, pozzolans, microsilica, and fibers. However, if the model
parameters are not predicted from concrete composition and strength
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but are calibrated by experimental data, the model can be applied
even outside the range of applicability in section 1.2, for example, to
high-strength concretes, fiber-reinforced concretes, and mortars.

C4 This means that creep may be assumed to be linearly dependent on stress
C5 When stresses vary in time, the corresponding strain can be approximately

calculated from Eq. (1.3) according to the principle of superposition as
recommended by RILEM committee guidelinesß1. Simplified design
calculations can be done according to the age-adjusted effective modu-
lus methodß25,26, which allows quasi-elastic analysis of the structure.

C6 Generalization to multiaxial stress may be based also on the principle of
superposition. The creep Poisson ratio may be assumed to be constant
and equal to the instantaneous Poisson ratio ν = 0.18. (Tensile mi-
crocracking can cause the apparent Poisson ratio to be much smaller,
but this is properly taken into account by a model for cracking.)

C7 The instantaneous strain, which is the same as in previous models BP
and BP-KXß3,4, may be written as q1 = 1/E0 where E0 is called
the asymptotic modulus. E0 should not be regarded as a real elastic
modulus but merely as an empirical parameter that can be considered
as age-independent. The age-independence of E0 is demonstrated by
the experimental fact (reported in 1976 by Bažant and Osmanß27)
that the short-time creep curves for various t′, plotted as J(t, t′) versus
(t − t′)n (with n ≈ 0.1), appear approximately as straight lines all of
which meet for t−t′ = 0 approximately at the same point, regardless of
t′ (see Fig. 2.8d,e in Chapter 2). As a rough estimate, E0 ≈ 1.5E. The
use of E0 instead of the conventional static modulus E is convenient
because concrete exhibits pronounced creep even for very short load
durations, even shorter than 10−4 s. The usual static elastic modulus
E normally obtained in laboratory tests and used in structural analysis
corresponds to

E(t′) = 1/J(t′ + ∆, t′) (1.46)

in which the stress duration ∆ = 0.01 day gives values approximately

agreeing with ACI formula, E(t) = 57, 000
√

f̄c(t), with E and f̄c in

psi (or E(t) = 4734
√

f̄c(t) with E and f̄c in MPa). For short-time

loading (t − t′ ≪ t′), Eq. (1.46) and Eq. (1.4) along with Eq. (1.7)
stated later give the age-dependence:

E(t′) =
1

A0 + A1/
√

t′
(1.47)

where A0 = q1 + q3 ln(1 + ∆n), A1 = q2 ln(1 + ∆n), A0, A1 = constants
and ∆ is in days. q1, q2, q3 are material constitutive parameters given
by formulae based on the concrete strength and composition. This
age-dependence agrees with the test data on E(t′) even better than
the current ACI formula, E(t) = E(28)[t/(α + βt)]0.5, in which α, β
are constants (see Fig. 2.10), but the difference is unimportant. For
∆ = 10−7 day Eq. (1.47) gives also realistic values of the dynamic
modulus of concrete and its age dependence. The graphical meaning
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of the values of q1 = 1/E0 and 1/E is explained in Fig. 1.1. Note that
for structural analysis it is not important which value of ∆ corresponds
to E(t′) in Eq. (1.5), and not even whether some other definition of
E is used in Eq. (1.5). One could use the ACI formula, E(t) =

57000
√

f̄c(t), with E and f̄c in psi (or E(t) = 4734
√

f̄c(t) with E and

f̄c in MPa) or Eq. (1.46) for any value of ∆ ≤ 0.1 day. For the results
of structural analysis of creep and shrinkage (for t − t′ ≥ 1 day), the
only important aspect is that E(t) and φ(t, t′) together must give the
correct total compliance J(t, t′) = [1+φ(t, t′)]/E(t′), as used by Model
B3.

C8 Note that if a prediction model would specify φ(t, t′) instead of J(t, t′),
there would be a danger of combining φ(t, t′) with some incompatible
value of E(t) which would result in wrong J(t, t′) values. There are
many combinations of φ(t, t′) and E(t) that give the same J(t, t′).
What matters for structural creep calculations is only the values of
J(t, t′), and not the values of φ and E that yield J(t, t′). Care in
this regard must also be taken when updating the model parameters
from some test data for which only the values of φ(t, t′) were reported.
J(t, t′) cannot be calculated from such data using a definition of E.

For example, E = 57000
√

f̄c, may not give values compatible with
these φ-values and may give a J(t, t′) disagreeing with Eq. (1.5).
Conversions of such data from φ to J-values must be based on short-
time strains or E-values measured on the creep specimens themselves,
or else such data cannot be used.

C9 In normal concretes this decrease is small (to about 96%-98%).
C10 This means that the normal strain J(t, t′)σ, representing the sum of the

elastic and creep strains, is measured by subtracting the deformations
of a loaded specimen and a load-free companion. For shear creep this
is not necessary because shrinkage is strictly a volume change.

C11 Autogenous shrinkage terminates if the relative humidity in the pores
drops below approximately 85%. Further shrinkage (or expansion)
may be caused by various chemical reactions, for example carbonation.
But in good concretes, carbonation occurs only in a surface layer a
few millimeters thick and can be neglected for normal structures. For
concrete submerged in water (h =100%), there is positive ǫsh, that is,
swelling, which is approximately predicted by the present model upon
substituting h =100%.

C12 Note that the computer solutions of structural creep problems in small
time steps require only the rate of compliance J̇(t, t′), not the total
value J(t, t′):

C13 Q(t, t′) is a binomial integral, which cannot be expressed analytically.
C14 Note that ǫsh is relatively insensitive to the precise definition of E and

either formula for E(t) yields about the same result13. For simplified
analysis one can assume ǫsh∞ ≈ ǫs∞. The typical values of ǫsh∞ ac-
cording to Eq. (1.13) range from 300 × 10−6 to 1100 × 10−6. The
value of elastic modulus E(t) can be expressed either from Eq. (1.46)
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of the present model or approximately from the equation E(t) =
E(28)[t/(4+0.85t)]1/2. This equation (which is used in ACI 209), has
been adopted for the present fitting of data; it does not fit the data
on the age-dependence of E as well as Eq. (1.47) but the difference
is unimportant. Because τsh ∝ D2, Eq. (1.13) also approximately de-
scribes the effect of D on ǫsh∞, which is caused by the fact that thicker
specimens reach a higher degree of hydration because their core re-
mains wet for a longer time, and the fact that they undergo more
microcracking, which reduces shrinkage. The present model does not
describe separately the autogenous shrinkage which occurs in sealed
specimens (or mass concrete). Such shrinkage is caused by volume
changes during the chemical reactions of hydration and is independent
of the size of the specimen. This shrinkage is usually much smaller
than the drying shrinkage. In exposed specimens there is some auto-
genous shrinkage too, but is still smaller because: (1) most of it occurs
before stripping the mold, and (2) after stripping the mold it occurs
only in the core and only until the drying front reaches the core. This
part of autogenous shrinkage is included in the present model because
the model was fitted to the total shrinkage data for drying specimens.

C15 Predicting the creep and shrinkage properties of concrete from the compo-
sition of concrete mix and the strength of concrete is an extremely dif-
ficult problem for which no good theory has yet been developed. The
present formulae which are partly empirical and partly reflect trends
theoretically deduced from the understanding of physical mechanisms,
were calibrated by statistical analysis of the data in a computerized
data bank involving about 15,000 data points and about 100 test se-
ries.

C16 Alternatively, from the approximate formulae, Z(t, t′) = (t′)m ln[1 +
(t − t′)n] = 0.1775, Qf (t

′) = [0.086(t′)2/9 + 1.21(t′)4/9]−1 = 0.1818,
and Q(t, t′) = Qf (t

′){1 + [Qf (t
′)/Z(t, t′)]r(t

′)}−1/r(t′) = 0.1818 × {1 +
[0.1818/0.1785]10.5358}−0.0949 = 0.1681.

C17 The present report does not rule out using the previous model in Chapter
2 of ACI 209. However, if this is done, one must consider the predicted
creep and shrinkage to have coefficients of variations of 58%.

C18 The coefficients of variation in Eq. (1.26-1.27) can result in similar or
very different (much smaller or much larger) coefficients of variation
of structural response such as the predicted maximum deflection or
the maximum stress in the structure. If the safety against collapse
is threatened, as in long-time creep buckling of shell roofs, structures
should not be designed for the mean effects of creep and shrinkage.
Rather they should be designed for the response (deflection, stress,
strain) values representing the 95% confidence limits. This means
that, if 20 identical structures were built and subjected to the same
loading and environment, only one of them would be likely to suffer in-
tolerable deflections or cracking damage, whereas the design for mean
response means that 10 of them would be likely to suffer such a fate.
One may assume the response values to have a normal (Gaussian)
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distribution, and then the 95% confidence limits may be estimated as
(mean of X) ×(1± 1.96ωX); ωX can be calculated by generating in a
proper wayß26 about 10 random samples of material parameters and
then running for each sample a deterministic structural analysisß8.

C19 The large uncertainty in the prediction of creep and shrinkage of concrete,
reflected in the values of the coefficients of variation in Eq. (1.26),
is caused mainly by the effect of the composition and strength of
concrete. This effect is very complicated and is handled at present
empirically because its mathematical theory is not yet available. At
present, the only way to reduce the uncertainty is to conduct short-
time tests and use their results to update the values of the material
parameters in the model. This approach is particularly effective for
creep but is more difficult for shrinkageß13.

C20 The largest source of uncertainty of creep and shrinkage prediction model
is the dependence of the model parameters on the composition and
strength of concrete. This uncertainty can be greatly reduced by car-
rying out on the given concrete short-time creep and shrinkage mea-
surements (of duration less than 1 to 3 months) and adjusting the
values of the model parameters accordingly. This is particularly im-
portant for special concretes such as high-strength concretes or fiber-
reinforced concretes. Various types of admixtures, superplasticizers
and pozzolanic ingredients used in these concretes have been found to
have a significant effectß28,29. Empirical formulae for the effects of
all these ingredients on the model parameters would be very difficult
to formulate because of the great variety of additives and their com-
binations. For the planning of short-time creep measurements, note
that the prediction improvement based on short-time data is more
successful if the creep measurements begin at very short times after
the loading (and likewise for shrinkage, if the measurements begin im-
mediately after the stripping of the mold). Also, the measurements
should be taken at approximately constant intervals in log-time, e.g.
at 30, 100, 300, 1000, 3000... seconds. The reason is that the creep
curves rise smoothly through the entire range from 0.0001 s to 30
years. In our example, the first reading was taken as late as 1 day
after loading, as is often done, and therefore as many as 28 days of
creep data were needed for prediction improvement. In a similar ex-
ample using a different data set, it was shownß12 that if the first
reading is taken as soon as possible after loading (within 1 minute)
and about six readings are taken during the first two days of load
duration (uniformly spaced in log-time), a similar improvement can
be achieved using those readings only. Thus the required duration of
the short-time test could be reduced if the readings begin immediately
after loading. Anyhow, for reliable prediction of creep values for over
five years of creep duration, it is recommended to carry out short-time
tests of at least 28 day duration (with the first reading immediately af-
ter the loading and further readings equally spaced on the logarithmic
scale of creep duration).
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C21 An important advantage of the present model is that all the free param-
eters for creep with elastic deformation, that is, q1, q2, q3, q4, q5, are
contained in the formulae linearly. Therefore, linear regression based
on the least-square method, which minimizes the value of ω̄2

all, can be
used to identify these parameters from test data. The same is true of
parameter ǫsh∞ for shrinkage. Thus the only nonlinear parameter of
the entire Model B3 is the shrinkage half-time τsh.

C22 The reason is that the shrinkage half-time τsh is involved nonlinearly and
in such a manner [seen from Fig. 2.11 (a,b)] that very different values
of τsh can yield almost equally good fits given short-time data (except
if the data reach well beyond the time at which the slope of ǫsh versus
log(t − t0) begins to level off).

C23 These equations represent Arrhenius equations based on the activation
energy theory
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Chapter 2

Justification and Refinements
of Model B3

2.1 Introduction

Realistic prediction of concrete creep and shrinkage is of crucial importance
for durability and long-time serviceability of concrete structures, and in some
cases also for long-time stability and safety against collapse. Mispredictions
of this phenomenon, which contribute to excessive deflections and cracking,
have been one of the reasons for problems with longevity of the civil engineer-
ing infrastructure in all countries. The errors in the prediction of concrete
creep and shrinkage have generally been larger than the errors caused by
simplifications in the methods of structural analysis. It is now clear that, for
creep sensitive structures, it makes little sense to use finite element analysis
or other sophisticated computational approaches if a realistic model for creep
and shrinkage is not introduced in the input. If a simplistic and grossly inac-
curate prediction model for creep and shrinkage is used for a creep sensitive
structure, one can hardly justify anything more than simple hand calcula-
tions of stresses and deformations in structures. In such a case, it makes no
sense for the analyst to spend weeks on the computer analysis of the struc-
ture while spending half an hour to determine creep and shrinkage properties
to use as the input. The design will be better if more time is devoted to the
latter than the former.

Realistic prediction of creep and shrinkage of concrete is a formidably
difficult problem because the phenomenon is a result of several interacting
physical mechanisms and is influenced by many variable factors. In view
of this fact, it is not surprising that improvements have been only gradual
and slow. No sudden breakthrough has occurred. However, the accumulated
advancement of knowledge since the early systematic researches in the 1930’s,
and especially during the last two decades, has been enormous. It is now
possible to formulate a much better prediction model than two decades ago.

Four major advances have made a significant prediction improvement
possible:

1. Improved theoretical understanding, for example, of mathematical mod-
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eling of the solidification process of cement, diffusion processes, ther-
mally activated processes, cracking damage, residual stresses, and non-
uniformity of stress and pore-humidity profiles.

2. Gradual accumulation of test data and formulation of an extensive com-
puterized data bank, which started with the Northwestern University
data bank in the 1970’sß3 having over 10,000 data points. Subsequently,
in collaboration with ACI and CEB, this developed into the RILEM
Data Bank, compiled by Subcommittee 5 of RILEM Committee TC-
107 (chaired by H. Müller). (This data bank now comprises about 600
measured time curves from about 100 test series from various labora-
tories around the world, with about 15,000 data points.)

3. Progress in statistical evaluation of test data, optimization of the creep
and shrinkage prediction model and optimization that minimizes the
sum of the squares of errors. This task has been facilitated by the
computerized form of the aforementioned RILEM data bank.

4. Numerical studies of the response of test specimens and structures (es-
pecially by finite elements) and their comparisons with observed be-
havior, which has shed light on various assumptions on the material
model used in the input.

Much of the complexity and error of the prediction model is caused by
the fact that the design offices still analyze most structures according to
beam theory, which requires the average material characteristics for the cross
section of the beam as a whole. Because the material creep and shrinkage
properties inevitably become non-uniform throughout the cross section (due
to diffusion phenomena, residual stresses, cracking, damage localization and
fracture), the model for the average material properties in the cross section
is not a material constitutive model. It depends on many more influencing
factors than the constitutive model, such as the shape of the cross section,
environmental history, ratios of the bending moment, normal force and shear
force.

For this reason, a really good model for the prediction of the average
shrinkage properties and average creep at drying in the cross section under
general loading and environmental conditions will never be possible. One
must accept significant errors, increased complexity, and a greater number
of empirical parameters if one insists on characterizing the behavior of the
cross section as a whole by its average properties. In the future, the design
approach should move away from characterizing the cross section creep and
shrinkage properties of the cross section as a whole, and toward an approach
in which the cross sections are subdivided into individual small elements.
However, for the time being, an integral prediction model for the cross section
as a whole is needed. In the special case of constant temperature and constant
moisture content, the average characterization of creep in the cross section
is identical to a constitutive model for a material point. In that case, the
model becomes far simpler and more accurate.
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The present model, which for brevity, is labeled Model B3 and is based
on reportß2, is the third major refinement in a series of models developed
at Northwestern University, including the BP modelß3 and BP-KX modelß4.
Model B3 is simpler, better supported theoretically and as accurate as these
previous models. Research progress will not stop, and no doubt further
improved versions will become possible in the future. Compared to the latest
BP-KX model, the improvement in Model B3 consists in simplification of
the formulae achieved by sensitivity analysis, incorporation of a theoretically
derived rather than empirical expression for the drying creep, and calibration
of the model by an enlarged data set including the data published in the last
few years.

Model B3 conforms to the guidelines that have recently been formulated
by RILEM Committee TC-107, as a refinement and extension of the conclu-
sions of a preceding RILEM Committee TC-69ß1. These guidelines summa-
rize the basic properties of creep and shrinkage that have been well estab-
lished by theoretical and experimental researches and represent the consensus
of the committee. The existing prediction models of major engineering soci-
eties violate many of these guidelines. The present model must nevertheless
be regarded as only an example of a model satisfying these guidelines because
formulation of a model based on the guidelines is not unique and conceivably
partly different models satisfying these guidelines could be formulated, too.

The purpose of this Chapter 2 is to provide justification as well as some
refinements of Model B3. All the notations from Chapter 1 are retained.∗

2.2 Unbiased Statistical Evaluation Based on

Computerized Data Bank

Development of a data bank comprised of practically all the relevant test
results on creep and shrinkage of concrete obtained in various countries and
laboratories up to the present time facilitates evaluation and calibration of
creep and shrinkage prediction models. No longer tediousness limits such
evaluation to a few subjectively selected test data. It is important to use the
complete set of available test data, because subjective selections of some data
for verification of a creep model have been shown to be capable of greatly
distorting the conclusions.

The statistical evaluation and optimization of Model B3 has been carried
out in the same manner as for the preceding models BP and BP-KX (See Ref.
3–Part 6; Ref. 4 and Ref. 13). Optimum values of the model parameters that
minimize the sum of squared deviations from the data in the data bank have
been determined. The deviations of the model from the test data (errors)
have been characterized by their coefficient of variation ω̄ which is defined

∗The same model as described here has been proposed to the RILEM committee TC-
107. A favorable consensus has been achieved in that committee and the model will now
be submitted for public discussion as a possible RILEM recommendation.
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for the data set number j as

ω̄j =
sj

J̄j

=
1

J̄j

√

√

√

√

1

n − 1

n
∑

i=1

(wij∆ij)2, (2.1)

in which

J̄j =
1

n

n
∑

i=1

wijJij, wij =
n

ndn1

(2.2)

Here Jij are the measured values (labeled by subscript i) of the compliance
function in the data set number j; n is the number of data points in the data
set number j; ∆ij is the deviation of the value given by the model from the
measured value; sj is the standard deviation of ∆ij values for set j; wij are
the weights assigned to the data points; nd is the number of decades on the
logarithmic scale spanned by measured data in data set number j; and n1 is
the number of data points in one decade.

The weight assigned to a data point in a decade on the logarithmic scale
is taken as inversely proportional to the number of data points, n1, in that
decade and the weights are normalized such that

∑

i wij = n. The use of n−1
in (2.1) is required for an unbiased estimate of sj. The overall coefficient of
variation of the deviations of the model from the measured values for all the
data sets in the data bank has been defined as

ω̄all =

√

√

√

√

√

1

N

N
∑

j=1

ω̄2
j (2.3)

in which N is the number of data sets in the bank (in Table 2.1, the ω̄j

values are those on line 1 to 17, in Table 2.2 those on lines 1 to 21, etc).
Similar expressions, with J replaced by shrinkage strain ǫsh, have been used
for shrinkage. Eq. (2.3) represents the standard deviation of the population
of relative errors ∆ij/J̄j of all the test series put together, with the same
weight on each test series rather than on each reading. One might be tempted
to use the alternative formula ω̄all = [

∑

j s2
j/N ]1/2/J̃ with J̃ =

∑

j J̄j/N ,
which is based on the population of actual rather than relative errors, or
the formula [

∑

i

∑

j(wij∆ij)
2/Nn − 1]1/2/Ĵ with Ĵ =

∑

i

∑

j Jij/Nn, which
is based on the population of ∆ij of all the test series put together. But
the former would give more weight to weaker concretes (because they creep
more) and the latter to those test series for which more readings were taken
(the number of readings is partly a subjective choice).

The statistics of the errors of Model B3 in comparison to the test data
sets in the RILEM data bank are given in Tables 2.1–2.3 for basic creep,
shrinkage and creep at drying. For comparison, the statistics of errors of the
current ACI modelß5, developed in the mid-1960’s by Branson et al., and the
latest CEB modelß30 are also shown (for a comparison to another recently
proposed modelß31 see the discussion of Ref. 31). Table 2.4 presents the
statistics of the extension of the model to basic creep at constant elevated
temperatures. Figs. 2.1–2.4 show some typical comparisons with selected
important test dataß33-44 from the data bank.
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Table 2.1: Coefficients of variation of errors (expressed as percentage) of basic
creep predictions for various models.

Model B3 ACI CEB

Test data ω̄ ω̄ ω̄

1. Keeton 19.0 37.5 42.8
2. Kommendant et al 15.3 31.8 8.1
3. L’Hermite et al. 49.4 133.4 66.2
4. Rostasy et al. 15.2 47.6 5.0
5. Troxell et al. 4.6 13.9 6.2
6. York et al. 5.6 37.7 12.8
7. McDonald 6.9 48.4 22.2
8. Maity and Meyers 33.8 30.0 15.7
9. Mossiossian and Gamble 18.6 51.5 47.3
10. Hansen and Harboe et al. (Ross Dam) 14.1 51.2 31.1
11. Browne et al. (Wylfa vessel) 44.7 47.3 53.3
12. Hansen and Harboe et al. (Shasta Dam) 22.7 107.8 43.1
13. Brooks and Wainwright 12.6 14.9 15.4
14. Pirtz (Dworshak Dam) 12.5 58.2 32.5
15. Hansen and Harboe et al. (Canyon ferry Dam) 33.3 70.2 56.9
16. Russell and Burg (Water Tower Place) 15.7 19.3 31.5
17. Hanson 14.1 63.3 12.1

ω̄all 23.6 58.1 35.0

In evaluating a creep and shrinkage model, it is important to avoid sub-
jective bias. This has not been true of the evaluations of some other models
recently presented in the literature. For example, consider that there are
over 1,000 data points for creep durations under 100 days, and only 10 data
points in excess of 1,000 days. If all these data were used in the statistical
evaluation with the same weight, the error in predictions for times over 1,000
days would obviously have a negligible influence on the resulting statistics.
Thus, a very low coefficient of variation of errors would be obtained if the
model fitted the data well only in the range of up to 100 days. Yet predictions
of the long-time behavior are most important.

A similar problem arises when the data bank has many values for loading
ages under 100 days and very few over 1,000 days. However, in long-time
relaxation, significant stress changes can occur in structures even after 1,000
days of age, and if the model does not predict the creep well for such large
ages at loading, the stress relaxation cannot be correctly predicted from the
principle of superposition. This point is important to realize since some re-
cent comparisons with test data suffered from this kind of bias. Therefore
one must ensure that the measured data within each decade of load or shrink-
age duration (in logarithmic time scales) have equal weights. If possible this
should also be ensured for the age at loading. Ideally, equal weights would be
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Table 2.2: Coefficients of variation of errors (expressed as percentage) of shrink-
age predictions of various models.

Model B3 ACI CEB

Test data ω̄ ω̄ ω̄

1. Hummel et al. 27.0 30.0 58.7
2. Rüsch et al.(1) 31.1 35.2 44.8
3. Wesche et al. 38.4 24.0 36.1
4. Rüsch et al.(2) 34.7 13.7 27.8
5. Wischers and Dahms 20.5 27.3 35.9
6. Hansen and Mattock 16.5 52.9 81.5
7. Keeton 28.9 120.6 48.3
8. Troxell et al. 34.1 36.8 47.4
9. Aschl and Stökl 57.2 61.3 44.2
10. Stökl 33.0 19.5 29.6
11. L’Hermite et al. 66.7 123.1 69.4
12. York et al. 30.6 42.8 8.9
13. Hilsdorf∗ 11.7 24.7 29.6
14. L’Hermite and Mamillan 46.1 58.7 45.5
15. Wallo et al. 22.0 33.0 55.6
16. Lambotte and Mommens 39.1 30.7 31.3
17. Weigler and Karl 31.3 29.6 21.3
18. Wittmann et al. 23.7 65.4 40.0
19. Ngab et al. 20.4 45.3 64.6
20. McDonald 5.1 68.8 21.4
21. Russell and Burg (Water Tower Place) 38.5 51.0 58.1

ω̄all 34.3 55.3 46.3
∗Hilsdorf H.K., “Unveröffentlichte Versuche an der MPA München,” private
communication (1980).

achieved and subjective bias eliminated if the measured data had equal spac-
ing in the logarithmic scales of load or drying duration and age at loading,
and if they covered the entire range. But unfortunately creep measurements
have not been made in this way.

In a previous studyß3,4, the subjective bias was eliminated by hand-
smoothing in log-time scale the experimentally measured curves and then
placing points equally spaced in the log-scale on such hand-smoothed curves.
However, there is a slight objection to this approach, since it inevitably
involves some manipulation of test data and suppresses part (albeit only
a very small part) of the scatter of data. A different approach has been
adopted for the evaluation of Model B3. The data points in each decade
in the logarithmic scale of load duration or drying duration are considered
as one group, and each group of data points is assigned equal weight as a
whole. Thus an individual data point in a particular group is weighed in
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inverse proportion to the number of points in that group. Since most data
sets have only few data points for load durations less than one day, all the
data points for load durations under 10 days have been treated as part of
one group.

As for the ages at loading, it turned out impractical to treat them in the
same manner because very high and very low ages at loading are missing from
most data. For this reason, statistical comparisons of Model B3 predictions
with the values from the data bank have also been calculated separately for
various decades of load duration and of ages at loading (grouped together
in decades on the log-scale); see Table 2.5 for creep both without and with
drying and Table 2.6 for shrinkage. (The coefficients of variation in this
table could be used as the basis for a more refined statistical analysis of
creep effects in structures, which would be more realistic than the simple use
of the ω values in Eq. (1.26).)

A factor that contributes to the high value of scatter of shrinkage is the
differences in the method of measuring shrinkage, which was not reported
for many data. Some measurements have been made along the axis of the
cylinder, others on the surface, and the base-length sometimes reached close
to the ends of the specimen, sometimes not. Thus the complex deformation
of specimen ends contaminated the results in an undocumented way. An-
other reason that the scatter of shrinkage is higher than that of creep is that
the microcracking, which is very random, is more pronounced in shrinkage
specimens than in compressed creep specimens.

It is worth noting that the coefficients of variation of Model B3 remain low
even for the last decade of age at loading (over 1,000 days), while for some
other models they become very large for that range. Correct representation of
creep for loading ages over 1,000 days is important for calculating long-time
stress relaxation from the principle of superposition, as well as for general
solutions of stress variation in structures over long periods of time. In Table
2.6 for shrinkage, the coefficients of variation are not given separately for
individual decades of the logarithm of the age t0 at the start of drying because
the effect of t0 is relatively small.

It must be stressed that Fig. 2.1–2.4 are not intended as a verification of
the model. For that purpose, the fits of all of the data sets in the data bank
must be considered. Visual comparisons with all of the data sets have been
generated by the computer but are too extensive for publication.

It should also be pointed out that the deviations from the data points
seen in the figures are mainly caused by errors in the prediction of model
parameters from the composition and strength of the concrete. If the model
parameters are adjusted, all these data can be fitted very closely, but then
one is not evaluating the prediction capability of the model. The figures
showing most of the data from the data bank were presented in a previous
paperß4 along with the basic information on the tests.

Other models in the literature have been verified by only a limited se-
lection of the available test data. Before the age of computers this was
understandable, due to the tediousness of such comparisons, but with the
availability of a computerized data bank such selective comparisons with
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Table 2.3: Coefficients of variation of errors (expressed as percentage) of the
predictions of creep at drying for various models.

Model B3 ACI CEB

Test data ω̄ ω̄ ω̄

1. Hansen and Mattock 5.8 32.1 11.9
2. Keeton 31.4 46.3 37.9
3. Troxell et al. 5.9 33.0 7.9
4. L’Hermite et al. 14.0 55.8 25.5
5. Rostasy et al. 6.5 20.9 14.8
6. York et al. 5.8 42.1 45.1
7. McDonald 10.9 40.4 38.9
8. Hummel 15.3 46.2 24.6
9. L’Hermite and Mamillan 20.6 62.5 15.2
10. Mossiossian and Gamble 11.3 71.7 30.8
11. Maity and Meyers 62.8 45.9 83.7
12. Russell and Burg (Water Tower Place) 10.7 41.2 19.1
13. Weil 23.9 42.1 30.2
14. Hilsdorf et al. 22.7 40.4 25.4
15. Wischers et al.∗ 22.3 44.3 17.4
16. Wesche et al. 28.1 38.6 24.0
17. Rüsch et al. 17.6 24.4 15.4

ω̄all 23.0 44.5 32.4

∗ Data with curing duration less than one day are excluded.

test data are unjustifiable. There is always the danger of grossly distorting
the results by a convenient selection of some test data sets to use for justify-
ing some proposed model. For example, if among the 21 data sets used for
shrinkage only the 12 most favorable data sets were selected (which might
seem like plenty for justifying a model), the ω̄all value would be reduced from
34.3 to 23.7%. Likewise, if among the 17 data sets used for basic creep, only
7 of the most favorable of the data sets were selected, the ω̄all value would
be reduced from 23.6% to 10.7%. These observations, and similar ones made
inß3, document the dangerous deception that could be hidden in selective use
of test data. Justifying some model by 12 or 7 data sets may look like plenty,
yet it can be greatly misleading unless the data to be used for justification
were chosen truly randomly.

If the aforementioned weights were not used, a smaller coefficient of varia-
tion of errors could be achieved. However, the fit of the long-time data would
be much poorer. This fact clearly shows that the weights must be used in sta-
tistical evaluations. Better weighting, aside from applying sensitivity analysis
to simplify the model, is one reason why the present coefficients of variation
come out slightly higher than for the BP-KX Model.

A further assessment of the degree of scatter can be obtained from the
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Table 2.4: Coefficients of variation of errors (expressed as percentage) of Model
B3 predictions of the effect of constant elevated temperature on basic creep.

Test data ω̄

1. Johansen and Best 20.3
2. Arthanari and Yu 35.5
3. Browne et al. 27.2
4. Hannant D.J. 14.0
5. York, Kennedy and Perry 41.1
6. Kommendant et al. 18.8
7. Okajima et al. 6.9
8. Ohnuma and Abe 23.7
9. Takahashi and Kawaguchi (a) 38.8
10. Takahashi and Kawaguchi (b) 43.9

ω̄all 28.1

plots of measured value, Xk versus corresponding predicted values Yk of creep
and shrinkage (k = 1, 2, 3...Np are all the points in the plot). They are shown
in Fig. 2.5, not only for the Model B3 but also for the previous ACI and the
new CEB-FIP models. The basic creep and creep at drying are combined in
the same plots.

If the models were perfect and scatter did not exist, these plots would
be straight lines of slope 1. Thus deviations from this line represent errors
of the model predictions plus inevitable scatter of the measurements. As
seen, the errors of the Model B3 are significantly less than for the previous
ACI 209 Model and distinctly less than for the new CEB Model. It should
be noted that the Model B3 achieves the most significant improvements for
large strains (or long times), which are most important. This is revealed by
observing that the high strain points for the Model B3 lie relatively close to
the line of slope 1, while those for ACI and CEB-FIP Models lie high above
this line (which implies underprediction).
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Table 2.5: Statistics of errors of various models for basic creep and creep at
drying, calculated separately for different ranges of age at loading and creep
duration (in days).

Model B3

ω̄ t′ ≤ 10 10 < t′ ≤ 100 100 < t′ ≤ 1000 t′ > 1000
t − t′ ≤ 10 17.8 24.0 19.8

10 < t − t′ ≤ 100 13.7 23.1 25.3 29.3
100 < t − t′ ≤ 1000 13.9 20.5 22.6 33.6

t − t′ > 1000 12.7 14.6 17.8

ACI Model

ω̄ t′ ≤ 10 10 < t′ ≤ 100 100 < t′ ≤ 1000 t′ > 1000
t − t′ ≤ 10 60.3 30.7 33.3

10 < t − t′ ≤ 100 45.7 36.7 49.9 97.1
100 < t − t′ ≤ 1000 34.6 39.9 51.7 93.9

t − t′ > 1000 36.8 39.9 40.9

CEB Model

ω̄ t′ ≤ 10 10 < t′ ≤ 100 100 < t′ ≤ 1000 t′ > 1000
t − t′ ≤ 10 40.5 23.1 11.2

10 < t − t′ ≤ 100 25.8 23.5 21.2 40.8
100 < t − t′ ≤ 1000 17.5 22.8 25.0 41.3

t − t′ > 1000 11.6 20.5 24.7

Table 2.6: Statistics of errors of various models for shrinkage, calculated sepa-
rately for different ranges of drying duration (in days).

ω̄ t − t0 ≤ 10 10 < t − t0 ≤ 100 100 < t − t0 ≤ 1000 t − t0 > 1000

B3 38.5 29.3 22.4 19.6
ACI 67.8 50.4 43.3 44.8
CEB 53.5 40.2 44.7 37.4
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Figure 2.1: Comparison of the predictions of the Model B3 (solid lines) with
some important test data for basic creep from the literature
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Figure 2.2: Comparison of the predictions of the Model B3 (solid lines) with
some important test data for shrinkage from the literature
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Figure 2.3: Comparison of the predictions of the Model B3 (solid lines) with
some important test data for creep at drying from the literature
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Figure 2.4: Comparison of the predictions of the Model B3 (solid lines) with
some important test data from the literature for the effect of constant elevated
temperature on basic creep
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The correlation coefficient r of the population of the measured values
and the corresponding model predictions is given in each figure. It has been
calculated as r =

∑

k(Xk − X̄)(Yk − Ȳ /(Np − 1)sXsY where s2
X =

∑

k(Xk −
X̄)2/(Np − 1), s2

Y =
∑

k(Yk − Ȳ )2/(Np − 1), X̄ =
∑

k Xk/Np, Ȳ =
∑

k Yk/Np.
Note that r characterizes only the grouping of the data about the re-

gression lines of the plots. The regression lines are also drawn in Fig. 2.5.
But these regression lines do not have slope 1 and do not pass through the
origin. This represents another kind of error that is not reflected in the value
of r (this is the basic deficiency of this kind of plots compared to statistical
regression). We see from these plots that in the case of Model B3, the re-
gression line (dashed) is close to the line of slope 1 through the origin and
also the value of r is close to 1.

The same plots of measured versus calculated values of creep and shrink-
age are plotted in logarithmic scales in Fig. 2.6. These plots show the relative
errors. As seen from these plots, especially for shrinkage, the relative error
for all the models decreases with increasing shrinkage strain, as opposed to
the absolute error seen in Fig. 2.5, which increases with increasing strain.
These plots also show that the overall predictions are best for Model B3.

In the coordinates of Figs. 2.5 and 2.6 the strains for higher strength con-
cretes are generally smaller than those for lower strength concretes. This is
statistically undesirable because low strength concretes receive larger weights
in such plots. To correct it we note that, roughly, the shrinkage and creep

strains are proportional to 1/
√

f̄c. Thus a plot of measured versus predicted

values in which the coordinates are multiplied by
√

f̄c/5000 (strength values

normalized by a mean strength of 5000 psi) gives roughly the same weight to
concretes of high and low strengths. Such plots are shown in Fig. 2.7. From
these plots it may be seen that the data which were crowded in Fig 2.5 have
become more dispersed. The regression lines have been shown on these plots
also and the correlation coefficient r has been calculated. In this case also
the regression line for Model B3 is seen to be close to the line of slope 1 and
the correlation coefficient r is also close to 1.

As mentioned in Chapter 1, the ACI formula for elastic modulus, E =

57000
√

f̄c gives values approximately equal to 1/J(28+∆, 28) where ∆ ≈ 0.01
day (or 5 to 20 min). This is verified by Fig. 2.8(a,b,c) which shows the values
of E28 = 1/J(28 + ∆, 28) obtained in all the creep tests in the data bank for
various ∆ values.

In Fig. 2.8(d,e) two sets of short-time creep compliance data are plotted
against (t − t′)0.1. We note that on such a plot the short-time creep curves
appear as straight lines and that these straight lines corresponding to different
ages at loading approximately meet at t − t′ = 0. This demonstrates that
the value of q1 = 1/E0 can be considered as age-independent. Fig 2.9 shows

the values of E28 = 1/J(28 + ∆, 28) versus
√

f̄c plotted for ∆ = 0.01 day. It
can be seen that the discrepancy between the values of the ACI formula (line

marked E = 57000
√

f̄c in Fig. 2.9) and the values of 1/J(28.01, 28) is not
large even though the method of measuring E28 = 1/J(28.01, 28) in a creep
test differs from the ASTM standards for measuring the elastic modulus.
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The deviation of the regression line of the points in Fig. 2.9 indicates that
a closer fit would be possible (with E ∝ f̄ 2/5

c ) but the improvement in creep
predictions would be minor. The ACI formula, even though not optimal, is
retained for the sake of uniformity.
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Figure 2.5: Scatter plots of the measured versus predicted values of creep and
shrinkage (dashed lines are regression lines).
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Figure 2.7: Scatter plots of the measured versus predicted values of creep and
shrinkage with coordinates multiplied by (f̄c/5000)1/2 (dashed lines are regression
lines).
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(d) (e)

Figure 2.8: (a,b,c) Ratio of the values of E28 = 1/J(28 + ∆, 28), for various
∆ values, to ACI formula for E; (d,e) Demonstration that the short-time creep
data confirm the age-independence of q1 = 1/E0.

The age-dependence E(t) according to Eq. (1.47) is similar to the ACI
formula but not identical. For ∆ = t− t′ ≪ t′, one may replace t in Eq. (1.6)
with t′, and then one can easily integrate, obtaining:

J(t, t′) = q1 + (q2t
′−1/2

+ q3) ln[1 + (t − t′)n] + q4 ln
t

t′
(2.4)

where the last term is negligible for t − t′ ≪ t′ or t ≈ t′. Using this
in Eq. (1.46) one gets Eq. (1.47) which yields the solid curves in Fig.
2.10. Also shown in this figure are the curves of the ACI formulaß5 E(t) =
E(28)[t/(α + βt)]1/2, as well as the test results of Shidelerß45. We see the
present formulation actually fits these data better than the ACI formula (ACI
209ß5), particularly for long times,† but the difference is not significant.

†This comparison study was done by Anders Boe Hauggaard, visiting research scholar
at Northwestern University from the Technical University of Denmark.
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Figure 2.9: Elastic modulus predictions by creep formulae

2.3 Updating of Creep and Shrinkage Pre-

dictions Based on Short-Time Measure-

ments

The updating of creep predictions based on short-time measurements has
already been discussed in Chapter 1, but further discussion of the updating
of shrinkage predictions is in order.

The updating of shrinkage predictions as well as creep predictions is best
handled by the Bayesian statistical approachß11,12. However, for the sake
of simplicity, this approach is avoided here, although Bayesian extension of
the present analysis would be possible.

2.3.1 Problems in Updating Shrinkage Predictions

The problem of updating is much harder for shrinkage than for creep be-
cause of the recently discovered ill-posedness of the shrinkage updating prob-
lemß13. The updating based only on short-time measurements of shrinkage
values is not possible unless the measurements extend into the final stage in
which the shrinkage curve begins to level off on approach to the final value.
Before reaching this final stage, it is impossible to tell, without additional
information, how much longer the curve of ǫsh versus log(t − t0) will rise at
non-decreasing slope and when it will start to level off.

If the time range of shrinkage measurements is not sufficiently long, the
problem of fitting the shrinkage formula in Eq. (1.8)–(1.9) to the measured
strain values is what is known in mathematics as an ill-posed problem. In
other words, very different values of parameters ǫsh∞ and τsh can give almost
equally good fits of short-time data, as documented in Fig. 2.11(a,b). This
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Figure 2.10: Comparison of the ACI formula and Eq. (1.47) for the age-
dependence of elastic modulus (given in 10−6 psi in this figure)

is true not only for the present Model B3 formulae but also for all other
realistic shrinkage formulae, including the Ross’ hyperbola used in the 1971
ACI Model (this formula does not give a good shape of the shrinkage curves
and disagrees with the asymptotic forms for short and long times required
by the RILEM Committee Guideliness26). The problem is clear from Fig.
2.11, in which two shrinkage curves according to the present model or the
ACI Model (ACI 209), corresponding to very different parameter values, are
shown to nearly coincide for a long period of time. If the data do not reach
beyond the time at which the two curves shown in Fig. 2.11(a,b) begin
to significantly diverge, there is no way to determine the model parameters
unambiguously.

Fig. 2.11c underscores the point that comparisons of shrinkage measure-
ments of different concretes can be misleading if the test durations are not
long enough. Shrinkage time curve a corresponds to a relatively porous con-
crete that dries quickly and reaches moisture equilibrium soon but has a low
final shrinkage. Curve b corresponds to a dense concrete which dries very
slowly but has a large final shrinkage. However, a short-time shrinkage test,
terminating at the points marked, would show concrete a to have a higher
final shrinkage than concrete b, which is not true.

¿From such plots it is concluded that a reliable determination of the fi-
nal value of shrinkage would require, for 6 in. (15 cm) diameter cylinders,
measurements of at least five years in duration, which is unacceptable for a
designer. Even with a 3 in. (7.5 cm) diameter cylinder, this would exceed
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Figure 2.11: Examples of shrinkage-time curves giving nearly the same initial
shrinkage but very different final values. (a): Model B3, (b): ACI 209 Model
(all other realistic expressions for shrinkage also exhibit such behavior) and (c)
Possible shrinkage-time curves of identical specimens of different concretes

15 months. Increasing the temperature of the shrinkage tests to about 50◦

C would not shorten these times drastically and would raise further uncer-
tainties due to the effect of temperature. A greater increase of temperature
would change the shrinkage properties so much that inferences for the room
temperature would become questionable. Significant acceleration of shrink-
age would require reducing the thickness of the shrinkage specimen under
about 1 in. (2.54 cm). But in that case the specimens would have to be
saw-cut from larger specimens and this would cause the three-dimensional
composite interaction between the mortar matrix and the aggregate pieces
to be very be different from bulk concrete. Thus, for shrinkage updating
from short-time tests, some further information (e.g. an estimate of the final
water loss, used in the following updating procedure) is essential, in addition
to the short-time test data.
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2.3.2 Updating Shrinkage Prediction when τsh Is Known

The nonlinear parameter in the shrinkage model is τsh. So let us first describe
the updating assuming that the value τ̄sh of shrinkage half-time τsh has some-
how been determined by short-time measurements. The updated values of
shrinkage prediction may be written as ǫ∗sh(t, t0) = p6ǭsh(t, t0) (Eq. (1.33) ) in
which ǭsh(t, t0) are the values predicted from Model B3 based on τ̄sh, ignoring
Eq. (1.11) for τsh, and p6 is an update parameter to be calculated. Consider
that values ǫ′shi

at times ti have been measured. The optimum update should
minimize the sum of squared deviations ∆i of the updated model from the
data; that is

S =
∑

i

∆2
i =

∑

i

(p6ǭshi
− ǫ′shi

)2 = Min (2.5)

where ǭshi
= ǭsh(ti, t0). A necessary condition of a minimum is that dS/dp6 =

0. This yields the condition
∑

i(p6ǭshi
− ǫ′shi

)ǭshi
= 0. From this, the value of

the update parameter is calculated as p6 =
∑

i ǭshi
ǫ′shi

/
∑

i ǭ
2
shi

, which is Eq.
(1.32).

2.3.3 Measuring Water Loss to Update Shrinkage Pre-
diction

Second consider how τsh can be estimatedß2. To circumvent the aforemen-
tioned ill-posedness of the shrinkage updating problem (Fig. 2.11a,b), the
following approach has been proposed in Ref. 2. It has been known for a
long time that shrinkage strains are approximately proportional to the water
loss, denoted as ∆w. The idea is that: (1) water loss can be easily measured
simultaneously with shrinkage tests, and (2) the final value ∆w∞(0) of water
loss at nearly zero environmental humidity can be easily estimated by heat-
ing the test specimen in an oven to 110◦ C right after the short-time test
is terminated. Although such heating causes a slightly higher water lossß46
than drying up to hygral equilibrium at constant temperature and at h ≈ 0,
the difference can be neglected.

As another spoiling influence, one might point out carbonation of Ca(OH)2,
which occurs fast upon heating and increases the weight of the specimen.
But, because of the time the diffusion of CO2 requires, this effect is proba-
bly significant only on thin cement paste specimens. Thus the sum of the
weight losses during shrinkage and the subsequent heating can be assumed
to be approximately equal to the final weight loss ∆w∞(0) that a shrinkage
specimen would experience if it attained hygral equilibrium at h ≈ 0.

To estimate the final water loss ∆w∞(h) for shrinkage humidity h, we need
an approximation for the desorption isotherm. Assuming that the shrinkage
is proportional to water loss, this isotherm should approximately be a linear
expression in function h3 used in kh in Eq. (1.10). Although the shapes of the
desorption isotherms of concrete vary considerablyß47-49, the following ex-

pression seems reasonable (Fig. 2.12): ∆w∞(h) ≈ 0.75
[

1 − (h/0.98)3
]

∆w∞(0),

valid for 0.25 ≤ h ≤ 0.98 (which is Eq. (1.30) of Chapter 1). It satisfies the
condition that there is no water loss for h ≈ 0.98 (in water immersion, i.e.
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for h = 1.0, there is water gain). For h < 0.25 this expression (Fig. 2.12) is
invalid, but environmental humidities below 25% are normally not of interest.

0.00 0.25 0.50 0.75 1.00
Relative humidity, h

0.00

0.20

0.40

0.60

0.80

1.00

R
e
la

ti
v
e
 w

a
te

r 
c
o

n
te

n
t,
   

θ 

Formula

Actual

Figure 2.12: Relative water content, θ = 1 − ∆w∞(h)/∆w∞(0), vs. relative
humidity, h

An alternative way to estimate ∆w∞(h) might be to estimate first the
final degree of hydration in the shrinkage specimen and on that basis calculate
the final water content from the total water content and cement content
in the mix. Sealed curing (rather than curing in a water bath) would be
required to prevent imbibition of water before the shrinkage test. However,
the uncertainty involved in that approach would no doubt be higher.

Because Eq. (1.8) and (1.9) were derived from diffusion theory, under the
assumption of proportionality to water loss, the evolution of water loss with
time should approximately follow the same equation as Eq. (1.9) in Chapter
1, that is,

∆w

∆w∞(h)
= tanh

√

t − t0
τsh

(2.6)

where ∆w is the weight loss of the shrinkage specimen up to time t. This
equation can easily be rearranged to a linear form: t − t0 = τshψ, with

ψ =
[

tanh−1 (∆w/∆w∞(h))
]2

, which appears in Eq. (1.31).

Now consider that, at times ti of shrinkage measurements, the values of
water loss ∆wi up to times ti have also been measured and the corresponding
values of ψi have been calculated. The optimum value of τsh must minimize
the sum of square deviations, i.e.

S =
∑

i

[τshψ − (ti − t0)]
2 = Min (2.7)

A necessary condition of a minimum is that dS/dτsh = 0. This yields the
linear equation

∑

i [τshψi − (ti − t0)] ψi = 0, from whichß2: τsh =
∑

i(ti −
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t0)ψi/
∑

i ψ
2
i which is Eq. (1.32). Based on this value, one may then use Eq.

(1.33) to obtain the updating parameter p6 for the final shrinkage value.
In the foregoing procedure based on Ref. 2, it has been assumed that

shrinkage half-time, τsh = 1.25τw, where τw = the water-loss half-time. Fit-
ting of the shrinkage and water loss data for very thin cement paste speci-
mensß47 has shown τsh to be somewhat higher than τw. Similar results were
obtained from the data for six different concretes used in French nuclear
containments, which provided τsh/τw = 1.30 for power plant Penly, 2.23 for
Chooz, 1.28 for Civaux(BHP), 1.32 for Civaux(B11), 0.55 for Flamanville,
1.06 for Paluelß14. The average ratio is τsh/τw ≈ 1.25, which explains Eq.
(1.32). The reason for τsh > τw may be explained by the fact that the micro-
cracking in the surface layer of drying specimens accelerates water loss but
decreases average axial shrinkage in the cross-section. Another reason could
be the existence of a certain time-lag caused by the local microdiffusion of
water from gel micropores to capillary pores.

It must be emphasized that a systematic check of the proposed procedure
for estimating the final water loss by heating, has not yet been made. Also a
more systematic verification of the assumption that τsh ≈ 1.25τw is desirable.
This new method deserves deeper evaluation of its accuracy.

The ill-posedness of time extrapolation of course occurs also for the por-
tion of creep due to drying, because, being governed by diffusion phenomena,
it is based on the same function τsh. Even though this is a lesser problem
(because only part of creep is affected), it is advisable to eliminate this ill-
posedness in extrapolation from short-time data. To do that one should use
the τsh value obtained from the water-loss data for the function F (t, t′), in
Eq. (1.28), which is used in extrapolation of creep instead of using the τsh

value from the prediction formula in function F (t, t′) .

2.3.4 Importance of Measuring the Initial Shrinkage
and Data Correction

Theoretically, the shrinkage curve after the surfaces dries should initially
evolve in proportion to

√
t − t0 if the exposure to environment is suddenß50.

This is, for example, quite well verified by the data reported by Wittmann,
Bažant and co-workersß35. However, some shrinkage data, especially older
ones, do not quite agree with this rule. The most likely reason is that the first
reading was not taken right at the time of stripping of the mold, which means
that some initial shrinkage strain ∆ǫsh has been missed. Thus, the erroneous
readings ǫ̃sh should be corrected by constant ∆ǫsh. Neglecting other possible
influences, this may be done by optimally fitting to the initial data points the
relation: ǫ̃sh + ∆ǫsh = k

√
t − t0, in which k is some constant. This relation

can be represented by a linear regression in the plot of ǫ̃sh versus
√

t − t0.
Another error may occur when the seals leak moisture during the curing

before the shrinkage test. This may cause ∆ǫsh to come out negative. But no
correction to data is possible in this case. Such data should be discarded if
| ∆ǫsh | is large. In the present data sets, these corrections have been found
to be relatively small and at the same time quite uncertain in most cases, due
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to the high initial scatter of the data. Therefore, these corrections have not
been used in the optimum fitting of Model B3. Such corrections, however,
could be important for the evaluation of short-time data with the purpose of
extrapolating for longer times.

2.3.5 Extension to Special Concretes

Special concretes such as high-strength or fiber-reinforced concretes contain
various admixtures and pozzolanic materials. Experimental research has in-
dicatedß28,29 significant influence of these additives on creep and shrinkage
(for a detailed review see the report of subcommittee 5 of ACI 209, chaired
by J.J. Brooks). Parameter prediction formulae based on composition are,
for such concretes, difficult to formulate because of the wide variety of ad-
ditives used. However, Model B3 can be applied to such special concretes
if the material parameters are calibrated by short-time tests, provided that
certain special behavior is taken into account.

The observed autogenous shrinkage, which is very small for normal con-
cretes, represents a significant portion of the total shrinkage in high-strength
concretesß51. The reason is that, because of small ratios of water to cemen-
titious materials, significant decrease of pore humidity due to self-desiccation
occurs in such concretes. Despite limited test dataß51, the following formula
can be recommended for the total shrinkage of high strength concretes:

ǫtotal
sh (t, t0) = ǫa(t) + ǫsh(t, t0) (2.8)

where ǫa is the autogenous shrinkage, and ǫsh is the drying shrinkage. The
autogenous shrinkage can be approximately described by the formula:

ǫa(t) = ǫa∞(0.99 − ha∞)Sa(t); Sa(t) = tanh

√

t − ts
τa

(2.9)

where ts is the time of final set of cement; ǫsh is the same as given by Eq.
(1.8); τa is the half-time of autogenous shrinkage, which depends on the rate
of hardening of the type of high-strength concrete; and ha∞ is the final self-
desiccation humidity (it may be assumed to be about 80% because hydration
almost ceases below this humidity). Note that there is no size or shape effect
in the above formula because self-desiccation is not caused by diffusion of
water (except that the non-uniform heating due to the rapid hydration re-
action during autogenous shrinkage can induce moisture diffusion and some
associated size effect, but this is neglected here). The material parameters
in the foregoing formula may be calibrated by carrying out shrinkage mea-
surements on sealed specimens (autogenous shrinkage) and drying specimens
(total shrinkage). The autogenous shrinkage measured on high-strength con-
crete tends to terminate early. After self-desiccation, there is not much water
left in the specimen for drying by diffusion because the water contents of
high-strength concretes tend to be small.
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2.4 Theoretical Justifications of Model B3

2.4.1 New Theoretical Formula for Drying Creep

The formula used for drying creep in the preceding BP and BP-KX Models
was semi-empirical. A more rational formula, presented in Eq. (1.14), has
been derived theoretically as followsß2.

We assume that the additional creep due to drying is essentially the stress
induced shrinkage, that is, we neglect the complex and hard to quantify
influence of cracking. Note that because creep is tested under compression,
the effect of microcracking is reduced. But even if it were considered, the
basic aspect of the following derivation (especially, the role of τsh) would still
apply because the microcracking is also associated with water diffusion. (For
the theoretical background of the drying creep problem, seeß20,22,26)

According to ß22, the average rate of the stress-induced shrinkage within
the cross section may be approximately expressed as Ċd = κḢ in which H
is the spatial average of pore relative humidity over the cross section and κ
is a coefficient. This coefficient may be considered as a function of H as well
as the total stress-induced strain Cd. We assume the following relation:

Ċd(t, t
′, t0) =

kρ(H)

Cd

Ḣ (2.10)

where ρ is a coefficient depending on H, and k is a constant. This can be
rewritten as d(C2

d)/dt = 2kρ(H)kḢ. Integrating from age at loading t′ to
the current time t,

C2
d = 2k

∫ t

t′
ρ(H)Ḣdτ = 2k

∫ H(t)

H(t′)
ρ(H)dH (2.11)

Since drying creep, like shrinkage, is caused by water content changes gov-
erned by the diffusion theoryß50, the following equation gives a good approx-
imation (having the correct asymptotic forms for very short and very long
times t − t0):

H(t) = 1 − (1 − h)S(t) = 1 − (1 − h) tanh

√

t − t0
τsh

(2.12)

Here S(t) is given by Eq. (1.9). According to diffusion theory, the water loss
from the specimen is initially (for small t − t0) proportional to the square
root of drying time. Eq. (2.12) satisfies this property because, for t − t0 ≪
τsh, 1 − H = (1 − h)[(t − t0)/τsh]

1/2. For long times t − t0 ≫ τsh, Eq.
(2.12) approaches the final asymptotic value exponentially, as required by
the diffusion theoryß50.

Studies of the data show that the function ρ(H) may be assumed approx-
imately in the form ρ(H) = eaH . Evaluation of the integral in Eq. (2.11)
then yields:

C2
d = 2k

[

eaH(t) − eaH(t′)
]

(2.13)

which is the expression used in Eq. (1.14).

58



2.4.2 Basic Creep and Shrinkage

The theoretical justification of the formulae used in Model B3 is the same
as stated inß4 for the previous BP-KX Model and for some formulae inß3.
Briefly, Eq. (1.6) is derived from the solidification theoryß6,52 in which it is
assumed that the chemical constituents of cement paste are not aging and
the aging is exclusively due to volume growth and the interlinking of layers
of a non-aging constituent of viscoelastic properties.

In the previous simplified version of this modelß13, the present formula
for basic creep was replaced by the log-double power law, which is simpler.
However, it is not much simpler and gives poor long time predictions for
concrete loaded at a very young age. Also, the log-double power law (as
well as the current compliance function in ACI 209 and many other com-
pliance functions proposed in the past) is not entirely free of the problem
of divergence identified in previous worksß1. This, for example, means that
these other models can give, according to the principle of superposition, non-
monotonic creep recovery curves (i.e. reversal of recovery). Furthermore,
the calculation of relaxation function R(t, t′) from the solidification theory
compliance function does not give negative values of R(t, t′) while for the
other compliance functions (log-double power law, ACI 209) negative values
of R(t, t′) are obtained for large t and small t′. In addition, the solidification
theory does not violate thermodynamic restrictions with respect to the aging
effect on material stiffness, whereas the other theories do. Because of these
advantages the formulation based on solidification theory is preferred. It also
gives better data fits.

Eq. (1.9) for the time function of shrinkage represents the simplest possi-
ble interpolation between two required asymptotic behaviors. For short times
the shrinkage strain (as well as the weight loss) should evolve as the square
root of the drying duration, and for long times the differences from the final
value should decay as an exponential.

Eq. (1.9) is also justified by diffusion theory, which requires the shrinkage
half-time to scale as D2. Here a remark on moisture diffusivity in concrete
and its effect on evolution of shrinkage is in order. Although kt in Eq. (1.11)
has the dimension of the inverse of diffusivity, it represents the diffusivity of
moisture only partly. Eq. (1.11) together with Eq. (1.13) also includes the
effect of microcracking, which tends to reduce long-term shrinkage value and
at the same time accelerates the shrinkage growth for medium durations (by
increasing the diffusivity). The diffusivity, of course, must be expected to
increase with w/c (or with 1/f ′

c) and decrease with t0, but these trends are
offset by the effects of Eq. (1.13) on shrinkage evolution.

Like shrinkage, the drying creep, too, must depend on D, which is ensured
by the dependence of τsh on D in Eq. (1.11). This causes the drying creep of
a very thick specimen to be negligible within normal lifetimes of structures;
the total creep approaches basic creep for D → ∞.

Eq. (1.13) for ǫsh∞ is justified by the fact that drying shrinkage is caused
mainly by forces applied on the solid microstructure as a result of tension
in capillary water and adsorbed water layers. According to this mechanism,
the shrinkage should decrease with increasing elastic modulus. Because the
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growth of elastic modulus continues longer in thicker cross sections (due to
slower drying), the decrease of ǫsh∞ for thicker cross sections should be more
pronounced and of longer duration.

2.4.3 Role of Environmental Fluctuations

Some engineers are skeptical about laboratory tests conducted at constant
environmental humidity. They suspect such tests to have little relevance to
structures exposed to weather of fluctuating relative humidity. This view,
however, is unjustifiably pessimistic. Although there is a certain effect (and
it is known how to take it into account–see the model for creep at cyclic hu-
midity and temperature inß3 andß4), analysis of moisture diffusion indicates
that, for not too thin cross-sections, the effect of such fluctuations cannot be
very large and cannot invalidate the present model. Diffusion analysis shows
that for normal concretes a periodic component of environmental humidity
history h(t) having a period Th does not affect the pore humidity at the
center of the cross-section if τsh ≥ 2Th or for normal concretes

D ≥
√

Th

10 days
in. (2.14)

This means that for D > 6 in., the annual humidity cycles do not affect
the center of a wall 6 in. thick. Furthermore, one calculates that these
humidity cycles affect less than 10% of the cross-section thickness when D
is about 3 times larger than that calculated by Eq. (2.14), i.e., D > 18
in. For high-strength concretes, which are much less permeable, these limits
for D are much smaller. Normal cracking cannot diminish these limits for
D significantly (as indicated by measurements of the drying diffusivity of
concrete with thin cracksß53).

On the other hand, for the fluctuating component of temperature, the
aforementioned limits for D are much larger, because in concrete the heat
diffusivity is about 100 times higher than drying diffusivity. But the effect of
temperature on shrinkage and creep is considered secondary and is ignored
in present design practice. Nevertheless, the effect of temperature deserves
deeper study.

2.5 Concluding Comments

Model B3 (based on the third update of the creep and shrinkage predictions
models developed at Northwestern University) is simpler than the previous
versions, gives good agreement with available test data, is validated by a
larger test set of test data, and is better justified theoretically on the basis of
the understanding of the mechanisms of creep and shrinkage. Simplification
of the effect of concrete composition and strength has been achieved mainly
by systematic sensitivity analysis of the parameters of the model. Theoretical
improvement has been achieved by a simplified integration of the previously
established formulation for stress-induced shrinkage.
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The coefficients of variation of the errors of the prediction model are
determined on the basis of the RILEM data bank which originated from a
previous ACI-RILEM data bank. They should serve as the basis for statistical
analysis of creep and shrinkage effects in structures, making it possible to
determine suitable confidence limits (such as 95% confidence limits) rather
than average properties.

A method of updating the main parameters of the model on the basis
of limited short-time tests is presented. Difficulties with ill-posedness of the
updating problem for shrinkage are circumvented by a new method exploit-
ing simultaneous short-time measurements of water loss during shrinkage.
Such updating can significantly reduce the uncertainty of prediction, and is
particularly important for extensions to high strength concrete with various
admixtures, superplasticizers, water-reducing agents and pozzolanic materi-
als.

2.6 Appendix to Chapter 2: Sensitivity Anal-

ysis

The formulae in (1.17) and (1.19) for predicting Model B3 parameters from
concrete composition and strength are simpler than those in the previous
models. The simplification has been achieved mainly through sensitivity
analysisß53,54. First, all the parameters of the model are assumed to depend
on all the composition and strength parameters, in the form of products of
power functions (which means that the logarithms of these parameters are
assumed to depend linearly on the logarithms of composition parameters and
of strength). Then the parameter values are optimized for the entire data
bank. In the case of basic creep, the following expressions are thus obtained:

q2 = 0.77(c)0.73(a/c)−0.09
(

0.001f̄c

)−1.25
, q3 = 0.36(w/c)5q2 (2.15)

q4 = 0.001(c/30)3.57
(

0.001f̄c

)1.29
(a/c)3.16 (2.16)

Then the plots of the model parameters versus the composition and
strength parameters over their typical ranges are considered; see Fig. 2.13.
In this figure the strength and composition parameters are normalized by
dividing by their maximum value. As seen from this figure, various model
parameters are almost insensitive to some of the composition and strength
variables (see the nearly horizontal rows of points in Fig. 2.13). Mathemati-
cally, such insensitivity is detected from the following formula for sensitivity
factor αiß56:

αi =
X̄i

F̄

∂F

∂Xi

(i = 1, 2, ...n) (2.17)

with

∂F

∂Xi

≈ 1

2∆Xi

[F (X̄1, ..., X̄i+∆Xi, ...X̄n)−F (X̄1, ..., X̄i−∆Xi, ...X̄n)] (2.18)
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Figure 2.13: Results of the sensitivity analysis to determine important influences
of composition

where F is the material property that depends upon the random parameters
Xi, ∆Xi are chosen very small variations of Xi, and the superimposed bars
denote the mean values. Then the composition and strength parameters to
which a given model parameter is found to be insensitive are deleted from the
assumed expression. The data from the data bank are then fitted again to
the simplified expression and the model is optimized. If the new coefficient
of variation of errors is not significantly larger the simplified expression is
accepted.

It must be emphasized that the results are limited to the chosen form of
dependence of model parameters on the composition and strength (products
of power functions). Somewhat different trends may be found with other
assumed types of dependence. Note, however, that the simplified formulae
agree with general trends established by experience, experiments and consid-
erations of physical mechanismsß57. The simplified formulae agree with the
fact that creep increases with an increase in cement content and decreases
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with an increase in strength and aggregate content, and that shrinkage in-
creases with an increase in water content. The exponent 4 of w/c in Eq.
(1.17) might seem too high, but it results from optimization and does not
yield excessive sensitivity to w/c because q3 is normally small compared to
q1, q2, and q4 (see Fig. 2.13).

In the future, the formulae for the dependence of model parameters on the
basic characteristics of concrete should be based on the theory of composites.
Some useful results in this regard have already been achievedß58; however
no comprehensive theory for practical use is in sight at present.

63



Chapter 3

References

1. RILEM TC 107, “Guidelines for characterizing concrete creep and shrink-
age in structural design codes or recommendations”, Materials and
structures 28 (1995), 52-55. See also RILEM TC69, “Conclusions for
structural analysis and for formulation of standard design recommen-
dations,” Chapter 6 in Mathematical Modeling of Creep and Shrinkage
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trales nucléaires: analyse et modélisation”, PhD thesis of ENPC, Re-
search report of Laboratoire Central des Ponts et Chaussées, Paris,
France (1995).
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Figure A1. Unrealistic and theoretically unfounded shapes of typical shrinkage
curves of GZ model (h = enviromnental humidity, t − t0 = duration of drying).

Figure A2. Unrealistic and theoretically objectionable reversals of creep recovery
curves obtained from the GZ model (top) and the CEB-FIP model (bottom)
according to the principle of superposion.

Figure A3. Stress relaxation curves obtained from the GZ model (top) and the
CEB-FIP model (bottom) according to the principle of superposition (the fact
that these curves cross the horizontal axis and reach into opposite stress values
is unrealistic and theoretically questionable)

Figure A3–Continuation. Stress relaxation curves obtained according to the prin-
ciple of superposition from the present B3 model (it has been mathematically
proven that these curves can never cross the horizontal axis and reach into op-
posite stress values).
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3.1 Comparison with Gardner and Zhao’s (GZ)

Model and Other Models

To further justify the present model, it is desirable to clarify the differences
from other models, and especially from the GZ Modelß31, which is also pre-
sented in this volume. The following comparison summarizes the contents of
a recent detailed critical discussion of this modelß31.

The statistical comparisons of the data points presented by the propo-
nents of the GZ Model were limited. If comparisons with all the significant
test data available are made, a clearer picture of the predictive capability of
the model can be seen. Some comparisons were already listed in the afore-
mentioned discussionß31.

Furthermore, many basic features of Model GZ are questionable on the
basis of the current understanding of the mechanics and physics of con-
crete shrinkage and creep, and violate the guidelines recently published by a
RILEM Committeeß1. These are as follows:

1. Lack of bounded final shrinkage: The shrinkage curve for Model GZ
does not have a final asymptotic value (Fig. A1). Although most test
data have been obtained on specimens too thick to dry up completely
and approach the final shrinkage value, the relevant tests on thinner
specimens which did dry up completely clearly confirm that a bounded
final value exists. Furthermore, the existing and generally accepted
theory of the shrinkage mechanism requires a bounded final shrink-
age value to exist (see, e.g., the state-of-the-art review in Chapter 1
of Mathematical Modeling, 1988, J. Wiley). Briefly, the reason is the
finiteness of the values of the capillary forces and adsorption film forces
that can be produced by drying, and the finiteness of the value of water
that can be withdrawn from concrete. Also, the physical-chemical pro-
cesses that cause drying are known to cease after the evaporable water
has escaped from concrete. The shrinkage curve of the GZ model ter-
minates with an inclined straight line in log (t − t0), which has been
based on the data of Troxell et al.ß40. However these data obtained on
a 1930’s type low quality concrete are an anomaly. No other data in
the RILEM data bank support such a final asymptote of the shrinkage
curve.
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by drying, and the finiteness of the value of water that can be with-
drawn from concrete. Also, the physical-chemical processes that cause
drying are known to cease after the evaporable water has escaped from
concrete. The shrinkage curve of the GZ model terminates with an
inclined straight line in log (t − t0), which has been based on the data
of Troxell et al.ß40 However these data obtained on a 1930’s type low
quality concrete are an anomaly. No other data in the RILEM data
bank support such a final asymptote of the shrinkage curve.

2. Disagreement with diffusion theory: The generally accepted nonlin-
ear diffusion theory for drying and shrinkage requires that the ini-
tial portion of the shrinkage curve should evolve in proportion to the
√

(t − t0)/D2, where t − t0 = duration of drying and D = effective
thickness of the specimen. This property is violated by Model GZ but
not by Model B3.

3. Negative initial shrinkage: The shrinkage should always be positive,
as exhibited by the B3 and other models, but violated by Model GZ.
Although this violation exists only for very short times (less than 1
min.), this is in principle incorrect. It is of course true that some
shrinkage tests indicate negative initial shrinkage, but this is due to
hydration heat and crystal growth pressure in very thick specimens.
Without taking these phenomena into account by special parameters,
it is not correct to use a formula that exhibits negative initial shrinkage
in all the situations.

4. Characterizing the age effect by strength gain: The effect of age on creep
according to Model GZ is far too weak and too short-lived. This is due
to relating this effect to the age affect on concrete strength. It is known
that the increase of concrete strength with the age ceases after about
one year, but the effect of age on concrete creep continues for many
years. This is due to basic differences in the mechanisms (especially
the fact that long-term aging is due to exhaustion of the creep sites and
to relaxation of the microprestress in the microstructure, rather than
to the chemical reaction of hydration).

5. Lack of final value of drying creep: The creep coefficient for the addi-
tional creep due to drying is given in Model GZ by a curve that does
not have a bounded final value. This is incorrect for the same reasons
as stated for shrinkage

6. Unsuitability for computer analysis of structures: For computer anal-
ysis of structures, it is a major advantage if the compliance function
of the model can be easily converted into a rate-type constitutive re-
lation based on the Maxwell chain or Kelvin chain. For the Model
B3, this conversion is automatic because there exists a simple and ex-
plicit formula to accomplish it. For the form of Model GZ, such an
explicit formula does not exist, and cumbersome nonlinear fitting by
the rate-type model is required for that purpose.
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7. Linearity with respect to the basic parameters: Often the user may have
test data on his concrete. Then it is important for the model to have
the capability of easy adjustment to fit such limited test data. The
adjustment is easy and unambiguous only if the main parameters of
the model are involved in the formulas linearly. This is true of the
basic parameters of the B3 Model (parameters q0, q1, q2, q3, q4, q5)
but not of the parameters of the Model GZ. This means that linear
regression cannot be used to adjust the GZ model to the given data.

8. Extrapolation based on given short-time data: For creep sensitive struc-
ture, the user should conduct short-time tests of 1 to 6 months duration,
and then adjust the model to fit these short-time tests, thus obtain-
ing an extrapolation of the short-time tests into long times. Simple
procedures for adjusting the B3 Model to short time data for creep or
shrinkage have been worked out, but they are unavailable for the Model
GZ.

9. Non-monotonic creep recovery (recovery reversal): The creep recov-
ery curve calculated according to the principle of superposition must
descend monotonically, i.e. must not reverse to a rising curve. This
property is verified by the B3 model, both for basic creep and creep at
drying but is violated by the GZ model (Fig. A2 (a,b)). Such behavior
is, according to the solidification theory, thermodynamically inadmis-
sible.

10. Stress relaxation curves with a change of stress sign: The stress relax-
ation curves calculated from GZ model using principle of superposition
exhibit a change of stress sign. Such curves are thermodynamically
inadmissible and they do not arise for Model B3 for both basic creep
and creep at drying as demonstrated in Fig. A3 (a,b).

11. Negative or decreasing elastic moduli and viscosities of Kelvin chain ap-
proximation: Large-scale finite element analysis for creep requires that
the compliance function be approximated by a Kelvin Chain consisting
of springs and dashpots. When the solidification theory is not followed
(e.g. when the creep recovery exhibits a reversal or the relaxation curve
changes its sign), the spring moduli and the dashpot viscosities are ob-
tained as negative for some periods of time, and may decrease in time,
both of which are inadmissible and cause convergence problems. For
the B3 model this can-not happen, but it does for the GZ model.

The typical shrinkage curves according to the GZ model are shown in Fig.
A1(a). Comparison with Fig. 1.1 for the B3 model reveals great differences.
For the reasons just mentioned, the shapes of these curves are not very real-
istic and, on the average, do not allow good fits of the individual measured
creep curves. Of course, in comparison to a set of many test data, this is
often obscured by the large scatter.

Since the CEB-FIP modelß30 has not been under consideration by the
ACI committee 209, its limitations will be pointed out only tersely. This
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model, which incorporated many features of the BP Model and was one
of the best when developed in the mid 1980’s does not satisfy the RILEM
guidelines No. 2, 8, 9, 10, 11, 12, 13, 15, 20 and 21 and partly also 6 and
7. It does not follow the solidification theory (it was formulated earlier than
that theory), and consequently it exhibits problems of recovery reversal and
change of stress sign for stress relaxation; see Fig. A2(c), A3(c). The leveling
off of the basic creep curves in log (t− t′) scale after several years of loading
and the fact that a finite asymptotic value of creep is assumed is not justified
and may result in underestimation of long term creep. Some features of the
shrinkage formulation do not follow the diffusion theory (absence of shape
effect, approach to final value), and the formulation for additional creep due
to drying is completely empirical.
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Addendum: 

4.1 Comparison with Gardner and Zhao's (GZ) 

Model and Other Models 

To further justify the present model, it is desirable to clarify the differences 

from other models, and especially from the GZ Model31
, which is also pre

sented in this volume. The following comparison summari:tes the contents of 

a recent detailed critical discussion of this model3l
. 

The statistical comparisons of" the data points presented by the propo

nents of the GZ Model were limited. If comparisons with all the significant 

test data available are made, a clearer picture of the predictive capability of 

the model can be seen. Some comparisons were already listed in the afore

mentioned discussion31
• 

Furthermore, many basic features of Model GZ are questionable on the 

basis of the current understanding of the mechanics and physics of con

crete shrinkage and creep, and violate the guidelines recently published by a 

RILEM Committee l 
. These are as follows: 

1. Lack of bounded final shrinkage: The shrinkage curve for Model GZ 

does not have a final asymptotic value (Fig. AI). Although most test 

data have been obtained on specimens too thick to dry up completely 

and approach the final shrinkage value, the relevant tests on thinner 

specimens which did dry up completely clearly confirm that a bounded 

final value exists. Furthermore, the existing and generally accepted 

theory of the shrinkage mechanism requires a bounded final shrink

age value to exist (see, e.g., the state-of-the-art review in Chapter 1 

of Mathematical Modeling, 1988, J. Wiley). Briefly, the reason is the 

finiteness of the values of the capillary forces and adsorption film forces 

that can be produced by drying, and the finiteness of the value of water 
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that can be withdrawn fro'm concrete. Also, the physical-chemical pro

cesses that cause drying are known to cease after the evaporable water 

has escaped from concrete. The shrinkage curve of the GZ model ter

minates with an inclined straight line in log (t - to), which has been 

based on the data of Troxell et al. 40 However these data obtained on 

a 1930's type low quality concrete are an anomaly. No other data in 

the RILEM data bank support such a final asymptote of the shrinkage 

curve. 

2. Disagreement with diffusion theory: The generally accepted nonlin

ear diffusion theory for drying and shrinkage requires that the ini

tial portion of the shrinkage curve should evolve in proportion to the 

V(t - to)/D2, where t - ~o == duration of drying and D == effective 

thickness of the specimen. This property is violated by Model GZ but 

not by Model B3. 

3. Negative initial shrinkage: The shrinkage should always be positive, 

as exhibited by the B3 and other models, but violated by Model GZ. 

Although this violation exists only for very short times (less than 1 

min.), this is in principle incorrect. It is of course true that some 

shrinkage tests indicate negative initial shrinkage, but this is due to 

hydration heat and crystal growth pressure in very thick specimens. 

Without taking these phenomena into account by special parameters, 

it is not correct to use a formula that exhibits negative initial shrinkage 

in all the situations. 

4. Characterizing the age effect by strength gain: The effect ofage on creep 

according to Model GZ is far too weak and too short-lived. This is due 

to relating this effect to the age affect on concrete strength. It is known 

that the increase of concrete strength with the age ceases after about 

one year, but the effect of age on concrete creep continues for many 

years. This is due to basic differences in the mechanisms (especially 

the fact that long-term aging is due to exhaustion of the creep sites and 

to relaxation of the microprestress in the microstructure, rather than 

to the chemical reaction of hydration) . 

5. Lack of final value of drying creep: The creep coefficient for the addi

tional creep due to drying is given in Model GZ by a curve that does 

not have a boullded final value. This is incorrect for the same reasons 

as stated for shrinkage 
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I 

6. Unsuitability for computer analysis of structures: For computer anal
ysis of structures, it is a major advantage if the compliance function 

of the model can be easily converted into a rate-type constitutive re
lation based on the Maxwell chain or Kelvin chain. For the Model 
B3, this conversion is automatic because there exists a simple and ex

plicit formula to accomplish it. For the form of Model GZ, such an 

explicit formula does not exist, and cumbersome nonlinear fitting by 
the rate-type model is required for that purpose. 

7. Linearity with respect to the basic parameters: Often the user may have 
test data on his concrete. Then it is important for the model to have 

the capability of easy adjustment to fit such limited test data. The 
adjustment is easy and unambiguous only if the main parameters of 

the model are involved in the formulas linearly. This is true of the 

basic parameters of the B3 Model (parameters qo, q1, q2, qa, q., qb) 

but not of the parameters of the Model GZ. This means that linear 

regression cannot be used to adjust the GZ model to the given data. 

8. Extrapolation based on given short-time data: For creep sensitive struc

ture, the user should conduct short-time tests of 1 to 6 months duration, 

and then adjust the model to fit these short-time tests, thus obtain

ing an extrapolation of the short-time tests into long times. Simple 
procedures for adjusting the B3 Model to short time data for creep or 

shrinkage have been worked out, but they are unavailable for the Model 
GZ. 

9. Non-monotonic creep' recovery (recovery reversal): The creep recov
ery curve calculated according to the principle of superposition must 

descend monotonically, i.e. must not reverse to a rising curve. This 
property is verified by the B3 model, both for basic creep and creep at 

drying but is violated by the GZ model (Fig A2 (a,b)). Such behaviOI 

is, according to the solidification theory, thermodynamically inadmis

sible. 

10. Stress relaxation curves with a change of stress sign: The stress rel8.A

atioll curves calculated from GZ model using principle of superposition 
exhiLit a change of stress sign. Such curves are thermodynamically 

inadmissible and they do not arise for Model B3 for both basic creep 

and creep at drying as demonstrated in Fig A3 (a,b). 

11. Negative or decreasing elastic moduli and viscosities of Kelvin chain ap

proximation: Large-scale finite element analysis for creep requires that 
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Figure A3. Stress relaxation curves obtained from the GZ model (top) and the 

CEB-FIP model (bottom) according to the principle of superposition (the fact 

that these curves cross the horizontal axis and reach into opposite stress values 

is unrealistic and theoretically questionable). 
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Figure A3-Continuation. Stress relaxation curves obtained according to the prin

ciple of superposition from the present 83 model (it has been mathematically 

proven that these curves can never cross the horizontal axis and reach into op

posite stress values). 
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the compliance function be approximated by a Kelvin Chain consisting 

of springs and dashpots. When the solidification theory is not followed 

(e.g. when the creep recovery exhibits a reversal or the relaxation curve 

changes its sign), the spring moduli and the dashpot viscosities are ob

tained as negative for some periods of time, and may decrease in time, 

both of which are inadmissible and cause convergence problems. For 

the B3 model this can-not happen, but it does for the GZ model. 

TIIP typical ~hrinkagf' curves according to thf' GZ model are shown in Fig. 

AHa). Comparison with Fig. 1.1 for the B3 model reveals great differences. 

for the reasons just mentioned, the shapes of these curves are not very real

istic and, on the average, do not allow good fit.s of the individual measured 

creep curves. Of course, in comparison to a set of lIJany test data, thi~ is 

often obscured by the large scatter. 

Since the CEB-FIP model3o has not been under consideration by the ACI 

committee 209, its limitations will be pointed out only tersely. This model, 

which incorporated many features of the BP Model and was one of the best 

when developed in the mid 1980's does not satisfy the RILEM guidelines No. 

2, 8, 9, 10, 11, 12, 13, 15, 20 and 21 and partly also 6 and 7. It does not 

follow the solidification theory (it was formulated earlier than that theory), 

and consequently it exhibits problems of recovery reversal and change of 

stress sign for stress relaxation; see Fig. A2(c), A3(c). The leveling off of 

the basic creep curves in log (t - t'l scale after several years of loading and 

the fact that a finite asymptotic value of creep is assumed is not justified 

and may result in underestimation of long term creep. Some features of the 

shrinkage formulation do not follow the diffusion theory (absence of shape 

effect, approach to final value), and the formulation for additional creep due 

to drying is completely empirical. 

The coefficients of variation of the errors of various models have been 

calculated, as already described in Sec. 2.2. For convenience, they are now 

summarized in Table AI. This calculation was based on the 1996 version of 

the RILEM data bank (this version did not include several data sets added 

subsequently, but it was checked that the addition of these data sets did not 

change the statistics significantly). 

Table AI. Coefficients of variation of prediction errors. 

Model B3 ACI GZ CEB-9O 

Shrinkage 34 5.5 48 46 
Basic creep 24 58 46 3.5 

Drying creep 23 45 38 32 


